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Tsung-Han Chan, Member, IEEE, ArulMurugan Ambikapathi, Member, IEEE, Wing-Kin Ma, Senior Member, IEEE,
and Chong-Yung Chi, Senior Member, IEEE

Abstract—Hyperspectral endmember extraction is to estimate
endmember signatures (or material spectra) from the hyper-
spectral data of an area for analyzing the materials and their
composition therein. The presence of noise and outliers in the
data poses a serious problem in endmember extraction. In this
paper, we handle the noise- and outlier-contaminated data by
a two-step approach. We first propose a robust-affine-set-fitting
algorithm for joint dimension reduction and outlier removal. The
idea is to find a contamination-free data-representative affine set
from the corrupted data, while keeping the effects of outliers
minimum, in the least squares error sense. Then, we devise two
computationally efficient algorithms for extracting endmembers
from the outlier-removed data. The two algorithms are established
from a simplex volume max-min formulation which is recently
proposed to cope with noisy scenarios. A robust algorithm, called
worst case alternating volume maximization (WAVMAX), has
been previously developed for the simplex volume max-min for-
mulation but is computationally expensive to use. The two new
algorithms employ a different kind of decoupled max-min partial
optimizations, wherein the design emphasis is on low-complexity
implementations. Some computer simulations and real data ex-
periments demonstrate the efficacy, the computational efficiency,
and the applicability of the proposed algorithms, in comparison
with the WAVMAX algorithm and some benchmark endmember
extraction algorithms.

Index Terms—Alternating optimization, fast endmember ex-
traction, hyperspectral images, robust dimension reduction,
simplex volume max-min, successive optimization.

I. INTRODUCTION

HYPERSPECTRAL remote sensing exploits the fact that
all substances uniquely reflect, absorb, and emit elec-

tromagnetic (EM) energy, at specific wavelength, in distinc-
tive patterns depending on their molecular composition. The
hyperspectral sensor collects data in hundreds of narrow con-
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tiguous spectral bands, thereby providing a powerful means to
discriminate disparate materials based on their unique spectral
signatures, or endmember signatures (simply endmembers).
However, depending on the spatial resolution of the hyperspec-
tral sensor, surface patches corresponding to individual pixels
may still contain more than one material [1], [2]. Hence, the
decomposition of the received spectra into a set of endmembers
and their corresponding mixing proportions, or abundances,
would facilitate the characterization of different materials over
the scanned area of interest [1], [2]. In the past several years,
endmember extraction using hyperspectral images has been
widely investigated and has proven to be valuable in many
applications, including but not limited to geology, hydrology,
urban planning, geography, cadastral mapping, cartography,
and military [3]–[5].

The presence of noise and outliers in the hyperspectral data
is inevitable in practice and may seriously affect the analysis of
hyperspectral data. The noise is generated because of the ran-
dom nature of the photon arrival/detection process, the sensor
electronics, and quantization [6]. Raw data calibration routines
could alter the statistics of the noise, so the noise features may
not explicitly depend on the wavelength of the hyperspectral
sensor [6], [7]. The other uncertainty is outliers. In general,
the outliers are thought of as the pixels that deviate markedly
from the rest of the data. Two definitions of the outlier pixels
have been presented [8]–[11] in the open literature. The first
refers to the pixels that provide constant or error readout, also
called “dead” or “bad” pixels. Possible causes of such outlier
pixels include detector failure, errors during data transfer, and
improper data correction [8], [9]. The second refers to the pixels
that have different spectral signatures from the background
representatives. These pixels are also commonly called targets
or objects in the domain of hyperspectral anomaly detection
[10], [11].

Given the fact that the noise and outliers are the major source
of errors in hyperspectral endmember extraction, the design of
endmember extraction algorithms (EEAs) should take both the
noise and outliers into account. Existing efforts that account for
the noise and/or outlier effects include joint Bayesian algorithm
[12], simplex identification by split augmented Lagrangian
[13], robust minimum volume enclosing simplex algorithm
[14], and others [15], [16], and they are carried out by differ-
ent techniques. Specifically, a Bayesian estimation framework
explicitly accounting for the presence of noise is employed
in [12], soft constraints are utilized to mitigate outlier and/or
noise pixel effects in [13], chance constraints are applied to the
original minimum volume enclosing simplex constraints [17]
to account for noise effects in [14], Filippi and Archibald [15]
utilize a support vector machine-based approach for robustly
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extracting the simplex topology, and Duran and Petrou [16]
propose a robust unconstrained linear unmixing (RULU) algo-
rithm to extract endmembers in the presence of outliers. Simply
speaking, the RULU algorithm uses a clustering method for
background endmember estimation and unconstrained abun-
dance estimation, thresholding for outlier pixel removal, and
data indexing with extreme abundances for robust endmember
estimation. Although RULU provides robustness to outliers,
the noise uncertainty still remains. Moreover, a noise-robust
spatial preprocessing module has been proposed in [18], and
it can be easily coupled with any nonrobust EEAs. Other
than the aforementioned methods, we have also reported a
robust generalization of the maximum simplex volume criterion
proposed by Winter [19], [20] to account for noise effects
[21] and formulated the robust Winter criterion as a simplex
volume max-min problem. Although an algorithm, called worst
case alternating volume maximization (WAVMAX), has been
proposed to handle the robust Winter criterion in a disciplined
manner, which uses a combination of alternating optimization
and the subgradient method [21], it is quite computationally
expensive to use for massive amounts of high-dimensional
data.

In this paper, we develop robust hyperspectral EEAs for
coping with outliers and noise. We first propose a robust version
of the affine set fitting (ASF) [17], [22] for joint dimension
reduction and outlier removal. The idea is to find a corruption-
free data-representative affine set from the given hyperspectral
data, while keeping the outlier effects minimum, in the least
squares error sense. The proposed algorithm, called robust ASF
(RASF), implements the idea by using alternating optimization.
With the outlier pixels being removed by the RASF algorithm,
the uncertainty that remains in the data is noise. We then
propose two computationally efficient algorithms to implement
the robust Winter criterion, the simplex volume max-min for-
mulation [21], by a partial max-min optimization approach that
provides closed-form solutions for either of maximization and
minimization. The proposed EEAs, named alternating decou-
pled volume max-min (ADVMM) and successive decoupled
volume max-min (SDVMM), approximate the simplex volume
max-min problem by a set of decoupled max-min problems in
alternating manner and successive manner, respectively. Some
justifications of the decoupled max-min heuristic that moti-
vates the development of the proposed ADVMM and SDVMM
algorithms are also discussed. Simulations and experimental
results will be provided to demonstrate the efficacy, the com-
putational efficiency, and the real applicability of the proposed
methods.

We should emphasize that, in this work, the noise is assumed
to be zero mean isotropically distributed with identical variance
over all the hyperspectral bands and assumed to be spatially
homogeneous. In practical scenarios where the noise is non-
isotropic, the noise prewhitening technique can be applied to
the data with the noise covariance matrix estimated by the mul-
tiple regression method [23]. The consideration of the signal-
dependent noise is beyond the scope of this paper. Interested
readers can refer to [24] for further details. We will only
focus on the outliers that are “dead” or “bad” pixels provid-
ing constant or error readout, instead of the target/object-type
outliers. From the perspective of endmember extraction, the
target spectra and the background spectra can both be seen
as unknown endmembers, thereby being able to be readily

estimated by any EEAs [25]. Once both target and background
spectra are extracted, differentiation of the target spectra from
the background spectra is a separate problem [16], [26].

The outline of this paper is as follows. Section II describes
the hyperspectral endmember extraction problem in the pres-
ence of noise and outliers. Section III presents the proposed
RASF for dimension reduction and outlier removal. Section IV
briefly reviews Winter’s endmember extraction criterion and
its robust generalization. Section V presents the two proposed
fast algorithms for the simplex volume max-min formulation.
Sections VI and VII show the results of computer simulations
and real hyperspectral data experiments, respectively. Finally,
some conclusions are drawn in Section VIII.

