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Unsupervised Hyperspectral Denoising Based on
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Abstract—This article considers the inverse problem under hy-
perspectral images (HSIs) denoising framework. Recently, it has
been shown that deep learning is a promising approach to image
denoising. However, deep learning to be effective usually needs a
massive amount of training data. Moreover, in a practical scenario,
HSIs may get contaminated by different kinds of noises such as
Gaussian and/or sparse noise. Lately, it has been reported that
the convolutional neural network (CNN), the core element used
by deep image prior (DIP), is able to capture image statistical
characteristics without the need of training, i.e., restore the clean
image blindly. Nonetheless, there exists some performance gap
between DIP and state-of-the-art methods in HSIs (e.g., low-rank
models). By applying the Huber loss function (HLF), which is
derived through a least favorable distribution in robust statistics, to
DIP, we propose a novel unsupervised denoising algorithm, referred
as to the HLF-DIP, free from pretraining and without involving
any regularizer. Extensive experimental results are provided to
demonstrate that the proposed HLF-DIP algorithm significantly
outperforms seven state-of-the-art algorithms in both complexity
(thanks to no regularization) and robustness against complex noise
(e.g., mixed types of noises).

Index Terms—Adam optimizer, convolutional neural network,
deep image prior, Huber loss function, hyperspectral denoising,
least favorable distribution, robust statistics.

I. INTRODUCTION

H IGH-QUALITY hyperspectral images (HSIs), providing
spectral and spatial information of a hyperspectral scene,

have been widely used in remote sensing, computer vision,
disease diagnosis, etc. [1]–[3] However, HSI, a 3-D data cube
composed of the 2-D spatial domain and the spectral domain,
is susceptible to various kinds of noises such as Gaussian and
sparse noises caused by atmospheric interference and sensor
internal issues. Mixed noises severely degrade the performance
of subsequent applications, such as classification, superresolu-
tion, and unmixing [4]–[8]. For this reason, denoising HSIs is
an essential preprocessing for any further applications.
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Some high-performance HSI denoising approaches have been
proposed in recent years. Bandwise processing methods are
one of the most straightforward tools for applying 2-D de-
noiser to each band of observed HSIs individually [9], [10].
Nonetheless, HSI data are known to be highly correlated in
both the spectral and spatial domains, and ignoring the spectral
data correlation may downgrade the denoisers’ performance.
For this reason, a wavelet shrinkage approach was suggested
in the derivative-domain [11]. Moreover, for volumetric data
with similar qualities to HSI, block matching and 4-D filtering
(BM4D) was proposed [12], in which only Gaussian and Rician
noises are considered, and hence the performance of the algo-
rithm degrades very drastically in the scenario of complex noise
(e.g., outliers, stripes, and sparse noise). Other HSI denoising
algorithms are mostly based on the optimization method while
the data-fitting and regularization terms make up the majority of
the optimization problems used for the design of HSI restora-
tion algorithms. The prior information about the underlying
properties for the recovered HSI corresponds to the sum of the
regularization terms. Total variation (TV) [10] is one of the most
often used regularization approaches for image restoration in
order to reduce noise levels and retain image edges for natural
image denoising. However, this method just considers the spatial
correlation but ignores the spectral correlation of HSI. To capture
the spectral correlation of HSI, in [13], spatio-spectral total
variation is proposed using 2D-TV for capturing the smoothness
of the spatial dimension and 1D-TV for modeling the spectral
correlation. Although spatio-spectral total variation regulariza-
tion can improve the denoising performance, some artifacts still
remain in the restored image. Another effective regularization of
HSI is low rankness due to high spectral-spatial correlation. As a
result, a significant amount of Gaussian noise can be efficiently
eliminated [14]–[16]. Subspace-based approaches have been
frequently used in recent years, which adequately account for
spectral correlation due to the low-rank property of the HSI,
thus yielding improved outcomes for HSI denoising [17], [18].
For HSI mixed noise reduction, the robust principal component
analysis (RPCA) was first introduced in [19]. The core concept
of RPCA is based on the consideration of the low-rankness of the
HSI in the presence of sparse noise. However, the RPCA may not
be able to preserve the spatial correlation in HSI, consequently
resulting in inferior denoising outcomes for large-magnitude
noisy situations. Most existing works focused on replacing
the challenging nonconvex rank minimization problem with a
convex surrogate. For instance, the nuclear norm employed as
the surrogate of the nonconvex data matrix rank has been one
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of the most popular options [20] used in HSI inverse problems.
Despite the fact that the above-mentioned rank approximations
have been demonstrated effective, they all need to perform the
computation-expensive singular value decomposition (SVD) in
each iteration. Low-rank tensor representation of an HSI can
finely preserve the underlying structure of a 3-D hyperspectral
cube. Moreover, it also captures data correlation in 3-D simulta-
neously instead of 2-D, thus achieving better performance than
low-rank matrix approximations [21]–[23]. On the other hand,
some HSI denoising methods use source separation techniques,
such as the unmixing-based denoising (UBD) method proposed
in [24]. Prior to denoising, UBD estimates endmember signa-
tures using the computation-efficient vertex component analysis
(VCA), under the assumption of the existence of pure pixels,
which however may not be true in practical applications. In any
event, both the structures of HSIs and noise have been considered
in the meantime, thereby drawing a number of HSI denoising
methods that are suitable for handling Gaussian noise but not
very effective to handle complicated mixed noises.

