COM 5245

Optimization for Communications - Fall 2017
 Homework 1
 (Due date: October 18, 2017)

Notations:
$\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{T} \quad n$-dimensional column vector
$\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right] \quad n \times m$ matrix
$\operatorname{dom} f \quad$ Domain of a function f

1. (20 points) Which of the following sets are convex? (You need to justify your answer with strong and clear reasoning.)
(a) (5 points) The set of points closer to a given point than a given set, i.e.,

$$
\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2} \leq\|\mathbf{x}-\mathbf{y}\|_{2} \forall \mathbf{y} \in S\right\}
$$

where $S \subseteq \mathbb{R}^{n}$.
(b) (5 points) The set of points closer to one set than another, i.e.,

$$
\{\mathbf{x} \mid \operatorname{dist}(\mathbf{x}, S) \leq \operatorname{dist}(\mathbf{x}, T)\}
$$

where $S, T \subseteq \mathbb{R}^{n}$, and

$$
\operatorname{dist}(\mathbf{x}, S) \triangleq \inf _{\mathbf{z}}\left\{\|\mathbf{x}-\mathbf{z}\|_{2} \mid \mathbf{z} \in S\right\}
$$

(c) (5 points) The set

$$
\left\{\mathbf{x} \mid\left(\mathbf{x}+S_{2}\right) \subseteq S_{1}\right\}=\left\{\mathbf{x} \mid \mathbf{x}+\mathbf{y} \in S_{1}, \forall \mathbf{y} \in S_{2}\right\}
$$

where $S_{1}, S_{2} \subseteq \mathbb{R}^{n}$ with S_{1} convex.
(d) (5 points) The set of points whose distance to a point a does not exceed a fixed fraction $0 \leq \theta \leq 1$ of the distance to another point \mathbf{b}, i.e., the set

$$
\left\{\mathbf{x} \mid\|\mathbf{x}-\mathbf{a}\|_{2} \leq \theta\|\mathbf{x}-\mathbf{b}\|_{2}\right\} .
$$

2. (10 points) Which of the following sets S are polyhedra? If possible, express S in the form $S=\{\mathbf{x} \mid \mathbf{A x} \preceq \mathbf{b}, \mathbf{F} \mathbf{x}=\mathbf{g}\}$.
(a) (5 points) $S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{x}=1, \quad \sum_{i=1}^{n} x_{i} a_{i}=b_{1}, \quad \sum_{i=1}^{n} x_{i} a_{i}^{2}=b_{2}\right\}$, where $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $b_{1}, b_{2} \in \mathbb{R}$.
(b) (5 points) $S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \succeq \mathbf{0}, \mathbf{x}^{T} \mathbf{y} \leq 1\right.$ for all \mathbf{y} with $\left.\|\mathbf{y}\|_{2}=1\right\}$.
3. (10 points) The dual norm of $\|\cdot\|$ on \mathbb{R}^{n} is defined as

$$
\|\mathbf{x}\|_{*}=\sup \left\{\mathbf{x}^{T} \mathbf{y} \mid\|\mathbf{y}\| \leq 1, y \in \mathbb{R}^{n}\right\}
$$

Prove that $\|\cdot\|_{*}$ is a valid norm. (Hint: try to show the essential properties of a norm including positive definiteness, positive homogeneity and triangle inequality.)
4. (5 points) Let K be a nonempty cone in \mathbb{R}^{n}. Suppose that f_{K} is the image of K under a linear mapping. Show that f_{K} is a cone.
5. (15 points) Suppose that C and D are closed convex cones in \mathbb{R}^{n} and C^{*} and D^{*} are the associated dual cones. Show that

$$
(C \cap D)^{*}=C^{*}+D^{*} .
$$

6. (20 points) Let K be a nonempty cone in \mathbb{R}^{n}. Show that: $K^{*}=(\mathbf{c l} \operatorname{conv} K)^{*}$.
7. (10 points) Let $C \subseteq \mathbb{R}^{n}$ be a closed convex set, and suppose that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}$ are on the boundary of C. Suppose that for each $i, \mathbf{a}_{i}^{T}\left(\mathbf{x}-\mathbf{x}_{i}\right)=0$ defines a supporting hyperplane for C at \mathbf{x}_{i}, i.e., $C \subseteq\left\{\mathbf{x} \mid \mathbf{a}^{T}\left(\mathbf{x}-\mathbf{x}_{i}\right) \leq 0\right\}$. Consider the two polyhedra

$$
P_{\text {inner }}=\operatorname{conv}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\}, \quad P_{\text {outer }}=\left\{\mathbf{x} \mid \mathbf{a}^{T}\left(\mathbf{x}-\mathbf{x}_{i}\right) \leq 0, i=1, \ldots, K\right\} .
$$

Show that $P_{\text {inner }} \subseteq C \subseteq P_{\text {outer }}$. Draw a picture illustrating this.
8. (10 points) Let $\mathcal{S}=\left\{\mathbf{s}_{1}, \ldots, \mathbf{s}_{m+1}\right\} \subset \mathbb{R}^{n}, n \in \mathbb{Z}_{+}$be an affinly independent set. The m-simplex $\Delta_{m}=\Delta\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{m+1}\right)$ with vertices from \mathcal{S} is defined as

$$
\Delta_{m}=\left\{\sum_{i=1}^{m+1} \theta_{i} \mathbf{s}_{i} \mid \mathbf{s}_{i} \in \mathcal{S}, \theta_{i} \in \mathbb{R}_{+}, \sum_{i=1}^{m+1} \theta_{i}=1\right\} .
$$

Now, considering this definition,
(a) (5 points) Show that any $\Delta_{m} \subset \mathbb{R}^{n}$ is a convex set of dimension m;
(b) (5 points) Show that aff $\Delta_{m}=\operatorname{aff} \mathcal{S}$.