Notation: R
N and R

M×N denote the set of real N × 1
vectors and set of real M ×N matrices, respectively; 1N , IN ,
and ei represent the N × 1 all-one vector, N ×N identity
matrix, and unit column vector with the ith entry equal to 1,
respectively; “�,” “‖ · ‖,” and “\” stand for the componentwise
inequality, Euclidean norm, and set difference, respectively;
rank(X), det(X), ‖X‖F , and X† denote the rank, determinant,
Frobenius norm, and pseudoinverse of the matrix X, respec-
tively; [x]i and [x]1:i denote the ith element of x and an i× 1
column vector formed by the first i elements in x, respectively;
{x[n]}Ln=1 denotes {x[1], . . . ,x[L]}; [x[n]]n∈I represents a
matrix comprising x[n] for all n’s in the set I as its column
vectors; and N (0, σ2IM ) denotes the Gaussian distribution
with zero mean and covariance matrix σ2IM .

II. HYPERSPECTRAL ENDMEMBER EXTRACTION PROBLEM

Consider a scenario where a hyperspectral sensor measures
solar EM radiation over M spectral bands from N distinct
substances in an area of interest. Assuming that the EM patterns
are received via only one single reflection and that the materials
therein are distinct, each observed hyperspectral pixel vector
can be represented by a linear mixing of these substance spectra
[1], [2]

y[n] =x[n] +w[n] + z[n], n = 1, . . . , L, (1)

x[n] =As[n] =

N∑
i=1

si[n]ai, n = 1, . . . , L. (2)

In (1), y[n] = [y1[n], . . . , yM [n]]T is the nth noise- and outlier-
contaminated pixel vector that comprises M spectral bands,
x[n] = [x1[n], . . . , xM [n]]T is the contamination-free coun-
terpart, w[n] = [w1[n], . . . , wM [n]]T is the isotropically dis-
tributed noise vector, e.g., N (0, σ2IM ) where σ2 is the noise
variance, z[n] = [z1[n], . . . , zM [n]]T denotes the outlier vector
appearing only at Z pixels, i.e.,

z[n] �=0, n ∈ {�1, . . . , �Z} Δ
= I

z[n] =0, n ∈ {1, . . . , L} \ I (3)

and L is the total number of observed pixel vectors. In (2),
A = [a1, . . . ,aN ] ∈ R

M×N represents the endmember signa-
ture matrix whose ith column vector ai denotes the ith end-
member signature and s[n] = [s1[n], . . . , sN [n]]T is the nth
abundance vector comprising N fractional abundances.

In this paper, as mentioned in the introduction section, we
focus on the so-called “dead” or “bad” outlier pixels that can be
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modeled as z[n], n ∈ I, in y[n] given by (1), and these outliers
z[n], n ∈ I, are considered without assuming any statistical
priors. The outlier pixels are assumed to be rare, and hence, the
number of outlier pixels Z should be much less than the number
of data samples L, i.e., outlier-data amount ratio Z/L � 1.
While our emphasis is placed on the outliers defined as the dead
pixels, the outliers given by (3) can also be interpreted as errors
of linear approximation to the real hyperspectral data where the
nonlinear mixing model could be a better fit [2], [27].

Assuming prior knowledge of the number of endmembers
N , robust hyperspectral endmember extraction is to robustly
estimate the endmember signatures a1, . . . ,aN from the given
corrupted hyperspectral data y[1], . . . ,y[L] with minimum ef-
fects of noise and outliers. Some general assumptions [1], [2]
are as follows.

(A1) The intensities of all the abundance vectors are nonnega-
tive, i.e., si[n] ≥ 0 for all i and n.

(A2) Abundance fractions are proportionally distributed for
each s[n], i.e.,

∑N
i=1 si[n] = 1, ∀n.

(A3) min{L,M} ≥ N and the endmember signatures
a1, . . . ,aN are linearly independent, i.e., rank(A) = N .

(A4) (Pure pixel assumption) There exists at least a set
of indices {l1, l2, . . . , lN} such that x[li] = ai for i =
1, . . . , N , and the set of pure pixels {l1, l2, . . . , lN} and
the set of outliers I are disjoint.

Assumptions (A1), (A2), and (A3) have been widely used in
hyperspectral endmember extraction [1], [2], [4], [5]. The pure
pixel assumption (A4) fits well for a scenario where the sensor
flies in low altitude [28].

It should be noted that the estimation of the number of
endmembers N is generally treated as a separate topic [23],
[29]–[33]. In this paper, if there are rare (or target) endmembers
present in the data, the number of endmembers N should
include both background endmembers and rare endmembers.
However, when one is only concerned about the background
endmembers, then N can be set to the number of back-
ground endmembers. Subsequently, the rare endmembers are
treated as outliers. Relevant discussions and simulations will
be presented in Remark 2 (in Section III) and Section VI-G,
respectively.

III. RASF FOR DIMENSION REDUCTION

Dimension reduction is a common primary step for hyper-
spectral image analysis with the prime merit of reducing the
noise effect and computational complexity of the subsequent
endmember extraction. In [17], we have made use of affine
data geometry for dimension reduction, where it was shown
that the affine set estimate provides the best representation to
the given hyperspectral data in the least squares error sense.
Nevertheless, in practical scenarios where the outliers are
present, the fitted affine set could be severely affected by the
outliers. To this end, we herein propose a RASF algorithm,
attempting to provide an affine set estimate robust against both
noise and outliers.

To start with, let us consider the contamination-free pixels
x[n]. It has been shown in [17] that, by (A2), the affine hull of
x[n] is identical to that of endmembers a1, . . . ,aN

aff {x[1], . . . ,x[L]} = aff{a1, . . . ,aN} (4)

where aff{x1, . . . ,xN} denotes the affine hull of x1, . . . ,xN

and it is defined as [34]

aff{x1, . . . ,xN} =

{
N∑
i=1

θixi

∣∣∣∣1T
Nθ = 1,θ ∈ R

N

}
(5)

where θ = [θ1, . . . , θN ]T . By (A3), the endmember affine hull
aff{a1, . . . ,aN} admits an affine set representation

aff{a1, . . . ,aN}=
{
x=Cα+d

∣∣α ∈ R
N−1

}Δ
=A(C,d) (6)

for some (nonunique) affine set parameter (C,d) ∈
R

M×(N−1) × R
M and rank(C) = N − 1. By virtue of

(4) and (6), the dimension reduction of the contamination-free
data x[n] can be easily carried out by

x̃[n] = C† (x[n]− d) =

N∑
i=1

si[n]αi, n = 1, . . . , L (7)

where

αi = C†(ai − d), i = 1, . . . , N (8)

are the dimension-reduced endmembers. There exists a closed-
form solution to the affine set parameter (C,d) if the acquisi-
tion of the {x[n]}Ln=1 is possible [17]. However, what we have
in reality is the contaminated observed pixel vectors {y[n]}Ln=1,
and therefore, obtaining an accurate estimate of (C,d) from
{y[n]}Ln=1 will be a challenging problem.

To tackle this issue, we consider the following
RASF problem:

min
num{z1,...,zL}≤Z

⎧⎪⎪⎨⎪⎪⎩ min
xn∈A(C,d)

CT C=IN−1
n=1,...,L

L∑
n=1

‖y[n]− xn − zn‖2

⎫⎪⎪⎬⎪⎪⎭ (9)

where num{z1, . . . , zL} denotes the number of nonzero vectors
in {z1, . . . , zL} and the number of outliers Z is assumed to
be known for ease of our derivations. Some discussions on
how we set a value of Z are given in Remark 1 hereinafter.
The objective of (9) is to seek an (N − 1)-dimensional affine
set A(C,d) with the minimum projection error with respect
to (w.r.t.) y[n] and with the minimum effect of outliers z[n].
Problem (9) is difficult to solve in a globally optimal sense
but can be approximated by alternating optimization. Let us
consider the following two partial minimization problems.