Recently, deep learning approaches [25]–[30] have shown
effective in solving inverse problems of HSIs. In general, super-
vised algorithms need a large amount of training data to perform
excellently in HSI denoising. However, massive amounts of
hyperspectral training data may not be available in practice and
HSI noise in practical scenarios may be quite complicated. To
attack this problem, Ulyanov et al. [31] recently introduced
deep image prior (DIP), an unsupervised deep learning-based
image restoration algorithm. The DIP employs a convolutional
neural network (CNN) to restore images without the need of
training. The CNN, with a randomly generated network input
and the restored image as the network output, can effectively
lower Gaussian noise level of the given noisy image through
proper iteration steps. Following that, Sidorov et al. [32] ap-
plied DIP to HSIs restoration. The optimization approach of
DIP for HSI restoration is formulated in a fashion similar to
supervised methods. Although DIP offered a novel paradigm
for solving inverse problems in imaging without any handcrafted
priors (regularization), the quality of DIP approaches is not very
competitive in performance with state-of-the-art frameworks.
Recently for HSI, Nguyen et al. [33] proposed a DIP-based
model by employing Stein’s unbiased risk estimator (SURE)
in the cost function. Despite the fact that SURE can improve
the performance of DIP for HSI in terms of Gaussian and
Poisson noise, it is still not capable to handle the bunch of
outliers. In [34], total variation regularization is added to the
objective function in order to upgrade the performance of DIP.
Although this approach can improve the performance of DIP
paradigm, there is still some performance gap that unsupervised
low-rank model based methods outperform unsupervised deep
learning-based approaches [8]. In [35] and [36], the authors used
a plug-and-play framework to boost DIP approaches. Neverthe-
less, all these methods need regularization besides plugging a
different kind of denoiser to boost the performance. Since HSIs
may be contaminated by mixed noises, most existing denoisers
cannot clean the degraded image very well.

In this work, we propose a novel framework for noise reduc-
tion of noisy HSIs motivated by the benefits of DIP approaches

Fig. 1. Proposed HSI denoising framework.

and robust statistics as shown in Fig. 1. Different from the
previous methods, we reformulate the optimization problem by
using the least favorable distribution (LFD). Huber proposed
LFD family distribution using normal distribution in the small
to mid-magnitude and exponential tails in large magnitude [37],
[38], e.g., suitable for modeling outliers in HSIs. Extensive
experiments show much superior overall performance of the
proposed HLF-DIP denoising algorithm over the state-of-the-art
methods.

The main contributions of this article are summarized as
follows:

1) To the best of our knowledge, LFD is considered to for-
mulate HSI denoising inverse problems for the first time,
and by robust statistics, complex noises in HSI can be
effectively suppressed.

2) With the powerful DIP, a user-friendly unsupervised HSI
denoising algorithm, called HLF-DIP, is proposed with
no need of both regularization and pretraining. Extensive
experimental results demonstrate that its overall perfor-
mance is significantly superior to state-of-the-art methods,
beyond the nontrivial gap of the DIP performance below
state-of-the-art methods.

The rest of the article is organized as follows. Section II
reviews related background on DIP and robust statistics for
ease of the ensuing presentation. In Section III, the proposed
HLF-DIP denoising algorithm is presented, followed by the
CNN architecture used. In Section IV, extensive experiments on
both simulated and real datasets are conducted to evaluate the
performance of the proposed algorithm and comparison with
some state-of-the-art methods. Finally, some conclusions are
drawn in Section V.

II. RELATED BACKGROUNDS

For ease of the ensuing presentation, we denote third-order
tensors by calligraphic letters, e.g., A ∈ RH×W×B (real tensor
with dimension H ×W ×B) and denote its (i, j, k)th entry as
aijk. The Frobenius norm and �1-norm are defined as ‖A‖F =√∑

ijk a
2
ijk and ‖A‖1 =

∑
ijk |aijk|, respectively.

A. Deep Image Prior

DIP was proposed by Ulyanov et al. [31] and the main
message of the DIP framework is the capability that the CNN
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Fig. 2. DIP architecture is a U-Net like network with five downsampling blocks d[i], five upsampling blocks u[i], and five skip-connection blocks s[i]. The
number of filters at depth i for the upsampling, downsampling and skip-connections are denoted bynu[i], nd[i], ns[i], respectively, and ku[i], kd[i], ks[i] represent
the respective kernel sizes.

Fig. 3. Quantitative evaluation of various denoising methods (left plot for
PSNR in dB and right plot for SSIM between 0 and 1) for every spectral band
of Washington DC Mall dataset (Case 5).

can restore noise-degraded images without the need of training
data. In addition, the structure of CNN can capture some inherent
image attributes. So, it is possible to discharge the regulariza-
tion from the denoising process. Hence, we can formulate an
optimization problem for DIP as

Θ∗ = argmin
Θ

‖Y − fΘ(Z)‖2F and X = fΘ∗(Z) (1)

where fΘ is a convolutional neural network (CNN) with param-
eter vector Θ, Z ∈ RH×W×B is the input of CNN (a random
initialization), and X , Y ∈ RH×W×B are the restored and ob-
served images, respectively. Here, H and W depict the spatial
size of the image and B is the number of channels (bands). With
the differentiable objective function, the optimization problem

(1) can be solved by a gradient-based algorithm. Due to the
fact that (1) is a nonconvex optimization problem (because of
the complex structure of CNN), surely there exist many local
minimizers to the problem (1). A remedy for this issue is to
properly set the maximum number of iterations for handling the
optimization problem because it has been found that CNN first
fits the signal part, and then after a large number of iteration
steps, it starts to fit the noise part (overfitting). For this reason,
one can come up with a suitable local minimizer through the
trajectory of the optimization process. Finally, the image can be
reconstructed by X∗ = fΘ∗(Z).

B. Robust Statistics

The field of robust statistics arose due to the fact that clas-
sical statistics’ parametric models are frequently not very good
approximations of some critical events or errors as described
in [37]–[40], which occur in the gathered data with a wide
range of probability distributions. The study of robust statistics,
particularly for non-normal distributions, focuses on how to deal
with outliers or large-magnitude errors that defy the probability
assumptions. The breakdown value (the greatest percentage of
outlier data points without producing a nonnegligible variation
in the solution) is a useful measure of robustness [41], because
a single outlier in one data sample may lead the least-squares
approach to come up with a breakdown value of 0% for the
resulting estimated denoised data, while this value is much
higher for robust estimators. Next, let us briefly review a class
of estimators and probability distribution on which the proposed
denoising algorithm is based.
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Fig. 4. Restored spectral data by various denoising methods for the pixel (120,130) of Washington DC Mall dataset (Case 5).

Fig. 5. Vertical mean profiles of the restored data by various denoising methods for band 8 of Pavia University dataset (Case 5).

