National Tsing Hua University 10810COM 524500

Convex Optimization for Communications and Signal Processing

Homework 3

Due: 25 Dec 2019 (12:05 PM)

Instructor: Prof. Chong-Yung Chi (♥) *TA:* Sadid Sahami (♥)

Total points: 100	9 Questions	
Q1		
(a) $K = \mathbb{S}^n_+$, $f(\mathbf{A}) = \mathbf{A} _F$ is K-nondecreasing.	(5)	pt.
(b) $K = \mathbb{S}_{++}^n$, $f(\mathbf{A}) = \mathbf{A}^{-1}$ is K -convex.	(5,	$_{pt.}$
(c) $K = \mathbb{S}_{++}^n$, $f(\mathbf{A}) = \mathbf{A}^{-1} _F$ is convex.	(5)	
Note		
Note that part (b) has been solved in [1, Example 3.13, 3.15]. So, yo (b) must be different from these two examples.		
Q2 (total Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{b}, \boldsymbol{\lambda} \in \mathbb{R}^m$. Define $\mathcal{A} \triangleq \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \prec \mathbf{b}\}$ and		
$\mathcal{B} \triangleq \{ \boldsymbol{\lambda} \mid \boldsymbol{\lambda} \succeq 0, \boldsymbol{\lambda} \neq 0, \mathbf{A}^T \boldsymbol{\lambda} = 0, \mathbf{b}^T \boldsymbol{\lambda} \leq 0 \}.$		
(a) Prove that $C = \{\mathbf{b} - \mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$ is a convex set.	(3)	pt.
(b) Apply the separating hyperplane theorem to prove that \mathcal{A} is an empty set if, \mathcal{B} is a nonempty set.	et if and only (7 i	pt.
Q3	at a function	
Q4(tota	al: 10 Points)	
(a) Consider $f: \mathbb{R}^n \to \mathbb{R}$ as a convex function and denote \mathbf{x}^* as its global mall $\mathbf{y} \in \mathbb{R}^n$, the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(\alpha) \triangleq f(\mathbf{x}^* + \alpha \mathbf{y})$ is define \mathbf{x}^* is the global minimum of f if and only if $\forall \mathbf{y} \in \mathbb{R}^n$, $\alpha^* = 0$ is the gloof the function $g(\alpha)$.	d. Prove that	pt.
(b) Let's consider a case where the function f is <u>nonconvex</u> . Denote $\mathbf{x} = (0,0)$ and $p,q \in \mathbb{R}_{++}$, $p < q$. Let $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x_1,x_2) = (x_2 - px_1)$. Show that if $f(y,my^2) < 0$ for $y \neq 0$ and m satisfying $p < m < q$, then \mathbf{x}^* minimum of f even though it is a local minimum along every line passing	$(x_1^2)(x_2 - qx_1^2).$ is not a local	pt.

Q5(total: 10 Points)

Consider the following optimization problem,

$$\min_{\mathbf{x} \in \mathbb{R}^n} \sup_{\|\mathbf{c}\|_2 \le 1} \mathbf{c}^T \mathbf{F}(\mathbf{x})^{-1} \mathbf{c}$$

s.t. $\mathbf{F}(\mathbf{x}) \succ \mathbf{0}$,

where

$$\mathbf{F}(\mathbf{x}) = \mathbf{F}_0 + x_1 \mathbf{F}_1 + \dots + x_n \mathbf{F}_n$$

and each $\mathbf{F}_i \in \mathbb{S}^m$. Reformulate it as the following,

$$\max_{\mathbf{x} \in \mathbb{R}^n, t \in \mathbb{R}} t$$
s.t. $\mathbf{F}(\mathbf{x}) - t\mathbf{I} \succeq \mathbf{0}$,
$$\mathbf{F}(\mathbf{x}) \succ \mathbf{0}$$
,

Hint -----

You may take a look at [1, (Maximum eigenvalue minimization) Example 8.1].

Consider the complex least ℓ_2 -norm problem,

$$\min_{\mathbf{x}} \|\mathbf{x}\|_2$$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$,

where $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{b} \in \mathbb{C}^m$, and the variable is $\mathbf{x} \in \mathbb{C}^n$. Here $\|\cdot\|_2$ denotes the ℓ_2 -norm on \mathbb{C}^n , defined as

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}.$$

Assume that **A** is full rank, and m < n. Formulate the complex least ℓ_2 -norm problem as a least ℓ_2 -norm problem with real problem data and variable.

Q7(total: 10 Points)
Reformulate the following optimization problem,

$$\max_{\mathbf{p}, \mathbf{r} \in \mathbb{R}^K} \left(\prod_{k=1}^K r_k \right)^{1/K}$$
s.t. $r_k \le \ln \left(1 + \frac{p_k}{\sigma_k^2 + \sum_{j \ne k}^K \alpha_{k,j} p_j} \right), \ k = 1, \dots, K,$

$$0 \le p_k \le P_k, \ k = 1, \dots, K,$$

where all σ_k^2 , $\alpha_{k,j}$, and P_k are given positive real numbers, into a convex problem.

----- Hint -----

The following functions are convex:

$$f(\mathbf{x}) = \ln\left(\sum_{k=1}^{K} a_k \exp(x_k)\right), \quad \mathbf{dom} \ f = \mathbb{R}^K, \quad \text{where } a_k \ge 0 \text{ for } k = 1, \dots, K,$$
 $g(t) = \ln(\exp(\exp(t)) - 1), \quad \mathbf{dom} \ g = \mathbb{R}.$

Q8(total: 10 Points)

The function $f: \mathbb{R}^n \to \mathbb{R}$ is a quasiconvex function. Consider the convex set $X \subseteq \mathbb{R}^n$ and denote $p^* = \inf_{\mathbf{x} \in X} f(\mathbf{x})$. Assume that f is not constant on any line segment of X. Prove that every local minimum of f over the set X, is also the global minimum.

Q9(total: 10 Points) Consider the optimization problem (P1),

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \frac{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_1}{\mathbf{c}^T \mathbf{x} + d}
s.t. \quad \|\mathbf{x}\|_{\infty} \le 1,$$
(P1)

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$, and $d \in \mathbb{R}$. Suppose $\mathbf{c}^T \mathbf{x} + d > 0$ for all feasible \mathbf{x} .

- (a) Prove (P1) is a quasiconvex optimization problem. (4_{pt})
- (b) Show that (P1) is equivalent to (P2), (6_{pt})

$$\min_{\mathbf{y} \in \mathbb{R}^n} \quad \|\mathbf{A}\mathbf{y} - \mathbf{b}t\|_1$$

$$s.t. \quad \|\mathbf{y}\|_{\infty} \le t$$

$$\mathbf{c}^T \mathbf{y} + dt = 1,$$
(P2)

where $t \in \mathbb{R}$.

References

[1] C.-Y. Chi, W.-C. Li, and C.-H. Lin, Convex optimization for signal processing and communications: from fundamentals to applications. CRC Press, 2019, (draft version: 13 June 2019).