1) Problem (9) w.r.t. Variables {xn}Ln=1, C, and d:

min
xn∈A(C,d),CT C=IN−1

n=1,...,L

L∑
n=1

‖(y[n]− ẑn)− xn‖2 (10)

for any given {ẑ1, . . . , ẑL} that satisfies num{ẑ1, . . . , ẑL} ≤
Z. Following the proof in [22, Proposition 1], problem (10) can
be shown to have an analytical solution given by

d̂ =
1

L

L∑
n=1

(y[n]− ẑn) (11)

Ĉ =
[
q1(UUT ),q2(UUT ), . . . ,qN−1(UUT )

]
(12)
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TABLE I
RASF ALGORITHM FOR PROBLEM (9)

where U=[(y[1]−ẑ1)−d̂, . . . , (y[L]− ẑL)− d̂] and
qi(UUT ) denotes the unit-norm eigenvector associated with
the ith principal eigenvalue of UUT . The estimated affinely
projected data x̂n ∈ A(Ĉ, d̂) can be easily shown to be

x̂n = ĈĈT
(
y[n]− ẑn − d̂

)
+ d̂, n = 1, . . . , L. (13)

2) Problem (9) w.r.t. Variables {zn}Ln=1:

min
num{z1,...,zL}≤Z

L∑
n=1

‖(y[n]− x̂n)− zn‖2 (14)

for any given {x̂n}Ln=1 ⊂ A(Ĉ, d̂). It is trivial to see that the
solution of the aforementioned problem is

ẑn =

{
y[n]− x̂n, n ∈ {�̂1, . . . , �̂Z}
0, n ∈ {1, . . . , L} \ {�̂1, . . . , �̂Z}

(15)

where �̂i is the index of the ith largest value in (‖y[1]−
x̂1‖, . . . , ‖y[L]− x̂L‖).

A solution of problem (9) can be obtained by handling
the aforementioned two subproblems in a cyclic manner until
some stopping criterion is met. The pseudocodes of the RASF
algorithm for (9) are given in Table I.

Similar to (7), the affine set parameter estimate (Ĉ, d̂) can
be used to obtain the dimension-reduced observed pixel vectors

ỹ[n]
Δ
= ĈT

(
y[n]− d̂

)
∼= x̃[n] + ĈTw[n] + ĈT z[n] (16)

=

N∑
i=1

si[n]αi + w̃[n] + z̃[n] ∈ R
N−1, ∀n (17)

where “∼=” is in (16) because (Ĉ, d̂) is an approximation to the
true (C,d)

w̃[n]
Δ
= ĈTw[n] ∼ N (0, σ2IN−1) (18)

due to w[n] ∼ N (0, σ2IM ) and ĈT Ĉ = IN−1, and

z̃[n]
Δ
= ĈT z[n]. By (A1) and (A2), the dimension-reduced

contamination-free data x̃[n] given by (7) must be in the
convex hull of {α1, . . . ,αN} [34], denoted by

conv{α1, . . . ,αN} =

{
N∑
i=1

θiαi

∣∣∣θ � 0,1T
Nθ = 1

}
(19)

but the contaminations caused by the noise w̃[n] and outlier
z̃[n] could possibly make the observed pixel ỹ[n] given by (17)
out of the conv{α1, . . . ,αN}. Fig. 1(a) and (b) illustrate the
geometries of the original data {y[n]}Ln=1 and the dimension-
reduced data {ỹ[n]}Ln=1, respectively, for N = 3 and Z = 5.

As reported in [25] that the outlier pixels could significantly
affect the results of subsequent endmember extraction, we
remove the outlier pixels at Î = {�̂1, . . . , �̂Z} from the data
{ỹ[n]}Ln=1, and hence, the endmember extraction problem is
then to estimate α1, . . . ,αN from

ỹ[n] ∼=
N∑
i=1

si[n]αi + w̃[n], n ∈ {1, . . . , L} \ Î (20)

where the noise w̃[n] is still present. The robust EEAs to be
proposed in Section IV will take the noise effect into account.
Once α1, . . . ,αN are obtained, one can simply recover the
endmember estimates by the following affine transformation:

âi = Ĉαi + d̂, i = 1, . . . , N. (21)

Let us conclude this section with two remarks on the choice
of Z and N for the proposed RASF algorithm in practical
scenarios.

Remark 1: The number of outliers Z is impossible to be
known a priori in practical scenarios, but as will be seen in
our simulations, the solution (Ĉ, d̂) obtained by the RASF al-
gorithm in Table I is insensitive to the preset number of outliers,
denoted by Ẑ, when Ẑ ≥ Z, meaning that the estimated Ẑ
outliers sufficiently cover the Z true outliers. However, setting
Ẑ too large for the RASF algorithm could be jeopardous—it
may lead the RASF algorithm to incidently mistake some rare
endmembers as outliers. How we practically select the value of
Z in real applications will be considered as our future direction.

Remark 2: In a scenario where the N endmembers include
both background and rare endmembers, it will be seen from
our simulations that the RASF algorithm can preserve the rare
endmembers in the subsequent endmember extraction process,
provided that the N is perfectly estimated. It is also suggested
by the simulations that, if one cares only about background end-
members without the desire of preserving rare endmembers, in
the proposed RASF algorithm, the number of endmembers can
be set to the number of background endmembers only. Then,
the proposed RASF will automatically find (C,d) with the
minimum impact of both “dead” pixels and rare endmembers.
How to estimate N in the presence of rare endmembers can be
referred to [31] and [32].
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Fig. 1. Illustration of (a) the original data {y[n]}Ln=1 and (b) the dimension-reduced data {ỹ[n]}Ln=1 for N = 3 and Z = 5.

IV. REVIEW OF WINTER’S ENDMEMBER EXTRACTION

AND ITS ROBUST GENERALIZATION

In the past decade, Winter’s maximum-volume simplex cri-
terion has led to the well-known EEA, N-FINDR, and its many
variants [21], [19], [20], [35], [36]. Suppose that the outlier
pixels have been perfectly identified and removed from the data
by the RASF algorithm, i.e., {ỹ[n]}n∈{1,...,L}\Î and Î = I.
N-FINDR is to estimate endmembers by finding the ver-
tices of the maximum-volume simplex inside the dimension-
reduced data cloud {ỹ[n]}n∈{1,...,L}\I . Recently, we revisited
the Winter’s endmember extraction criterion and reported two
N-FINDR variants in [21], based on the following continuous
formulation of Winter’s criterion:

max
v1,...,vN∈RN−1

vol(v1, . . . ,vN )

s.t. vi ∈ conv
{
{ỹ[n]}n∈{1,...,L}\I

}
, ∀i (22)

where

vol(v1, . . . ,vN ) =
|det (Δ(v1, . . . ,vN ))|

(N − 1)!
(23)

is the volume of conv{v1, . . . ,vN}, and

Δ(v1, . . . ,vN ) =

[
v1 . . . vN

1 . . . 1

]
∈ R

N×N . (24)

It has been theoretically proved that the true endmembers can
be perfectly estimated by solving problem (22) under (A1)
to (A4) and in the absence of noise, i.e., ỹ[n] = x̃[n], ∀n
[21]. However, in the presence of additive isotropic random
noise, the simplex volume yielded by Winter’s criterion may
be larger than that of the true simplex [21]. In other words, the
endmember estimates obtained by Winter’s criterion may be far
away from the true endmembers when the observed data are
corrupted by noise. To mitigate such simplex inflation, in [21],
we reported an idea to pull back Winter’s endmember estimates
by a suitable margin such that (ν1, . . . ,νN ) are closer to the
true endmembers (α1, . . . ,αN ). This idea, as illustrated in

Fig. 2. Illustration of robust Winter’s endmember extraction problem for
N = 3.

Fig. 2, can be formulated as the following simplex volume max-
min problem [21]:

max
vi∈RN−1,
i=1,...,N

{
min

‖ui‖≤r,
i=1,...,N

∣∣∣ det (Δ(v1 − u1, . . . ,vN − uN ))
∣∣∣}

s.t. vi ∈ conv
{
{ỹ[n]}n∈{1,...,L}\I

}
, ∀i = 1, . . . , N

(25)

where each ui lying in a norm ball {u ∈ R
N−1| ‖u‖ ≤ r}

denotes the pull-back vector and r is the maximum back-off
distance. Denoting the optimal solution of problem (25) by
(v̂1, . . . , v̂N , û1, . . . , ûN ), the robust endmember estimates are
obtained as

ν̂i = v̂i − ûi, i = 1, . . . , N. (26)

In [21], we have proposed an algorithm for handling problem
(25), called WAVMAX. WAVMAX has demonstrated perfor-
mance improvement in the noisy scenario, but it is computa-
tionally expensive. We therefore propose two fast algorithms to
handle problem (25) in the next section.