1) M-Estimators: Thanks to high breakdown value and ef-
ficiency, M-estimators [37], [39] presently are dominant ap-
proaches in robust estimation and they are a generalization of
maximum likelihood estimators (MLEs), for which

∑
i ρ(ri) is

minimized where ri is a residual for data-fitting and ρ(·) is a
function with the following desirable properties [37]–[40]:

1) Nonnegative (ρ(r) ≥ 0) and ρ(0) = 0;
2) Symmetric (ρ(−r) = ρ(r));
3) Monotonic (if |r| ≥ |s| then ρ(r) ≥ ρ(s)).
One can easily observe that when ρ(ri) = r2i , M-estimators

will be identical to the least-squares (LS) approximation.
2) Least Favorable Distribution: Huber created a scaled

version of the family Pε of ε-contaminated normal
distributions [38]

Pε = {(1− ε)Φ + εΨ : Ψ ∈ S}

in which, 0 ≤ ε < 1, Φ(t) = (2π)−
1
2

∫ t

−∞ exp
(− 1

2w
2
)
dw is

the standard normal cumulative distribution, and S is the set
of all symmetric probability distributions such that Ψ(−t) =
1−Ψ(t). This model is based on the assumption that the degra-
dation process contains a fraction (1− ε) of Gaussian noise
with unit variance and a fraction (ε) of gross error. Huber [37],
[38] created the LFD by assuming that the distribution of the
degraded data is an unknown member of the family Pε which
has a probability density function (PDF) given by

pδ(t) = (1− ε)
1√
2π

e−Hδ(t) (2)

with δ depending on ε through

ε

1− ε
=

2

δ
Φ′(δ)− 2Φ(−δ) (3)
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Fig. 6. Horizonal mean profiles of the restored data by various denoising methods for band 43 of Pavia University dataset (Case 5).

Fig. 7. Difference between the restored data and the GT versus spectral bands for pixel (120,130) of Washington DC Mall dataset (Case 4).

(yielded from
∫∞
−∞ pδ(t)dt = 1) and Hδ(t) is Huber loss func-

tion (HLF) defined by

Hδ(t) =

{
1
2 t

2 |t| ≤ δ

δ|t| − 1
2δ

2 |t| > δ
(4)

where δ is a user-defined threshold. The HLF makes use of the
advantages of least-squares error (LSE) and the least absolute
deviation (LAD) in such a way that pδ(t) behaves similar to
normal density for small t, and to exponential density for large
t. It is worth noting that for δ → ∞, (4) reduces to LSE.
Outliers can also be handled by long tail distribution compared
to normal distribution simultaneously. HLF is differentiable, and
its derivation is the following clip function:

Hδ
′(t) =

{
t |t| ≤ δ

δsgn(t) |t| > δ
(5)

where sgn(t) is the sign function. Since (5) is monotonically
a nondecreasing function, Hδ is a convex function [42]. In

particular, we would like to mention that edge-preserving and
outlier removal are two key capabilities of the HLF [43]–[45].

III. PROPOSED HLF-DIP DENOISING METHOD

In this section, first of all, we introduce the image degradation
model, and then, we formulate the HSI denoising problem using
the statistical approach. Then, the proposed denoising algorithm
is presented to solve the formulated optimization problem, fol-
lowed by a discussion for the network structure of the proposed
framework.

A. Image Degradation Model

The observed HSI is assumed to be contaminated by Gaussian
and sparse noise [19] as follows:

Y = X + G + S = X +W (6)

in which, Y , X , G, and S ∈ RH×W×B are the observed image,
clean image, Gaussian noise, and sparse noise, respectively, and
W = G + S .
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Fig. 8. Visual quality assessment of various methods for Case 5. The top two rows are the restored HSI data (bands 57, 27, 17) by pseudocolor for Washington
DC Mall dataset, and the bottom two rows are the corresponding results (band 9) for Pavia University dataset.

B. Statistical Approach

The maximum a posteriori probability (MAP) approach is
a widely used approach to restore the clean image X from
the corrupted image Y . The MAP estimate is to maximize the
conditional PDF, that is

X∗ = argmax
X

log p(X|Y)

where p(X|Y) is the conditional PDF of X given Y . By Bayes’
theorem, the estimated image can be expressed as

X∗ = argmin
X

{− log p(Y|X )− log p(X )} (7)

where p(X ) is the prior PDF of X . With p(Y|X ) modeled by
(2) (i.e., PDF of W = Y − X ), the restored HSI image X∗ can

be equivalently written as

X∗ = argmin
X

{Hδ(Y,X ) +R(X )} (8)

where Hδ(Y,X ) =
∑

ijk Hδ(yijk − xijk) (i.e., sum of HLFs
defined by (4) for all yijk ∈ Y and xijk ∈ X ), and R(X ) =
− log p(X ).

Note that in (8), the first (second) term inside the braces cor-
responds to the data-fitting (regularization) term. Determining
a suitable R(X ) is usually difficult due to the lack of reliable
rules and schemes, so we use the DIP instead. By replacing X
with a CNN output in (8) with the regularizer R(X ) dropped,
we come up with

Θ∗ = argmin
Θ

Hδ(fΘ(Z),Y) and X∗ = fΘ∗(Z) (9)
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Algorithm 1: HLF-DIP.
1: Input: Noisy hyperspectral cube (Y), tmax (max. no.

of iterations), δ
2: Initialization: t = 0, Θ0 and Z randomly given
3: while t < tmax do:
4: Update Θt+1 using Adam optimzer and the CNN

backpropagation w.r.t. the Huber loss function
Hδ(fΘ(Z),Y).

5: t := t+ 1
6: end while
7: Output: Denoised hyperspectral cube X∗

where fΘ is a CNN with parameter vectorΘ, andZ ∈ RH×W×B

denotes the input of CNN, which is generated randomly. It
is notable that problem (8) and problem (10) are equivalent,
where the latter is the commonly known optimization-based
method with a convex surrogate ‖S‖1 (the convex envelope of
the nonconvex ‖S‖0 for the suppression of sparse noise) used
as the regularizer, as stated in the following proposition.

