
1202 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 3, MARCH 2011

QoS-Based Transmit Beamforming in the
Presence of Eavesdroppers: An Optimized

Artificial-Noise-Aided Approach
Wei-Cheng Liao, Tsung-Hui Chang, Member, IEEE, Wing-Kin Ma, Member, IEEE, and

Chong-Yung Chi, Senior Member, IEEE

Abstract—Secure transmission techniques have been receiving
growing attention in recent years, as a viable, powerful alternative
to blocking eavesdropping attempts in an open wireless medium.
This paper proposes a secret transmit beamforming approach
using a quality-of-service (QoS)-based perspective. Specifically,
we establish design formulations that: i) constrain the maximum
allowable signal-to-interference-and-noise ratios (SINRs) of the
eavesdroppers, and that ii) provide the intended receiver with a
satisfactory SINR through either a guaranteed SINR constraint
or SINR maximization. The proposed designs incorporate a
relatively new idea called artificial noise (AN), where a suitable
amount of AN is added in the transmitted signal to confuse the
eavesdroppers. Our designs advocate joint optimization of the
transmit weights and AN spatial distribution in accordance with
the channel state information (CSI) of the intended receiver
and eavesdroppers. Our formulated design problems are shown
to be NP-hard in general. We deal with this difficulty by using
semidefinite relaxation (SDR), an approximation technique based
on convex optimization. Interestingly, we prove that SDR can
exactly solve the design problems for a practically representative
class of problem instances; e.g., when the intended receiver’s
instantaneous CSI is known. Extensions to the colluding-eaves-
dropper scenario and the multi-intended-receiver scenario are
also examined. Extensive simulation results illustrate that the
proposed AN-aided designs can yield significant power savings or
SINR enhancement compared to some other methods.

Index Terms—Artificial noise, physical-layer secure communica-
tions, semidefinite relaxation, transmit beamforming.

I. INTRODUCTION

T RANSMIT beamforming designs through quality-of-ser-
vice (QoS) optimizations have recently flourished as

an important class of multi-antenna transmission techniques.
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QoS-based transmit beamforming has proven to be a viable,
versatile approach to a variety of communication scenarios,
such as downlink unicast [2]–[5], downlink multicast [6], and
multi-group multicast (a combination of unicast and multicast)
[7]. In this topic, the challenges usually lie in the optimization
of a desired, possibly nonconvex, design formulation; and
convex optimization has been playing a significant role in this
aspect, providing tractable solutions that can either exactly
solve or well approximate the considered design formulation.
For a general coverage of convex optimization for transmit
beamforming, readers are referred to the magazine article [8]
and the book chapter [9]; see also [10]–[13] for some further
studies on the capability of convex optimization, and [14], [15]
for some emerging applications.

This paper explores a relatively new problem in QoS-based
transmit beamforming—secure transmission in the presence of
eavesdroppers. To illustrate the problem, consider a commercial
wireless downlink scenario, where some participating users of
the system attempt to access service requiring additional charges
(e.g., high-definition video) by overhearing. While overhearing
cannot be stopped in an open wireless medium, a base station
equipped with multiple transmit antennas may perform a coun-
termeasure by transmit beamforming. The premise of this is that
the base station has eavesdroppers’ channel state information
(CSI), which would be true for active eavesdroppers or partici-
pating system users. With transmit beamforming, one can utilize
the spatial degree of freedom (DoF) to cripple eavesdroppers’
interceptions.

In fact, we should point out that information secrecy using
physical-layer transmit designs, commonly known as physical-
layer secrecy in the present literature, has caught growing at-
tention recently. The motivation behind is that under open wire-
less media, information security using crytographic encryption
(in the network layer) may be subject to vulnerabilities, such as
problems with secret key distribution and management. Phys-
ical-layer secrecy may serve as an alternative to, or a comple-
ment to, crytographic encryption. In a classical physical-layer
secrecy setting where there is one legitimate receiver single-
input-single-output (SISO) channel and one eavesdropper SISO
channel (i.e., the so-called Gaussian wiretap channel), it was al-
ready shown back in the 1970s [16], [17] that the transmitter
can send a message reliably to the legitimate receiver, at a pos-
itive rate and with the eavesdropper being unable to extract al-
most any information, if the eavesdropper’s channel is a de-
graded version of the legitimate receiver’s. The recent interest
in physical-layer secrecy may be seen as a renewed one, but
it is also a timely one: with multi-input-multi-output (MIMO)
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systems, one may exploit the available spatial DoF to degrade
eavesdroppers’ effective channels substantially. The MIMO se-
crecy capacity problems are considered in [18]–[21]; see also
[22] for fast fading channels. Many present works, such as the
aforementioned, focus on information theoretic aspects. Never-
theless, very recently there has been growing interest from the
signal processing side in the designs and optimization of secret
transmit schemes; see, e.g., [23]–[27].