V. FAST ALGORITHMS FOR SIMPLEX

VOLUME MAX-MIN PROBLEM

In this section, two fast algorithms are proposed for handling
the simplex volume max-min formulation (25). We employ a
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decoupled max-min heuristic, and different partial optimiza-
tion schemes to handle problem (25), and come up with two
algorithms, called ADVMM and SDVMM, respectively. The
computational complexity orders of the proposed methods are
also discussed.

A. ADVMM Algorithm

We first reformulate problem (25) for ease of development.
Denote the outlier-free data matrix by Ỹ = [ỹ[n]]n∈{1,...,L}\I ∈
R

(N−1)×(L−Z). Then, by the convex combination expression

vi = Ỹθi (27)

and the property det(PΔ) = ± det(Δ) for any permutation
matrix P, problem (25) can be expressed as

max
θi∈S,

i=1,...,N

{
min

‖ui‖≤r,
i=1,...,N

det
(
Δ(Ỹθ1 − u1, . . . , ỸθN − uN )

)}
(28)

where S = {θ ∈ R
L−Z |θ � 0,1T

L−Zθ = 1}. Optimizing
θ1, . . . ,θN and u1, . . . ,uN jointly in (28) is quite challenging.
In ADVMM, we consider the partial max-min problem of (28)
w.r.t. the pair (θj ,uj) while fixing the other pairs (θi,ui) for
i �= j; such partial max-min problems are represented by

max
θj∈S

{
min

‖uj‖≤r
det
(
Δ(Ỹθ̂1 − û1, . . . , Ỹθ̂j−1 − ûj−1,

Ỹθj − uj , Ỹθ̂j+1 − ûj+1, . . . , Ỹθ̂N − ûN )
)}

. (29)

The partial max-min problems (29) for j = 1, . . . , N are con-
ducted cyclically until some stopping criterion is satisfied. A
connection of the aforementioned decoupled max-min prob-
lem to the original alternating maximization of (28) used in
WAVMAX will be discussed in the end of this section; see
Remark 3.

Next, we will present how to solve the partial max-min prob-
lem (29). By applying a cofactor expansion of det(Δ(Ỹθ̂1 −
û1, . . . , Ỹθ̂N − ûN )) along the jth column, we have

det
(
Δ(Ỹθ̂1 − û1, . . . , Ỹθ̂N − ûN )

)
= kT

j (Ỹθj − uj) + (−1)N+j det(QNj) (30)

where kj ∈ R
N−1 is expressed as

kj =
[
(−1)1+j det(Q1j), . . . , (−1)N−1+j det

(
Q(N−1)j

)]T
(31)

and Qij ∈ R
(N−1)×(N−1) is a submatrix of Δ(Ỹθ̂1 −

û1, . . . , Ỹθ̂N − ûN ) with the ith row and the jth column
removed. Then, problem (29) is equivalent to

max
θj∈S

{
min

‖uj‖≤r
kT
j (Ỹθj − uj)

}
(32)

where the term (−1)N+j det(QNj) in (30) is independent
of (θj ,uj) and so is removed without loss of optimality. In
addition, since θj and uj have been decoupled, problem (32)

TABLE II
ADVMM ALGORITHM FOR PROBLEM (25)

can be handled by solving the following two separate problems,
each with a closed-form solution:

ûj = arg max
‖uj‖≤r

kT
j uj =

rkj

‖kj‖
(33)

θ̂j=argmax
θj∈S

kT
j Ỹθj=el, l=arg max

n∈{1,...,L}\I
kT
j ỹ[n] (34)

where ûj in (33) is obtained by the Cauchy–Schwarz inequality
and θ̂j in (34) can be obtained by [21, Lemma 2]. Let us
summarize how we pragmatically implement the ADVMM
algorithm in Table II.

Remark 3: WAVMAX, as has been presented in [21], is
an alternating optimization method w.r.t. θ1, . . . ,θN . Its jth
alternating maximization problem to (28) can be expressed as

max
θj∈S

min
‖ui‖≤r,
i=1,...,N

f(θj , Θ̂j ,u1, . . . ,uN ) (35)

where f(θ1, . . . ,θN ,u1, . . . ,uN ) is the objective function of
(28) and Θ̂j = [θ̂1, . . . , θ̂j−1, θ̂j+1, . . . , θ̂N ] is fixed. As can
be observed from (35), for each update θj , we have to deal
with the inner minimization min f(θj , Θ̂j ,u1, . . . ,uN ) w.r.t.
u1, . . . ,uN jointly. In [21], we have used the subgradient
method to handle (35), but the resulting WAVMAX algorithm
is computationally complicated. The proposed ADVMM algo-
rithm uses a computationally efficient way to approximate (35),
which, in turn, handles the jth decoupled max-min problem
(29), or equivalently

max
θj∈S

min
‖uj‖≤r

f(θj , Θ̂j ,uj , Ûj) (36)

where Ûj = [û1, . . . , ûj−1, ûj+1, . . . , ûN ]. It is easy to ob-
serve that problem (36) serves as an upper bound of problem
(35). If Ûj happens to be the optimal solution of the inner
minimization of (35), then the upper bound (36) will be equal
to (35). As a result, the proposed ADVMM algorithm can be
thought of as a method to maximize an upper bound of the
partial maximization problem of (28) in WAVMAX.

B. SDVMM Algorithm

We turn our attention to how we apply successive optimiza-
tion to handle problem (25). By letting

wi =
[
vT
i 1
]T

, ti =
[
uT
i 0
]T

, ȳ[n] =
[
ỹ[n]T 1

]T
(37)
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problem (25) can be rewritten as

max
wi∈F,

i=1,...,N

⎧⎪⎨⎪⎩ min
‖ti‖≤r,

eT
N

ti=0,∀i

∣∣∣∣ det ([w1 − t1, . . . ,wN − tN ])

∣∣∣∣
⎫⎪⎬⎪⎭ (38)

where F = conv{{ȳ[n]}n∈{1,...,L}\I}. It has been shown in
[21, Lemma 3] that

|det ([w1 − t1, . . . ,wN − tN ])|

=
∥∥P⊥

H1:0
(w1 − t1)

∥∥ . . . ∥∥∥P⊥
H1:(N−1)

(wN − tN )
∥∥∥ (39)

where P⊥
H1:j

= IN −H1:j(H
T
1:jH1:j)

†
HT

1:j is the orthogonal
complement projector of

H1:j
Δ
= [w1 − t1, . . . ,wj − tj ] (40)

and P⊥
H1:0

= IN . Hence, substituting (39) into problem (38)
yields

max
wi∈F,

i=1,...,N

min
‖ti‖≤r,

eT
N

ti=0,∀i

N∏
j=1

∥∥∥P⊥
H1:(j−1)

(wj − tj)
∥∥∥ . (41)

Solving problem (41) w.r.t. 2N -tuple (w1, . . . ,wN , t1, . . . ,
tN ) is difficult. In SDVMM, we decouple problem (41) into a
set of max-min subproblems and employ successive optimiza-
tion to these subproblems as follows:

(ŵj , t̂j) = arg max
wj∈F

min
‖tj‖≤r,

eT
N

tj=0

∥∥∥∥P⊥
Ĥ1:(j−1)

(wj − tj)

∥∥∥∥ (42)

from j = 1 to N . The solution (ŵj , t̂j) is obtained by han-
dling the jth max-min subproblem with the previous (j − 1)
max-min subproblem solutions ŵ1, . . . , ŵj−1, t̂1, . . . , t̂j−1

used in Ĥ1:(j−1) as defined in (40). Unlike alternating opti-
mization, the methodology presented here is initialization free
and only needs to solve (42) successively for j = 1, . . . , N .
A relation of the successive optimization procedure given
by (42) to problem (41) will be discussed in Remark 4
hereinafter.