Proposition 1: The problem in (8) (with the regularization
term R(X ) = 0) is equivalent to the following optimization
problem:

min
X ,S

1

2
‖Y − X − S‖2F + δ‖S‖1 (10)

Proof: The proof of Proposition 1 is given in Appendix. �
It is worth mentioning that by Proposition 1, a trivial solution

to (10) is X∗ = Y and S∗ = 0, so is X∗ = Y to (8) if the
regularization termR(X ) is dropped. However, the restored HSI
image X∗ = fΘ∗(Z) �= Y given by (9) depends on the CNN
used, whose initial input Z is far different from Y; meanwhile
the sparse noise reduction has been implicitly taken into account
by Proposition 1. Similarly, besides the additive noise reduction,
other unknown characteristics of the ground truth (e.g., spatial
smoothness, spectral correlations, and low-rankness) may also
be captured blindly in the restored X∗ given by (9) in spite of no
regularizer used. This needs to be justified in the experiment.

Since HLF is differentiable, we can use any gradient-based
algorithms to get a desired suboptimal solution X∗ to (9). To
update the network parameter Θ, we employ an adaptive mo-
ment estimation (Adam) optimizer [46]. The parameter vector
Θ is iteratively updated for obtaining X∗ and implemented in
Algorithm 1, i.e., the proposed HLF-DIP algorithm. We would
like to emphasize that it is an unsupervised denoising algorithm
(without training) for obtaining the desired X∗.

C. Convolutional Neural Network Architecture

As proposed in [31], the basis of the DIP network is based
on a convolutional encoder-decoder (hourglass) with some skip
connections. As shown in Fig. 2, we use five blocks for each
encoder–decoder pair, and similar to most popular approaches,
convolution (Conv), batch normalization (BN), and activation
layer are employed. By using different filters, the convolutional
layers can extract distinct spatial characteristics of the image Y .
A random noise realization (e.g., with a uniform distribution,

TABLE I
DIP HYPERPARAMETERS USED IN THE EXPERIMENT

U(0, 0.1)) is generated as the CNN input, which is processed
by the encoder and results in embedded features. The decoder
reconstructs the HSI using the embedded features. Optionally,
at each iteration Z is perturbed with an additive zero-mean
Gaussian noise to impede the optimization process. We also
employ 2-D convolution because of its superior performance
compared to 3-D convolution [32]. It should be noted that the
2-D method does not employ bandwise processing, and it rather
captures spectral information in the first convolutional layer’s
filters and their combinations in the ensuing layers [32]. The
BN makes the CNN faster and more stable through the hyper-
parameter selection by recentering and rescaling. Note that BN
was originally thought to reduce the learning rate of the network
by moderating internal covariance shift [47], but new research
revealed that it actually smoothens the objective function [48].
So, BN layers are often applied after or before a nonlinear
activation function like Leaky ReLU [49] as shown in Fig. 2.
The skip connection is utilized to solve the vanishing gradients
issue in deep neural networks. For downsampling (upsampling),
the stride within the convolution (bilinear interpolation) is uti-
lized. For maintaining the image’s size, reflection padding was
employed in the convolution. The values of all hyperparameters
for DIP are summarized in Table I. We empirically observed
that adding the sigmoid activation function in the last layer of
the DIP, always gives better performance and the yielded X∗ is
guaranteed for each data sample belonging to the interval [0,1].

D. Summary

The proposed HLF-DIP algorithm tries to search for a restored
HSI image by using the intelligent CNN for unsupervised learn-
ing of the unknown prior information (e.g., spatial and spectral
correlations, and other unknown characteristics) from the noisy
data at each iteration (t < tmax), so that the restored imageX∗ is
equipped with such attributes from the learned prior information.
Therefore, a random initial input Z to the CNN is used by the
proposed HLF-DIP without the need of any regularizer, which
thus is also a user-friendly denoising algorithm. Finally, we
would like to emphasize that the default architecture of DIP
is employed just for justifying the function of robust statistics.
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TABLE II
QUANTITATIVE ASSESSMENT OF VARIOUS METHODS APPLIED TO WASHINGTON DC MALL DATASET

Boldface (Underlined) Numbers in the Table Denote the Best (Second Best) Performance for the Corresponding Case and Performance Index.
† The simulated data for Case 7 are unclipped.

Surely, it is possible to further improve the proposed algorithm
by using the neural architecture search reported in [50].

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

Dataset: Experiments are conducted on two HSI datasets.
The first one is the scene of Washington DC Mall,1 which
was collected by the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) sensor. This sensor has a 1-m spatial
resolution and a 10-nm band spacing covering the spectral
range of 400–2500 nm. Spectral bands between 0.9 and 1.4 μm
where the atmosphere is opaque are omitted from the dataset,
leaving 191 usable bands. In the experiment, we consider a
patch of size 200× 200× 191 (i.e., H = W = 200 and B =
191) from the Washington DC Mall image. The second dataset
Pavia University2 acquired by the ROSIS sensor during a flight
campaign over Pavia, northern Italy. Pavia University has 103
spectral bands, but some of the samples in this dataset contain
no information and must be deleted in advance. In the original

1[Online]. Available: http://lesun.weebly.com/hyperspectral-data-set.html
2[Online]. Available: http://ehu.eus/ccwintco/index.php/Hyperspectral_

Remote_Sensing_Scenes

Pavia University, 16 very low signal-to-noise ratio (SNR) bands
were removed due to water vapor in the environment. Therefore,
we consider a patch from the Pavia University image with a data
size of 200× 200× 87 (i.e., H = W = 200 and B = 87).

