
EE367000
Introduction to Mathematics for Communications: Convex Analysis and

Optimization

Homework 1
Due: 27 March 2019 (23:59)

Instructor : Prof. Chong-Yung Chi (R)

TAs: Sadid Sahami (R) & PingRui Chiang (R)

• Hand in your hard-copy no later than the due
date (ECE 706).

• As a NTHU student, strong academic ethics is as-
sumed and punished otherwise by deducting the
whole homework score.

NOTE

Name:

id:

Total points: 100 7 Questions

Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (total: 15 Points)
By considering [1, sections 1.1.1-3 ], let the two vectors x and y ∈ Rn,

(a) (5 pt.)Prove this lower bound for difference of any two vectors.

‖x− y‖ ≥
∣∣∣‖x‖ − ‖y‖∣∣∣

(b) (10 pt.)Show that for any p > 1,
‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Inequalities are quite important in convex analysis and you’ll see more use of them
throughout the course. Here, you might need to use some of these inequalities presented
in the book [1, Section 1.1.1-3].

Hint

Q2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (total: 10 Points)
Consider A ∈ Rn×n, a ≥ 1 and A−1 exists. Referring to induced norms discussed in the
book ([1, p.7]), prove that for any A:

‖A‖a =
1

min
‖u‖a=1

‖A−1u‖a
.

Please go on to the next page. . .
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Note that 1
min f+

= max 1
f+

. In this special relation, note that the denominator is al-

ways positive (f+) and you can reformulate the original term as such. Since you’re
working with norm functions here, this is the case and this helps simplify the proof.
You can also take a look at [1, Section 4.1.3].

Hint

Q3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (total: 15 Points)
Based on the definitions provided in [1, Section 1.1.6] on interior, closure and boundary,
discuss these questions:

(a)(5 pt.) Consider the set S1 = {(a, b) ∈ R2, ab ≥ 0} and S2 = {(a, b) ∈ R2, a 6= b}, argue
whether these two sets are closed or open and write their interior and boundary sets.

(b)(10 pt.) Prove that bdS = ∅ is necessary and sufficient (i.e. ⇔) for S to be both close and
open at the same time.

Q4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (total: 15 Points)

(a)(10 pt.) Consider the vector space W with two subspaces of U = {u1,u2, . . . ,uk} and V =
{u1,u2, . . . ,uk,v}. Prove:

span [U ] = span [V ] ⇔ v ∈ span[U ]

(b)(5 pt.) Supposing that W is a subset of vector space V , prove that span[W ] is the intersection
of all the subspaces of V which contains W .

Q5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (total: 10 Points)
Show that eigenvalues of the matrix A = [aij] ∈ Cn×n always lie in the union of circles D
defined as:

Di ,

z

∣∣∣∣∣ |z − aii| ≤ ri =
n∑

j=1
j 6=i

|aij|, i = 1, 2, . . . , n

 .

Q6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (total: 15 Points)
Considering the [1, Section 1.2.5-7], prove the following statements:

(a)(5 pt.) All eigenvalues of a Hermitian matrix, A ∈ Hn, are real.

(b)(5 pt.) In the case of a Hermitian matrix, considered in part (a), all eigenvectors associated
with distinct eigenvalues of A are orthogonal.

(c)(5 pt.) The singular values and eigenvalues of a matrix B ∈ Sn
++ are the same.

Q7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (total: 20 Points)

(a)(10 pt.) Find the determinant of the unitary matrix Un×n (UHU = I). (Note that the matrix
U, is complex valued and “H” indicates the Hermitian (i.e. conjugate transpose) of
the matrix.).

Question 7 may continues on the next page. . .
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(b) (10 pt.)Show that for the matrix A ∈ Cm×n, det (AHA) > 0 if and only if rankA = n. (What
about the equality case?)

Throughout this course you’ll encounter numerous proofs either in the book or home-
work. Proof is a step by step [chain of] logical reasons arguing the truth of a statement.
By trying to prove a mathematical statement you’ll construct/show your understand-
ing of the subject. Take the point where you stuck in the process of constructing your
chain of reasons as a good sign which shows where you need to fill the gap in your
understanding. You can back and forth between the book (or other resources) to fill
the gaps in your comprehension.Generally proofs are usually done by one of these schemes:• Direct Proof: By proving A⇒ Z directly, you’re actually construct your proof

from the assumption A: assuming A is TRUE and use A to show that Z is TRUE as
well. This usually happens by some intermediate steps (i.e. A⇒ B ⇒ · · · ⇒ Z).• Contrapositive Proof: This is actually another form of direct proof but in-
stead of proving it from A to Z, it proves the opposite way by assuming the
opposite of Z (i.e. ¬Z). Now you can construct your chain of reasoning to find
¬A (i.e. ¬Z ⇒ · · · ⇒ ¬A). Note that A⇒ Z is equivalent of ¬Z ⇒ ¬A.• Proof by Contradiction: In prove by contradiction you assume not only A
but also ¬Z and then show a contradiction by this assumption which proves
your initial assumption aka (A,¬Z) is FALSE. You know A is TRUE so ¬Z is
FALSE, so Z is TRUE.

• Proof by Induction: Imagine you want to prove yourself that all the birds on
our campus could sing (just as a simple analogy). One pretty straight-forward
way to prove is to study all the birds which live on campus and see them singing.
We as human are often quick to get frustrated and come to a general conclusion
that all birds on our campus sing. This is hard and cumbersome in reality but
sometimes in mathematics this way of proof come quite handy esp. when you
have an ordered set. First you set a basis for your proof (e.g. prove for n = 1
that the statement is TRUE). Having the basis, you suppose the statement is
TRUE for n = k. Now, prove it for n = k + 1. This way you’re proving the
desired statement (e.g. singing) for all the member of your set (e.g. birds).

A short discussion on proofs
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