The issue that remains is how we handle each difficult
(nonconvex) max-min subproblem (42). By relaxing eTNtj = 0,
it can be shown that a closed-form solution to (42) exists. To see
this, problem (42) with eTNtj = 0 relaxed is

max
wj∈F

min
‖tj‖≤r

∥∥∥∥P⊥
Ĥ1:(j−1)

(wj − tj)

∥∥∥∥ , j = 1, . . . , N. (43)

The inner problem of (43) for any wj ∈ F is

t̂j = arg min
‖tj‖≤r

∥∥∥∥P⊥
Ĥ1:(j−1)

(wj − tj)

∥∥∥∥ . (44)

Problem (44) is convex, and Slater’s condition holds [34].
The optimal solution of problem (44) can be derived by
Karush–Kuhn–Tucker (KKT) conditions, as stated in the fol-
lowing lemma.

TABLE III
SDVMM ALGORITHM FOR PROBLEM (25)

Lemma 1: For any wj ∈ F , problem (44) has an analytical
solution given by

t̂j =
rP⊥

Ĥ1:(j−1)

wj∥∥∥∥P⊥
Ĥ1:(j−1)

wj

∥∥∥∥ ,wj ∈ W(r) (45)

t̂j ∈
{
tj
∣∣P⊥

Ĥ1:(j−1)

(wj − tj) = 0

}
,wj ∈ R

N \W(r) (46)

where W(r) = {w ∈ R
N | ‖P⊥

Ĥ1:(j−1)

w‖ > r}.

Proof: The proof of Lemma 1 is given in the Appendix. �
It is trivial to see that the solution (46) always yields zero

objective value in (43), and hence, only the optimal solution
(45) is considered. Substituting (45) into (43) yields

max
wj∈F

⋂
W(r)

∥∥∥∥P⊥
Ĥ1:(j−1)

wj

∥∥∥∥ . (47)

The optimal solution of (47) can be easily obtained by follow-
ing the proof in [21, Lemma 4]; it is given by

ŵj = ȳ[l], l = arg max
n∈Nj

∥∥∥∥P⊥
Ĥ1:(j−1)

ȳ[n]

∥∥∥∥ (48)

where Nj = {n| ‖P⊥
Ĥ1:(j−1)

ȳ[n]‖ > r, n ∈ {1, . . . , L} \ I}.

We should mention that the constraint wj ∈ W(r) is to
ensure the nontrivial solution of problem (43). In fact, one can
properly choose an r such that wj ∈ W(r), j = 1, . . . , N , are
all satisfied. Also, if the (ŵj , t̂j) is obtained, we can artificially
set [t̂j ]N = 0 to ensure the feasibility of (ŵj , t̂j) to problem
(42). The pseudocodes of the SDVMM algorithm are given in
Table III.

Remark 4: A theoretical justification of the decoupled
max-min heuristic used in the proposed SDVMM algorithm
is presented herein. By Von Neumann’s max-min theorem (or
max-min inequality)1 [37], one can easily derive an upper
bound of (41) as follows:

max
wN∈F

min
‖tN‖≤r,

eT
N

tN=0

⎡⎢⎣. . .
⎡⎢⎣max
w1∈F

min
‖t1‖≤r,

eT
N

t1=0

N∏
j=1

∥∥∥P⊥
H1:(j−1)

(wj−tj)
∥∥∥
⎤⎥⎦. . .

⎤⎥⎦.
(49)

Obviously, applying successive optimization to problem (49)
turns out to be the same as the optimization procedure described

1The max-min inequality states that, for any real function f : RN ×
R
M → R and any real sets P ⊆ R

N and Q ⊆ R
M , it holds true that

minp∈P maxq∈Q f(p,q) ≥ maxq∈Q minp∈P f(p,q).
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in (42). Hence, SDVMM algorithm can be thought of as a
method that approximates an upper bound of (38), i.e., (49),
using successive optimization.

C. Computational Complexity

The computational complexity orders of the proposed
ADVMM and SDVMM algorithms and their comparison with
the WAVMAX algorithm [21] are now discussed in this section.
For the ADVMM algorithm in Table II, it is easy to verify that
each column update involves complexity order O((N − 1)L).
Combining all the N columns and denoting the number of
alternating cycles required to converge by ζ, the complexity
order of the ADVMM is O(ζN2L). Regarding the SDVMM
algorithm in Table III which only involves simple matrix/vector
additions and multiplications, the complexity order can be
easily verified as O(N2L). Moreover, as has been analyzed
and reported in [21], the complexity order of the WAVMAX
algorithm is O(NζK((N − 1)L+ ζwL+ ζuN

2(N − 1)η)),
where K is the maximum number of subgradient iterations,
ζ and ζu are the number of alternating cycles for the outer
and inner subproblems, respectively, ζw denotes the number
of iterations required by the water filling algorithm, and η ∈
(2.3, 2.8). Since the parameters K, ζ, ζu, and ζw are all positive
integers, it is obvious that the complexity of WAVMAX is
much higher than that of the proposed ADVMM and SDVMM
algorithms. As will be seen in our simulations, the ADVMM
and SDVMM not only outperform the WAVMAX in most cases
but also would spend much less computation time than the
WAVMAX.

VI. COMPUTER SIMULATIONS

In this section, six Monte Carlo simulations are presented to
demonstrate the advantages of the proposed RASF algorithm
and the ADVMM and SDVMM algorithms.2 One hundred
independent runs were performed in each Monte Carlo
simulation. Section VI-A presents the results of the sensitivity
of the RASF algorithm to the preassigned number of outliers Z.
Section VI-B presents the results of the sensitivity of the
ADVMM and SDVMM algorithms to the preassigned back-off
tolerance r. In the subsequent sections, we compare the
proposed ADVMM and SDVMM algorithms with some
existing benchmark nonrobust EEAs, including sequential
N-FINDR (SQ-N-FINDR) [36], successive N-FINDR
(SC-N-FINDR) [36], simplex growing algorithm (SGA)
[35], vertex component analysis (VCA) [38], and the existing
robust EEA, WAVMAX [21]. Note that, throughout Sections VI
and VII, all the EEAs employed the ASF [17] for dimension
reduction unless particularly specified. Section VI-C–E show
the performance of the EEAs for various signal-to-noise
ratios (SNRs), for various numbers of endmembers, and
for various numbers of pixels, respectively. Section VI-F
shows the performance of the EEAs with RASF/ASF used
over various signal-to-outlier ratios (SORs) (defined in (53)
hereinafter). Section VI-G demonstrates the efficacy of the
proposed ADVMM/SDVMM with RASF when data contain
rare endmembers.

2The Matlab codes of the proposed algorithms can be downloaded at http://
mx.nthu.edu.tw/~tsunghan/index.html.

In the simulations, three performance indices were used. The
distance between the true affine set A(C,d) and the estimated
affine set A(Ĉ, d̂), denoted by Daff , for the evaluation of the
accuracy of the RASF is defined as

Daff =
‖CCT − ĈĈT ‖F√

2(N − 1)
+

∥∥∥P⊥
Cd−P⊥

Ĉ
d̂
∥∥∥∥∥P⊥

Cd
∥∥+ ∥∥∥P⊥

Ĉ
d̂
∥∥∥ (50)

where the first term, in the range [0,1], is called the projection
F-norm [39] and measures the distance between the range space
of C and that of Ĉ and the second term in the range [0,1] quan-
tifies the error between P⊥

Cd and P⊥
Ĉ
d̂. The root mean square

(rms) spectral angle distance between the true endmembers and
estimated endmembers, denoted by φ (in degrees), was used as
an accuracy measure of EEAs [38], which is defined as follows:

φ = min
π∈ΠN

√√√√ 1

N

N∑
i=1

[
arccos

(
aTi âπi

‖ai‖ · ‖âπi
‖

)]2
(51)

where âi denotes the ith estimated endmember signature, π =
[π1, . . . , πN ]T , and ΠN = {π ∈ R

N |πi ∈ {1, 2, . . . , N}, πi �=
πj for i �= j} is the set of all the permutations of {1, 2, . . . , N}.
The estimation accuracy defined in (51) with N ! permutations
π can be efficiently solved by the Hungarian algorithm [40].
The smaller the values of Daff (or φ), the better the accuracy of
the affine set estimate (or the endmember estimates). The com-
putation time Tsec (in seconds) of each algorithm (implemented
in Mathworks Matlab R2008a) running in a desktop computer
equipped with Core i7-930 2.80-GHz CPU and 12-GB memory
was used as the computational complexity measure.