Performance Evaluation: The proposed HLF-DIP algorithm
(i.e., Algorithm 1) is compared with seven state-of-the-art de-
noisers: BM4D [12], HyRes [51], LRTDTV [21], DHP2D [32],
FastHyDe [18], GLF [52], FastHyMix [53] for six different
cases. BM4D [12] is benefited by the grouping and collaborative
filtering paradigm, which can effectively reduce the Gaussian
noise. HyRes [51] is a parameter-free method based on a sparse
low-rank model and �1-norm regularization for the least-squares
problem. In LRTDTV [21], the tensor Tucker decomposition
is used to capture the global spectral correlations and spatial-
spectral total variation regularization (SSTV) to enhance the
piecewise smooth structure in both spatial and spectral domains.
Moreover, this framework is capable of suppressing sparse
noise by adopting �1-norm regularization. DHP2D [32] is an
unsupervised approach based on LSE and 2-D convolution.
GLF [52] suggested a low-rank tensor factorization of nonlo-
cal 3-D patches extracted from the given noisy HSI, yielding
good-quality HSI denoising results. FastHyDe [18] exploits
both the low-rank and spatial self-similarity information for
sparse representations of HSI, leading to fast and high-quality

http://lesun.weebly.com/hyperspectral-data-set.html
http://ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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TABLE III
QUANTITATIVE ASSESSMENT OF VARIOUS METHODS APPLIED TO PAVIA UNIVERSITY DATASET

Boldface (Underlined) Numbers in the Table Denote the Best (Second Best) Performance for the Corresponding Case and Performance Index.
† The simulated data for Case 7 are unclipped.

performance. FastHyMix [53] uses a Gaussian mixture model
to characterize the complex distribution of mixed noise and take
advantage of two major characteristics of hyperspectral data:
low-rank in the spectral domain and high correlation in the
spatial domain. The Gaussian mixture model can be used to
better estimate the intensity of Gaussian noise and the location
of sparse noise, thereby giving rise to promising performance.

In practice, the data dynamic range for each pixel is always
constrained though it is not considered in some existing HSI
denoising algorithms [18], [51]–[53]. However, without loss
of generality, in our experiment, we consider the data on the
normalized range [0,1] (i.e., minimum and maximum being 0
and 1, respectively) for the generation of noisy HSI data. The
noise is added to the noise-free HSI X (within the interval [0,1]
to generate the noisy HSI Ŷ = X +W (which may not be fully
within the interval [0,1]). Then as processed by digital image
sensors, the clipped (or censored) observations Y in our work
are obtained as [54], [55]:

yijk = max(0,min(ŷijk = xijk + wijk, 1).

It is noteworthy that clipping may cause a large PDF deviation
from the perfect Gaussian noise [56], [57] if the standard devia-
tion of the noise is large. Nevertheless, we would like to mention
that the clipping effect resulting in a pixel value equal to zero

or unity can be viewed as the case of an outlier or sparse noise
(salt & pepper noise) in this pixel, thereby having been taken
into account in the proposed denoising algorithm.

The observed HSI images are generated with Gaussian noise
N (0, σ2) and/or salt & paper noise, and stripe noise (artifacts)
added in all bands of the noise-free images. The parameter
δ = 0.001 (cf., Section IV.D) is used for the proposed algorithm
(except for Case 7 where HSI is corrupted by perfect zero-mean
Gaussian noise and δ = 1.3 is used), while for the other algo-
rithms under test, parameters are tuned based on suggested or
default values according to the research papers and/or available
source codes provided by the authors. We employ the PyTorch
framework [58] to run the HLF-DIP on a PC with 128 GB
RAM, an 11th Gen Intel(R) Core (TM) i9-11900 K @ 3.50 GHz
CPU, and an NVIDIA GeForce RTX 3090 GPU in the simulated
experiment for the following cases:

Cases 1–3: Gaussian noise with σ = 20, 50, 100, respec-
tively.

Case 4: Salt & pepper noise (5%).
Case 5: Gaussian noise with σ = 100 + salt & pepper noise

(5%).
Case 6: Gaussian noise with σ = 20 + salt & pepper noise

(1%) + stripes (the number of stripes being randomly chosen
from 20 to 40 for each band).
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Case 7: Gaussian noise with σ = 100 (unclipped data).
A suitable parameter tmax is used by the proposed HLF-DIP

algorithm (cf. the discussion in Section IV.D-2), while tmax is
set to 1200 for real noisy data experiments.

B. Quantitative Results

In order to investigate the robustness and effectiveness of all
the algorithms under test, four performance indexes are used.

1) The mean peak signal-to-noise ratio (MPSNR), given in
dB, used for measuring the spectral average of spatial
qualities, is defined as

MPSNR =
1

B

B∑
i=1

10 log10

(
max(x2

i )

MSE(xi,x∗
i )

)
where B is the number of spectral bands, MSE(xi,x

∗
i )

is the mean squared error between bands of ground truth
(GT) image xi and reconstructed image x∗

i . The larger the
MPSNR, the better the performance.

2) The mean structural similarity index measure
(MSSIM) [59] has been used for evaluating the presence
of artifacts in the restored image and its value is between
0 and 1, with the unity value achieved when two images
are identical. It is defined as

MSSIM =
1

B

B∑
i=1

(2μxi
μx∗

i
+ C1)(2σxix∗

i
+ C2)

(μ2
xi

+ μ2
x∗
i
+ C1)(σ2

xi
+ σ2

x∗
i
+ C2)

where μxi
and σxi

represent the ground truth image’s
mean value and standard deviation, respectively, σxix∗

i
is

the covariance between xi and x∗
i , C1 and C2 are two

constants used to verify that the outcomes are stable when
σ2
xi

+ σ2
x∗
i

or μ2
xi

+ μ2
x∗
i

is close to zero.
3) Mean Spectral Angle Mapper (MSAM) calculates the

mean angle (in radian) between spectrum vectors of the
restored image and the reference image across all spatial
positions [60]. Unlike the other performance indexes,
smaller MSAM indicates better denoising performance.

4) Mean Feature Similarity Index Measure (MFSIM) (be-
tween 0 and 1) accounts for the perceptual consistency
between the restored image and the GT based on the
phase congruency and gradient magnitude [61]. Similar
to MPSNR and MSSIM, the larger the MFSIM, the better
the denoising performance.

The experimental results of the above four metrics obtained on
the Washington DC Mall dataset and Pavia University dataset are
summarized in Tables II and III, respectively. The best (second-
best) values of MPSNR, MSSIM, MSAM, and MFSIM for each
experiment are boldfaced (underlined).

