

Total points: 100

9 Questions

 $(8_{pt.})$

Q1(total: 16 Points) Consider $S \subseteq \mathbb{R}^n$ as a closed convex set. We know that for any $\mathbf{x} \in \mathbb{R}^n$, there always exists a nearest point from S. We denote this nearest point by \mathbf{s}_0 .

(a) Prove \mathbf{s}_0 satisfies the following inequality for any $\mathbf{y} \in S$:

$$(\mathbf{x} - \mathbf{s}_0)^T (\mathbf{y} - \mathbf{s}_0) \le 0, \tag{1}$$

- (b) Using the result from part (a), prove that for every $\mathbf{x} \in \mathbb{R}^n$ the nearest point $\mathbf{s}_0 \in S$ (8 pt.) is unique.
- **Q2**(total: 10 Points) Show that $f(\mathbf{X}) = \text{Tr}(\mathbf{X}^{-1})$ is convex on **dom** $f = \mathbb{S}^n_{++}$.

Q3(total: 10 Points) Consider $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$. Show that the function $f : \mathbb{R}^n \to \mathbb{R}$,

$$f(\mathbf{x}) = \begin{cases} -(x_1 x_2 \dots x_n)^{\frac{1}{n}}, & \text{if } x_i > 0, \ i = 1, 2, \dots, n \\ \infty, & \text{otherwise} \end{cases}$$

is convex.

- $(5_{pt.})$ (a) first-order condition for quasiconvexity.
- (5 pt.) (b) second-order condition for quasiconvexity.
 - **Q6**(total: 10 Points) Prove that for any arbitrary set $C \subset \mathbb{R}^n$ ([1, Eq. (2.30)]),

Q7(total: 14 Points) Let $f(\mathbf{X}) = \operatorname{rank}(\mathbf{X})$, with **dom** $f \triangleq \mathcal{B} = {\mathbf{X} \in \mathbb{R}^{M \times N} \mid \|\mathbf{X}\|_* = \|\mathbf{X}\|_{\mathcal{A}} \leq 1} = \operatorname{conv} \mathcal{A}$, where \mathcal{A} is the set of rank-1 matrices. Prove that the convex envelope of f can be shown to be

$$g_f(\mathbf{X}) = \|\mathbf{X}\|_* = \sum_{i=1}^{\operatorname{rank}(\mathbf{X})} \sigma_i(\mathbf{X}), \quad \mathbf{X} \in \mathcal{B}.$$

Hint

You might find it helpful to refer to [1, Eq. (3.61)].

Q8(total: 10 Points) Prove that a function $f : \mathbb{R}^n \to \mathbb{R}$ is quasiconvex *if and only if* for all $\mathbf{x} \in \mathbf{dom} f$ and for all \mathbf{v} , the function $g(t) = f(\mathbf{x} + t\mathbf{v})$ is quasiconvex on its domain $\{t | \mathbf{x} + t\mathbf{v} \in \mathbf{dom} f\}$ ([1, Remark 3.31]).

Q9(total: 10 Points) Let $K \subseteq \mathbb{R}^m$ be a proper cone and $\boldsymbol{f} : \mathbb{R}^n \to \mathbb{R}^m$. Prove that $\boldsymbol{f}(\mathbf{x})$ is K-convex *if*, and only *if*, the associated epigraph defined as

$$\mathbf{epi}_K oldsymbol{f} = \left\{ (\mathbf{x}, \mathbf{t}) \in \mathbb{R}^{n+m} \, \Big| \, oldsymbol{f}(\mathbf{x}) \preceq_K \mathbf{t}
ight\}$$

is a convex set.

References

 C.-Y. Chi, W.-C. Li, and C.-H. Lin, Convex optimization for signal processing and communications: from fundamentals to applications. CRC Press, 2019, (draft version: 13 June 2019).