Hyperspectral data were synthetically generated indepen-
dently for each run of the simulation. The contamination-
free pixel vectors were generated following the signal model
(2) where the endmember signatures with M = 224 bands
were selected from the U.S. Geological Survey (USGS) Li-
brary [41] and the corresponding abundance vectors were
generated following the Dirichlet distribution D(s[n],μ) with
μ = (1/N)1N which automatically enforces (A1) and (A2)
[38]. Moreover, the N pure pixels were randomly added to
the data to enforce (A4). The noisy data were generated by
adding independent and identically distributed zero-mean white
Gaussian noise to the contamination-free data for different
SNRs, where SNR =

∑L
n=1 ‖x[n]‖2/(σ2ML). In addition, the

outliers were also added to the noisy data, where the outlier
indices �1, . . . , �Z were randomly selected from {1, . . . , L},
and the associated outliers were generated by

z[�i] = cκi, i = 1, . . . , Z (52)

where each element of κi is a zero-mean unit-variance Laplace
random variable and c is a scalar adjusted to satisfy SOR
specification, where

SOR =

∑L
n=1 ‖x[n]‖

2 /L∑Z
i=1 ‖z[�i]‖

2 /Z
. (53)

The generation of outliers using the Laplace distribution is
to fulfill the belief that the outliers should be heavily tailed
in distribution, which is highly peaked at zero and falls off
more slowly than the Gaussian distribution in the tail. Let us
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Fig. 3. Performance comparison of ASF and RASF in terms of average Daff , with different preset Ẑ’s for various SNRs, and Z = 5%L as well as (a) SOR =
10, 15 dB and (b) SOR = 20, 25 dB.

emphasize again that the proposed RASF algorithm does not
require any statistical priors of the outliers. When SNR ≥ SOR,
the outlier pixels y[�1], . . . ,y[�Z ] are corrupted by the outliers
z[�1], . . . , z[�Z ] more seriously than the noise; otherwise, the
case of SOR ≥ SNR means that the effects of the outliers
z[�1], . . . , z[�Z ] are smaller than the noise effects, thereby
making the outlier pixels y[�1], . . . ,y[�Z ] not much different
from the rest of the observed pixel vectors.

A. RASF for Various SNRs and SORs

In this section, the performance of the proposed RASF and
its sensitivity to the preset number of outliers Ẑ are evaluated.
The hyperspectral data with N = 8 number of endmembers
(Carnallite, Biotite, Actinolite, Andradite, Clintonite, Diaspore,
Goethite, and Halloysite), L = 1000 pixels, and Z = 5%L
outliers were generated for SNR = 15, 25, 35, 45,∞ dB and
SOR = 10, 15, 20, 25 dB. The true affine set parameters (C,d)
were obtained from the contamination-free observed pixel vec-
tors {x[n]}Ln=1.

Fig. 3 shows the average Daff of the ASF [17] and the
proposed RASF algorithm with Ẑ = 2%L, 5%L, and 8%L
for various SORs and SNRs. It can be observed from Fig. 3
that the performance of the RASF algorithm improves as Ẑ
increases and gets saturated when the preset number of outliers
Ẑ is greater than the true number of outliers Z. The RASF
algorithm also perfectly identifies the true affine set when the
noise is absent (i.e., SNR = ∞) and Ẑ ≥ Z. Moreover, the
RASF algorithm outperforms ASF for all the values of Ẑ under
test when SOR ≤ SNR, no matter whether SOR is high or low.
This implies that, as long as the outlier pixels were corrupted by
the outliers more heavily than by the noise, the RASF algorithm
will take effect in outlier detection.

B. ADVMM and SDVMM Algorithms for Various Back-Off
Tolerances and SNRs

The sensitivity of the proposed ADVMM and SDVMM
algorithms to the preset back-off tolerances r is presented.
Data generation (N = 8, M = 224, and L = 1000) is the same
as that in Section VI-A, where SNR = 15, 25, 35, 45 dB and

SOR = ∞. We set r = λσ, where σ is the noise standard
deviation assumed to be known and λ is a real number varying
from 0 to 4 in steps of 0.2.

The average values of φ of the ADVMM and SDVMM
algorithms versus λ for different SNRs are shown in Fig. 4(a)
and (b), respectively. One can see from Fig. 4(a) that the
performance of ADVMM is less sensitive to λ over 0 ≤ λ ≤ 3
for all the SNRs under test, but its performance decreases
significantly as λ > 3 and SNR = 15 dB. It can also be seen
from Fig. 4(b) that the sensitivity of SDVMM to λ is low for all
the SNRs and λ. Obviously, the sensitivity of SDVMM to both
λ and SNR is less than that of ADVMM.

For the performance comparison in Section VI-C–F, we set
the back-off tolerance of the proposed ADVMM and SDVMM
algorithms to r = 1.3σ, which could be considered as a modest
choice suggested by the simulation results shown in Fig. 4.
We also set the same value of r for the robust WAVMAX
algorithm [21].

C. EEAs for Various SNRs

Hyperspectral data generation (N = 8, M = 224, and L =
1000) is the same as that in Section VI-A, where we set SNR =
15, 25, 35, 45,∞ dB and SOR = ∞. Table IV shows the aver-
age φ and Tsec of the EEAs over various SNRs. The minimum φ
and minimum Tsec for a specific SNR over all the algorithms are
highlighted as bold-faced numbers. One can see from Table IV
that the average φ of all the algorithms gradually decreases as
the SNR goes up, and they are equal to zero when the SNR
approaches to infinity. The performance of SDVMM is the best
for almost all the tested SNRs among the existing algorithms
under test, and the performances of ADVMM and WAVMAX
are quite comparable. On the other hand, the computation time
cost by SDVMM is the least, followed by ADVMM, and both
are much less than WAVMAX by around an order of 3.

D. EEAs for Various Numbers of Endmembers

The synthetic data generation (M = 224 and L = 1000) is
the same as that in Section VI-A, where SNR = 15 dB, SOR =
∞ dB, and N = 4, 6, . . . , 14 endmembers are randomly se-
lected from the USGS Library [41]. The average φ and Tsec
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Fig. 4. Performance sensitivity of (a) ADVMM algorithm and (b) SDVMM algorithm w.r.t. λ for different SNRs.

TABLE IV
PERFORMANCE COMPARISON OF AVERAGE φ (DEGREES) AND

AVERAGE Tsec (SECONDS) OVER SOME EXISTING EEAS FOR

N = 8, L = 1000, SOR = ∞, AND VARIOUS SNRS

of the EEAs for the synthetic data with different N ’s are
shown in Table V. One can see that the performances of all the
algorithms degrade as N increases. WAVMAX is the best for
N = 4. For N = 6, 8, the SDVMM outperforms all the other
algorithms, and ADVMM does so for N = 10, 12, 14. Again,
the computation time of the proposed two algorithms is the least
and, in particular, is much less than that of WAVMAX by an
order of 3.

E. EEAs for Various Numbers of Pixels

Again, the synthetic data generation (N = 8 and M = 224)
is the same as that in Section VI-A, where SNR = 15 dB,
SOR = ∞ dB, and the number of pixels L varies from 250
to 8000. The average φ and Tsec of the EEAs for the synthetic
data with different L’s are shown in Table VI. One can see from
Table VI that the proposed SDVMM and ADVMM outperform
all the other algorithms in all cases. On the other hand, the com-
putation times of all the algorithms, except the VCA algorithm,
gradually increase as the L increases. The proposed ADVMM
and SDVMM algorithms spend much less computation time
than WAVMAX by an order of magnitude between 3 and 4
when L = 8000.