Some observations from the two tables are given as follows.
For the results of Case 1 through Case 3, the smaller the σ,
the better the performance of each algorithm under test. The
proposed algorithm performs best using the metrics MPSNR and
MSSIM values for largerσ (Case 2 and Case 3 in Table II) for the
Washington DC dataset, and best using all the four metrics (Case
2 and Case 3 in Table III) for the Pavia University dataset, though
its performances for the other cases are very competitive with the

best performance among the algorithms under test. On the other
hand, for the results of Case 4 and Case 5, the proposed algorithm
significantly outperforms all the other algorithms under test.
The reason is that clipping effects for these two cases cause
underexposure or overexposure in many noisy pixel values due
to the large value of σ, and consequently, the resulting additive
noise is no longer a perfect Gaussian noise assumed by the
other algorithms. These results also justify that the CNN used in
the proposed algorithm well captures image statistics, together
with the edge-preserving and outlier removal capabilities of
the HLF used by the proposed algorithm [43]–[45]. Although
LRTDTV (that uses the SSTV regularizer) performs second-best
in handling censoring effects, its parameter complexity is much
higher than the proposed algorithm (without using any regu-
larizer). The same observations from Case 4 and Case 5 also
apply to Case 6 when the observed data is corrupted by some
stripes in addition to low-magnitude Gaussian and sparse noise.
Notably, because the standard deviation value σ of Gaussian
noise is not very large for this case, the clipping effect is not too
serious.

To further evaluate the effectiveness of HLF-DIP, let us
present more details of restored spectral data for Case 5. Fig. 3
shows the results for the Washington DC Mall dataset in terms of
PSNR and SSIM for every spectral band. As can be seen from
Fig. 3, HLF-DIP performs best almost over all the bands and
the performance improvement margin is also significant in most
spectral bands. Furthermore, Fig. 4 shows the restored spectral
data by various denoising methods for the pixel (120,130) in
the spatial domain of the Washington DC Mall dataset, where
the recovered spectral data by the LRTDTV and HLF-DIP
methods are obviously better approximations of the GT than the
other methods. It is worth mentioning that, because of low-rank
or/and spatial-spectral regularizers used by LRTDTV, GLF,
FastHyMix, FastHyDe, and HyRes, spectral correlations are
certainly well-preserved by these methods. Besides, HLF-DIP
performs best except for some zigzag patterns in the restored
spectral data due to no regularizer used in HLF-DIP.

Next, we show the vertical mean profile and the horizontal
mean profile of the restored HSI data in the spatial domain for
Pavia University dataset for band 8 and band 43, in Figs. 5 and
6 (Case 5), respectively. In the presence of a mixture of large-
magnitude Gaussian noise, outliers, along with clipping effects
for this case, it can be seen that the noisy vertical mean profile
and noisy horizontal profile are much larger than those of the GT.
Nevertheless, HLF-DIP and LRTDTV produce noticeably better
approximations to the GT than the other denoising methods,
thereby demonstrating their superior performance.

To show the superior robustness of the proposed HLF-DIP
algorithm over the other algorithms, the difference between
the restored spectral curves and the spectrum of the GT pixel
(120,130) in the spatial domain obtained from the Washington
DC Mall dataset is displayed in Fig. 7 for Case 4. One can
observe from this figure that the salt & pepper noise is actually
composed of those outliers occurring only in some sparse bands.
Obviously, BM4D is quite sensitive to outliers. All the other
methods can cope with outliers, while the proposed HLF-DIP
denoising method shows the least difference almost over all the
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Fig. 9. Visual quality assessment of various methods for Case 6. The top two rows are the restored HSI data (bands 20, 50, 150) by pseudocolor for Washington
DC Mall dataset, and the bottom two rows are the corresponding results (bands 70, 40 30) for Pavia University dataset.

spectral bands, demonstrating its best performance thanks to
robust statistics used.

For visual quality assessment of all the algorithms under test,
some results for the two datasets are illustrated in Fig. 8 (Case
5) and Fig. 9 (Case 6) that also show the best performance of
the proposed denoising algorithm. These experimental results
demonstrate that the overall performance of the proposed de-
noising algorithm is much superior to the other algorithms under
test.

As for the simulation results for Case 7 (which and Case
3 are for strong Gaussian noise except for no clipping for the
former in the data generation) in Tables II and III, it can be seen
that DHP2D, FastHyDe, GLF, FastHyMix, and HLF-DIP have
comparable performances. Overall, GLF (FastHyDe) performs
best for Washington DC (Pavia University) dataset. However,

each algorithm under test performs worse for Case 3 than for
Case 7 to a different degree; nevertheless, the proposed HLF-
DIP performs much better than the other algorithms, further
justifying its robustness against the clipping effect caused by the
sensor (which, as previously discussed in the data generation of
Section IV-A, can be treated as the case of outliers or sparse
noise).

C. Real Noisy Data Experiments

This section assesses the proposed method’s performance on
two real HSI data sets:

Indian Pines Dataset and HYDICE Urban Dataset. The former
was collected by the AVIRIS sensor over the Indian Pines
test site in North-western Indiana, acquiring a 145× 145 HSI
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Fig. 10. Restored spectral data (bands 150, 30, 1) by pseudocolor for the Indian Pines dataset for visual quality assessment of various denoising methods.

(i.e., H = W = 145) with 224 spectral reflectance bands over
the wavelength range 0.4–2.5 μ meters. Besides, there are noisy
bands in this dataset (see the original pseudocolor image on the
top left in Fig. 10). We consider a patch of size 128× 128× 224
(i.e., H = W = 128 and B = 224), which, itself, is a noisy
image. The second dataset for a real noisy data (see the top
left of the first two rows and that of the bottom two rows in
Fig. 11) experiment is the HYDICE Urban. In this dataset, there
are 210 spectral bands ranging from 400 to 2500 nm, resulting
in a spectral resolution of 10 nm. Gaussian noise, stripe noise,
and mixed noise of these two types are the most common noise
types in this dataset.