TABLE V
PERFORMANCE COMPARISON OF AVERAGE φ (DEGREES) AND AVERAGE

Tsec (SECONDS) OVER SOME EXISTING EEAS FOR L = 1000,
SNR = 15 dB, SOR = ∞, AND VARIOUS NUMBERS OF ENDMEMBERS N

TABLE VI
PERFORMANCE COMPARISON OF AVERAGE φ (DEGREES) AND AVERAGE

Tsec (SECONDS) OVER SOME EXISTING EEAS FOR N = 8, SNR = 15 dB,
SOR = ∞, AND VARIOUS NUMBERS OF PIXELS L

F. EEAs With RASF and With ASF Used for Various SORs

The performance difference between EEAs with RASF and
with ASF used is evaluated herein. We also include the state-
of-the-art robust endmember estimation method, the RULU
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TABLE VII
PERFORMANCE COMPARISON OF AVERAGE φ (DEGREES) OVER SOME

EXISTING EEAS WITH RASF AND WITH ASF FOR N = 8, L = 1000,
Z = 5%L, SNR = 15 dB, AND VARIOUS SORS

algorithm [16], for our performance comparison. The data
generation (M = 224, N = 8, and L = 1000) is the same as
that in Section VI-A, where Z = 5%L, SNR is fixed to 15 dB,
and SOR = 5, 8, . . . , 20 dB. Table VII shows the average φ
of the EEAs with RASF/ASF used and the RULU algorithm
over various SORs. One can see from Table VII that the
performances of all the EEAs with ASF used improve as the
SOR increases, and the RASF algorithm substantially boosts
the performances of all the EEAs in the presence of outliers.
Although the performance of EEAs with ASF is worse than
that of RULU for low SORs (namely, SOR = 5 dB), EEAs with
RASF outperform RULU for all the SORs tested.

Moreover, the performances of any EEAs with RASF for
all SORs are quite competitive, meaning that the RASF can
be in conjunction with any EEAs to provide better endmember
estimates than the ASF. Last but not least, the performance of
the SDVMM with RASF used is still the best.

G. ADVMM-RASF and SDVMM-RASF Algorithms for
Rare Endmembers

So far, we have demonstrated the superior performance of
the RASF algorithm, ADVMM/SDVMM algorithm, and their
combinations over some benchmark methods in the previ-
ous sections. Now, one may question whether the proposed
algorithms can preserve rare endmembers if the data really
contain rare endmembers. Following the similar data generation
(M = 224, L = 1000, and Z = 5%L) as in Section VI-A, in
addition to the eight endmembers considered as background
endmembers, we also add two endmembers, Montmorillonite
and Muscovite, as rare endmembers. Each rare endmember
occupies only 2 pixels. We then consider two scenarios. First,
the number of endmembers is perfectly estimated, i.e., N̂ = 10,
and the given number of outliers Ẑ = Z = 5%L. Second, the
number of endmembers is underestimated, and it corresponds to
the number of background endmembers, for example, N̂ = 8.
Here, the given number of outliers is set to Ẑ = 6%L, and
making such 1%L increment in Ẑ is to account for errors made
by the N − N̂ endmembers, as only N̂ = 8 endmembers will
be finally extracted. The aforementioned two cases for different
N̂ ’s are to simulate various outcomes of methods for estimating

TABLE VIII
PERFORMANCE COMPARISON OF AVERAGE φ (DEGREES) OVER

ADVMM-RASF AND SDVMM-RASF WITH N̂ = 8, 10 FOR N = 10,
L = 1000, Z = 5%L, SNR = ∞, 35 dB, AND VARIOUS SORS

the number of endmembers, such as hyperspectral subspace
identification by minimum error (HySime) [23], maximum
orthogonal-complement algorithm (MOCA) [30], robust signal
subspace estimation [31], modified MOCA [32], and geometry-
based estimation of number of endmembers [33].

The performances of ADVMM-RASF and SDVMM-RASF
with the generated data for SNR = ∞, 35 dB and various SORs
are shown in Table VIII, where φB (or φR) is the rms spectral
angle between the estimated background (or rare) endmembers
and their ground truth. One can easily see from Table VIII
that, when N̂ = N = 10, the proposed algorithms can estimate
both background endmembers and rare endmembers with high
accuracy in noise-free and noisy cases. When N̂ = 8, all the es-
timated endmembers are found to be the background endmem-
bers. Moreover, due to N̂ �= N , the proposed algorithms treat
rare endmembers as outliers, and their performance slightly
degrades. The aforementioned observations suggest that, if
one wants to preserve the rare endmembers after dimension
reduction, the given N̂ should include both the number of
background endmembers and the number of rare endmembers.
This immediately confirms the importance of the estimation of
the number of endmembers in the presence of rare endmembers
[30]–[33].

VII. HYPERSPECTRAL DATA EXPERIMENTS

In this experiment, SGA [35], WAVMAX [21], and the
proposed ADVMM and SDVMM algorithms, all with ASF
used, were tested on the AVIRIS hyperspectral data taken over
the Cuprite mining site, NV, in 1997 [42]. The SDVMM with
RASF used (SDVMM-RASF) was also applied to the AVIRIS
Cuprite data set for comparison. We consider a subimage
(200 × 200 pixels, L = 40 000) of the hyperspectral data as
the region of interest which comprises 224 spectral bands over
a wavelength from 0.4 to 2.5 μm. The bands 1–2, 104–113,
148–167, and 221–224, which are in low SNR (due to the effect
of water vapor), were removed from the original 224-band
hyperspectral data. A total of 188 bands were therefore used
in our experiment. Moreover, since the noise in real data may
not be isotropically distributed, we applied noise prewhitening
to the data set, i.e.,

yp[n]
Δ
=D−1/2y[n]=

N∑
i=1

si[n]gi+zp[n]+wp[n], ∀n (54)

where the noise covariance matrix D was estimated by the
multiple linear regression method [23], gi = D−1/2ai, zp[n] =
D−1/2z[n], and wp[n] = D−1/2w[n] is the isotropically dis-
tributed noise with the covariance matrix equal to IM . Once
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Fig. 5. Experimental results of SDVMM-RASF with Cuprite data set: (a) Endmember signatures taken from the USGS Library, and the estimated endmembers;
(b) locations of the Ẑ = 20 outliers detected by RASF; and (c) 18 abundance maps associated with the estimated endmembers.

ĝ1, . . . , ĝN were found by any EEA, the endmember estimates
can be recovered by âi = D1/2ĝi, i = 1, . . . , N . According to
the noise prewhitening processing where the resulting noise
variance becomes unity, the back-off tolerance r of the robust
WAVMAX, ADVMM, SDVMM, and SDVMM-RASF algo-
rithms was set to 1.3. The HySime [23] was applied to estimate
the number of endmembers in this region, and the results
yield N = 18. The number of outliers Ẑ used in RASF was
empirically set to 0.05%L = 20. How to optimally tune the
value of Ẑ will be considered as our future directions, but as
suggested by simulations, there will be not much performance
improvement when Ẑ is larger than the (unknown) true Z.

The abundance maps associated with the estimated end-
members for all the EEAs under test were obtained by fully
constrained least square method [43]. The minerals were then
identified by visual comparison of the obtained abundance
maps with the ones in [21], [14], and [38]. Due to the space
limit, we herein only demonstrate the endmember estimates

[see Fig. 5(a)], the locations of the 0.05%L = 20 detected
outliers [see Fig. 5(b)], and the estimated abundance maps [see
Fig. 5(c)] for the proposed SDVMM-RASF. The true endmem-
ber signatures taken from the USGS Library were also shown
in Fig. 5(a) for comparison [44]. In addition, the mean-removed
spectral angle (degrees) between the estimated endmember â
and the associated USGS Library endmember signature a was
used as the performance measure

φ̄ = arccos

(
(â−m(â))T (a−m(a))

‖â−m(â)‖ · ‖a−m(a)‖

)
(55)

where m(a) = (1T
Ma/M)1M for any vector a ∈ R

M . The
smaller the value of φ̄, the better the accuracy of endmem-
ber signature estimates. The values of φ̄ for the estimated
endmembers yielded by all the various EEAs are shown in
Table IX, where the least φ̄ for a specific mineral over those
five algorithms is highlighted as a bold-faced number and the
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TABLE IX
MEAN-REMOVED SPECTRAL ANGLES φ̄ (DEGREES) BETWEEN LIBRARY SPECTRA AND ENDMEMBERS

ESTIMATED BY THE SGA, WAVMAX, ADVMM, AND SDVMM

numbers in parentheses denote the value of φ̄ for the repeatedly
estimated endmember. It can be observed from Table IX that
the φ̄ of the SDVMM-RASF method is the least, although there
is no much difference in φ̄ for all the methods under test. The
possible reason is that the quality of the AVIRIS data set is high,
i.e., both the SNR and SOR of the AVIRIS Cuprite data set
are large [45] and the true outlier pixels are very few. Hence,
such Ẑ = 20 estimated outliers may presumably be the pixels
with the Ẑ largest approximation errors between the linear
spectral mixing model (1) and the nonlinear mixing model of
the real hyperspectral data [2], [27]. Moreover, we have also
tuned Ẑ equal to 0.1%L and 0.3%L for the SDVMM-RASF,
and the associated performances do not vary much, inferring
that Ẑ = 0.05%L outliers should sufficiently cover all the true
outliers, i.e., Ẑ is larger than the true Z.

As presented earlier that the AVIRIS Cuprite data set is of
very high quality, one may raise a question: Because the infor-
mation of the outliers is not publicly available, do the locations
of the Ẑ = 20 outliers estimated by the RASF algorithm [see
Fig. 5(b)] really cover the locations of the true outliers? To
properly investigate this, we generated a semireal hyperspectral
data set with outliers artificially added. We selected three spatial
coordinates, for example, (16, 24), (24, 16), and (24, 32), from
the 200 × 200 cropped data and artificially added three outliers
z[n], as well as adjusted these outliers to satisfy different SORs
defined in (53), provided that the original hyperspectral data
were contamination free. Fig. 6(a) displays the locations of
the three simulated outliers, marked in yellow triangles on
the 50th band hyperspectral image, and one can see that they
geometrically and spatially form a triangle. After applying the
noise prewhitening (54) to the outlier-added data, we then tested
the proposed SDVMM-RASF algorithm with Ẑ = 0.05%L on
the data sets of various SORs and show the estimated locations
of the outliers in Fig. 6(b) and (c) for SOR ≤ 45 dB and SOR >
45 dB, respectively. For SOR ≤ 45 dB, it can be observed
that there is a clear triangle shape formed by the three outlier
locations in the upper left corner of Fig. 6(b), showing a good
consistency with our simulated outlier locations in Fig. 6(a).
For the scenario where SOR > 45 dB, we cannot identify any
preplaced outlier locations in Fig. 6(c), conceivably because
either the SNR of the Cuprite data set is around 45 dB or the

Fig. 6. (a) Locations of the generated outliers marked on the 50th band
hyperspectral image and the locations of the estimated outliers by the RASF
algorithm for (b) SOR ≤ 45 dB and (c) SOR > 45 dB.

outliers (marked by circles) in the hyperspectral data are more
dominant (i.e., the corresponding SOR is lower than 45 dB)
than the three preplaced outliers. Besides, the performance of
the estimated endmembers by the SDVMM-RASF algorithm is
the same as that in Table IX, and hence, the associated results
are not demonstrated herein.

VIII. CONCLUSION

We have presented a two-step approach for robust hyper-
spectral endmember extraction in the presence of outliers and
noise. For dimension reduction, the RASF algorithm was pro-
posed to find a robust affine set and, meanwhile, to detect and
remove the outliers. For endmember extraction, we have also
presented two fast algorithms, namely, ADVMM and SDVMM,
to approximate the simplex volume max-min formulation that
has shown its robustness against noise [21]. The proposed
ADVMM and SDVMM algorithms decouple the max-min sim-
plex volume problem and solve the partial max-min problems
in alternating fashion and successive fashion, respectively. The
decoupled max-min heuristic and approximation mechanisms
used in the proposed ADVMM and SDVMM algorithms have
also been discussed. All the subproblems involved in the RASF
algorithm, as well as the ADVMM and SDVMM algorithms,
end up with closed-form solutions, and hence, the proposed
methods are computationally efficient.

Monte Carlo simulation results have shown that the RASF
algorithm provides a more accurate affine set estimate than
the ASF, as long as SOR ≤ SNR. The simulation results have
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also shown that the ADVMM and SDVMM algorithms perform
slightly better than the robust algorithm WAVMAX [21] while
outperforming some existing benchmark algorithms, particu-
larly for low SNR. The computation load in terms of running
time required by the ADVMM and SDVMM algorithms is
significantly less than that of the WAVMAX algorithm by
around an order of 3. Moreover, the results also demonstrated
that the performances of any EEAs preceded by the dimension
reduction using RASF improve significantly, particularly for
low SOR. In cases where some of the endmembers are rare,
the proposed ADVMM/SDVMM-RASF algorithms can still
preserve the rare endmembers if the number of endmembers
is perfectly given, i.e., N̂ = N . For N̂ < N , the rare endmem-
bers may instead be treated as outliers. Real data experiments
using the Cuprite data set have also demonstrated the practical
applicability of the proposed RASF, ADVMM, and SDVMM
algorithms.

APPENDIX

PROOF OF LEMMA 1

Problem (44) is equivalent to

min
‖tj‖2≤r

∥∥∥∥P⊥
Ĥ1:(j−1)

(wj − tj)

∥∥∥∥2 (56)

whose KKT conditions can be easily shown to be(
P⊥

Ĥ1:(j−1)

+ λ̂IN

)
t̂j =P⊥

Ĥ1:(j−1)

wj , (57a)

λ̂
(
‖t̂j‖2 − r2

)
=0, (57b)

‖t̂j‖2 − r2 ≤ 0, λ̂ ≥ 0, (57c)

where t̂j and λ̂ are primal and dual optimal points of (56). By
(57a) and (57c), we have∥∥∥∥P⊥

Ĥ1:(j−1)

wj

∥∥∥∥≤∥∥∥∥P⊥
Ĥ1:(j−1)

+λ̂IN

∥∥∥∥·‖t̂j‖ ≤ (1+λ̂)r (58)

where the first inequality is due to the inequality of the operator
norm and the second inequality is due to the fact that the
eigenvalues of a projection matrix are equal to either zero or
one.

To prove Lemma 1, we first prove

λ̂ > 0 ⇐⇒
∥∥∥∥P⊥

Ĥ1:(j−1)

wj

∥∥∥∥ > r. (59)

First, let us show the sufficiency of (59). Suppose that λ̂ > 0.
Then, P⊥

Ĥ1:(j−1)

+ λ̂IN is of full rank, and (57a) becomes

t̂j =

(
P⊥

Ĥ1:(j−1)

+ λ̂IN

)−1

P⊥
Ĥ1:(j−1)

wj . (60)

By eigenvalue decomposition, we can express

P⊥
Ĥ1:(j−1)

= V

[
IN−(j−1) 0

0 0

]
VT (61)

where V ∈ R
N×N is the matrix constituted by orthonormal

eigenvectors of P⊥
Ĥ1:(j−1)

. Substituting (61) into (60) followed

by some derivations, (60) can be simplified to

t̂j =
1

1 + λ̂
P⊥

Ĥ1:(j−1)

wj . (62)

By (62) and (57b), it is easy to see ‖t̂j‖ = ‖(1/(1 +
λ̂))P⊥

Ĥ1:(j−1)

wj‖ = r, which yields

λ̂ =
1

r

∥∥∥∥P⊥
Ĥ1:(j−1)

wj

∥∥∥∥− 1 (63)

thus leading to ‖P⊥
Ĥ1:(j−1)

wj‖ > r due to λ̂ > 0. The proof of

necessity of (59) is trivial. By (58), ‖P⊥
Ĥ1:(j−1)

wj‖ > r implies

λ̂ > 0.
Now, we make use of (59) to prove Lemma 1. Two cases

on wj ∈ F are considered: (C1) wj ∈ W(r) and (C2) wj ∈
R

N \W(r). By (59), (C1) implies λ̂ > 0. Hence, by (62) and
(63), the solution (45) can be obtained. On the other hand, for
case (C2), by (57c) and (59), (C2) implies λ̂ = 0. Hence, (46)
can be obtained by setting λ̂ = 0 in (57a). �
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