As seen from Fig. 10, the BM4D approach fails to restore the
image completely. Even though HyRes can reduce some noise
intensity, there is still appreciable noise remaining. DHP2D
performs well in noise suppression but the restored image is
oversmoothed and somewhat the edges are deformed. FastHyDe,
GLF, and FastHyMix perform well in noise suppression. How-
ever, due to the subspace projection used by them, some features
are missing in the restored images as shown in Fig. 10. In
comparison with the other algorithms under test, the proposed
HLF-DIP method and LRTDTV achieve a visually better and
competitive restoration outcome in the Indian Pines dataset, and
moreover, HLF-DIP has better performance in maintaining the
color intensity of the original data.

On the other hand, for the Urban dataset, as shown in the top
two rows for band 109 in Fig. 11, all the denoising methods
can degrade the noise level in recovered images. However,
some stripes remain in the restored images obtained by BM4D,
HyRes, DHP2D, and FastHyDe. Among them, BM4D performs
worst in both noise reduction and stripes suppression. LRTDTV
can reduce stripes and noise noticeably, however, the restored
image has some stripes left. GLF, FastHyMix, and HLF-DIP
can restore the image well and maintain more details in the
meantime. However, the proposed HLF-DIP method performs
slightly better in maintaining the details of the image. Moreover,

the obtained vertical mean profiles of the original image and
recovered images shown in Fig. 11 for the Urban dataset are
provided in Fig. 12. One can observe from Fig. 12, that “noisy”
oscillation patterns resulting from the image inherent features
and the mixed noise become much more smooth after denois-
ing, i.e., the image features are maintained well in addition to
noise suppression by GLF, FastHyMix, and HLF-DIP, while the
proposed HLF-DIP performs best.

Next, the corresponding results for band 107 obtained by the
denoising algorithms under test are shown in the bottom two
rows in Fig. 11. One can see that the original image is seriously
corrupted by strip artifacts and Gaussian noise, and that GLF and
FastHyMix can produce the images with a nice quality of image
details and noise reduction, owing to the spectral correlation
taken into consideration. It is notable that the proposed HLF-DIP
can almost completely remove stripes and mixed noises, while
some stripes still remain in the restored HSIs obtained by GLF
and FastHyMix in spite of more image details seemingly main-
tained. However, the other five algorithms under test apparently
fail to denoise the original noisy image. The good performance
of the proposed HLF-DIP algorithm can also be collectively
justified and supported by the corresponding features for bands
109 and 107 in Fig. 11. Therefore, the above simulated and real
data experiments have demonstrated the efficacy of the proposed
HLF-DIP denoising algorithm.

D. Parameter Analysis

1) Choice of Parameter δ for HLF: Model-based methods
for HSI denoising consider data-fitting and some regularization
terms in the objective function of the optimization problem.
For instance, in LRTDTV [21], five regularization parameters
(Frobenius norm regularization, TV regularization, �1-norm
regularization, rank regularization for 3-D hyperspectral cube,
and SSTV regularization) need to be tuned and noise level
must be identified for obtaining the best result. BM4D [12]
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Fig. 11. Restored spectral data (band 109 for the top two rows and 107 for the bottom two rows) of the Urban dataset for visual quality assessment of various
denoising methods.

includes a number of settings that need to be properly tuned
such as hard-thresholding, block matching, and Wiener filtering,
and furthermore, in order to achieve high-quality denoising,
it requires prior information of the noise (either Gaussian or
Rician) and standard deviation which is frequently unknown in
real case scenarios.

In (9), the user-defined threshold δ for HLF needs to be
tuned manually. By (3), the optimal value for δ can be de-
fined when the fraction of contamination ε is known. Although
such information may not be available in general, some intu-
itive analysis is instrumental as follows. For small (large) δ,
HLF is essentially more (less) robust to large-magnitude noises
and outliers (small-magnitude noise, e.g., Gaussian noise). In
other words, δ corresponds to a tradeoff parameter for the de-
noiser to predominantly suppress either large-magnitude noise

(with small δ) or small-magnitude noise (with large δ). The
thresholds for obtaining 95% (85%) asymptotic relative effi-
ciency (ARE) for the Gaussian noise scenario are δ = 1.345 (δ
= 0.7317) [38]. Furthermore, by Proposition 1, δ value in the
optimization problem (9) is also used as �1-norm regularization
parameter for suppressing the sparse noise in the optimization
problem (10). Therefore, we can choose δ = 1√

HW
as a suitable

starting value suggested in [62]. For validation, we conducted
the same experiments for all δ ∈ {0.001, 0.01, 0.1.0.2, 0.7, 1.3}
for the investigation of the effects of δ on the quality of the
restored HSIs. We empirically found that in the presence of
outliers, choosing a very small δ always yields a better result.
So, when the noisy image involves sparse noises, it is proper
to choose a small δ. In addition, we observed that for the case
of the relatively small-magnitude noise (σ = 20), the quality
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Fig. 12. Vertical mean profiles of the results (band 109 for the Urban dataset) shown in the top two rows in Fig. 11.

Fig. 13. Performance (MSPNR (dB) and MSSIM [between 0 and 1)] of the
proposed HLF-DIP denosing algorithm versus δ for Case 1 (top row) and Case
5 (bottom row) of the simulated datasets (Pavia University and Washington DC).

difference of restored HSI between δ = 0.001 and δ = 0.7 is
not much, though small δ yields better results. The reason for
this is that the small-magnitude noise also implies low-power
noise in the given noisy HSI. Though a small δ is preferred,
δ = 0 is not admissible simply due to the corresponding HLF
being identical to zero.

Fig. 13 shows the MPSNR and MSSIM performances of the
proposed HLF-DIP denoising algorithm versus δ (10−4∼ 100 =
1) for Case 1 (top row) and Case 5 (bottom row) with the same
simulated data described in Section IV-A. One can see from this
figure, that its performance is approximately piecewise linear
with small variation for all δ in Case 1 and for δ < 10−1 in Case

Fig. 14. MPSNR (in dB) performances (versus iteration) for Case 1 (left plot)
and Case 5 (right plot) on the Pavia University dataset, using the three loss
functions, LAD (�1-norm), LSE (�2-norm square), and HLF (fusion of �2-norm
square and �1-norm), respectively.

5, but it drops linearly with δ for δ > 10−1 at a perceivable rate
in Case 5. Therefore, a small value for δ is always a good choice,
that accounts for δ = 10−3 used in our simulated experiment.

2) Choice of the Maximum Number of Iterations tmax: One
common issue of DIP-based unsupervised denoising methods
including the proposed HLF-DIP is that a reliable early-stopping
criterion is not yet existent. Instead, one may need to find a good
value of tmax from the visual quality assessment of the restored
HSI data. This is certainly feasible for the simulated experiment
because the performance index of the restored HSI data can
provide the information of choosing a good value of tmax in an
iterative fashion as done in the preceding simulated experiment.

To further qualitatively illustrate the role of tmax, Fig. 14
shows some MPSNR performances versus iteration t using
the three loss functions, LAD (�1-norm of E � Y − fΘ(Z),
LSE (�2-norm square of E), and HLF (fusion of �1-norm for
a subset E1 ⊂ E and �2-norm square for the complementary
subset E2 ⊂ E) with δ = 0.001, for the Pavia University dataset.
Some observations from this figure are as follows. HLF operates
like LAD over some initial iterations due to large |eijk| > δ
(the (i, j, k)th entry of the tensor E ⊂ RH×W×B occurring in
most entries of E), i.e., their performance curves are quite close,
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and then switch its role as LSE later when |eijk| < δ is true in
most entries of E . The three peak values of the three respective
performance curves are quite close for Case 1 (small-magnitude
noise) though LSE and HLF work better than LAD for Case
1. While for Case 5 (large-magnitude noise), the two peak
values are close for LAD and HLF and they are significantly
larger than for LSE, thus yielding the best results for the Pavia
University as shown in Table III. We would like to emphasize that
the larger MPSNR indicates the smaller error E′ � X − fΘ(Z)
between the GT image and the restored image. In other words, E
decreases with t (iteration number), while E′ decreases with t for
t < tmax but increases with t for t > tmax, indicating that the
CNN starts to mistake some noise for the restored image (i.e.,
overfitting) for t > tmax, hence the optimization process should
be stopped at iteration tmax, e.g., via visual quality assessment.
Nevertheless, we would like to emphasize that when the level of
noise is known, one can use the simple stopping criterion method
proposed in [63] as mentioned by [31]. However, finding a
reliable automatic stopping mechanism of DIP (i.e., the choice of
tmax of the proposed HLF-DIP) is still an open issue [64]–[66],
which is left for a future study.

V. CONCLUSION

We have presented an unsupervised HSI denoising algorithm
(HLF-DIP algorithm) under the DIP framework (see Fig. 1) by
minimizing the HLF (parameterized by a single parameter δ)
without any regularizer and free from pretraining. The proposed
algorithm shows the edge-preserving and outlier removal capa-
bilities under the scenario of mixed types of noises (e.g., Gaus-
sian noise, sparse noise), and is more user-friendly than most
existing methods thanks to no regularizers. Extensive experi-
mental results have demonstrated that the overall performance of
the proposed algorithm is much superior to seven state-of-the-art
methods.

Some further studies left in the future include
1) a reliable scheme or rule for the choice of the parameter

tmax;
2) other M-estimators for HSI denoising;
3) more powerful CNN architecture for HSI denoising;
4) application to other types of image data, such as

biomedicine and synthetic-aperture radar; and
5) generalization of the proposed algorithm to other HSI

inverse problems such as inpainting, deblurring, and un-
mixing.

APPENDIX

PROOF OF PROPOSITION 1

Proof: Because both problem (8) without the term R(X ) and
problem (10) are actually pixelwise decoupled, it suffices to
show that they are equivalent for any pixel and spectral band.
Assume that y, x, and s are the associated elements in Y , X and
S for a pixel in the data cube. Hence, we can rewrite problem
(10) as

min
x,s

J(x, s) = min
x

{min
s

J(x, s)} (11)

where

J(x, s) =
1

2
(y − x− s)2 + δ|s|. (12)

The inner minimization problem in (11) is an unconstrained
convex problem while the objective function J(x, s) is differ-
entiable except for s = 0. Provided that s∗ = 0, it can be found
by solving

dJ(x, s)

ds
= s− (y − x) + δsgn(s) = 0. (13)

By (13) we have

s� = (y − x)− δsgn(s). (14)

Next, we solve s� for the three cases |y − x| > δ, |y − x| < δ,
and |y − x| = δ, respectively.

Case 1 (|y − x| > δ): It can be inferred from (14), that

s� �
{
(y − x)− δ > 0 if y − x > δ
(y − x) + δ < 0 if y − x < −δ.

(15)

Substituting (15) into (12) results in

J(x, s�) = δ|y − x| − 1

2
δ2. (16)

Case 2 (|y − x| < δ): It can be inferred from (14) that if s� >
0, then s� = y − x− δ < 0 (which is impossible); if s� < 0,
then s� = y − x+ δ > 0 (which is impossible); hence we have
the unique solution s� = 0 since J(x, s) is convex and coercive,
and thus

J(x, s� = 0) =
1

2
(y − x)2. (17)

On the other hand, it can be shown that the directional deriva-
tive at s� = 0 is given by

J ′(s� = 0; v) = lim
λ↓0

inf
J(λv)− J(0)

λ

= −(y − x)v + δ|v| ≥ 0 ∀v ∈ R (18)

thereby justifying that s∗ = 0 is indeed the unique minimizer
(surely the unique stationary point) for this case.

Case 3 (|y − x| = δ): For this case, it can be readily inferred
that

J(x, s) =
s2

2
− ((y − x)s− |y − x| · |s|) + (y − x)2

2

⇒ min
s∈R

{J(x, s)} = J(x, s∗ = 0) =
1

2
(y − x)2 (19)

where the implication is due to (y − x)s− |y − x| · |s| ≤ 0 for
any s ∈ R.

According to the resulting J(x, s�) [cf. (16)] in Case 1, (cf.
(17)) in Case 2, and [cf. (19)] in Case 3, one can conclude

J(x, s�) =

{
1
2 (y − x)2 |y − x| ≤ δ

δ|y − x| − 1
2δ

2 |y − x| > δ

which is exactly the HLF Hδ(y − x), implying that problem
(10) is equivalent to problem (8) (with the regularization term
dropped). �
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