In addition to using the transmit DoF to weaken eavesdrop-
pers’ receptions, another meaningful idea in physical-layer se-
crecy is that of artificial noise (AN) [24], [25], [28]. In AN-aided
methods, a fraction of the transmit power is allocated to send ar-
tificially generated noise signals, usually in form of an almost1
isotropically distributed spatial noise process, to interfere the
eavesdroppers. Presently, the AN-aided methods are considered
mostly for the case of passive eavesdroppers where no eaves-
droppers’ CSI is known to the transmitter, which is important es-
pecially to military applications. In principle, one may also con-
sider utilizing the eavesdroppers’ CSI (assuming active eaves-
droppers) to steer the AN towards eavesdropper’s directions for
more effective blocking, rather than keeping the AN isotropic.
The idea of making AN spatially focused is very recently con-
sidered in some concurrent studies; e.g., interference alignment
in [25], and cooperative jamming in [23].

In this paper, we establish secret transmit beamforming
designs using a QoS-based perspective. Specifically, the QoS
refers to the signal-to-interference-and-noise ratio (SINR). The
proposed designs assume CSI on the legitimate receiver and
eavesdroppers, either in form of the instantaneous channel re-
alization or the channel correlation matrix. Moreover, spatially
focused AN is employed. In the proposed designs we degrade
eavesdroppers’ interceptions by constraining their maximum
allowable SINRs, while, at the same time, we enhance the
legitimate receiver’s SINR either by constraining its minimum
SINR requirement or by maximizing its SINR. It is interesting
to point out that without AN, the design formulations de-
scribed above are very similar to those for the cognitive radio
(CR) application [15], [26], [29], [30]. Essentially, avoiding
eavesdroppers from overhearing in physical-layer secrecy is
reminiscent of protecting primary users from being interfered
in CRs. However, this relationship does not hold when the
former employs AN, which is the case in this work (primary
users in CR may not be interfered, unlike eavesdroppers).

The proposed secret transmit designs advocate joint optimiza-
tion of the transmit weights and AN spatial distribution. How-
ever, the resultant designs are difficult problems in a worst-case
sense. We show that the proposed design problems are NP-hard
in general. While this is the case, we also show that our design
problems can be exactly solved for a class of practically rep-
resentative problem instances. We consider semidefinite relax-
ation (SDR), a convex-optimization-based approximation tech-
nique that has been proven to be a powerful tool for handling a
wide variety of signal processing problems [8], [31], [32]. Our
analysis reveals that SDR can lead to exact (or globally optimal)
solutions to the proposed design problems for some instances;
e.g., when the legitimate receiver’s CSI is known, or when the
spatial covariances of the legitimate receiver’s and eavesdrop-

1By “almost,” we mean that the AN is isotropically distributed on the orthog-
onal complement subspace of the legitimate receiver’s channel. Physically it
means that the AN does not interfere the legitimate receiver.

pers’ CSIs are white. Moreover, two extensions, namely, those
for colluding eavesdroppers and multiple legitimate receivers,
are examined.

This paper is organized as follows. Section II provides the
problem formulation. The optimization aspects of the formu-
lated designs are addressed in Sections III and IV, respectively.
Section V describes extensions of the present work to more com-
plex scenarios. Simulation results and conclusions are given in
Sections VI and VII, respectively.

The notation of this paper is as follows. Boldface lowercase
and uppercase letters, such as and , are used to represent
vectors and matrices, respectively. The symbol denotes the

-by- identity matrix, a zero vector or matrix, and a unit
vector where the entry is one and the other entries zero. The
superscripts ’ ’ and ’ ’ stand for the transpose and conjugate
transpose, respectively. The set of all -dimensional complex
vectors is denoted by . The set of all complex Hermitian

-by- matrices is denoted by . denotes the range
space of the argument. The Euclidean norm is denoted by .
The trace operator is denoted by . When we write ,
it means that is positive semidefinite (PSD). Similarly,

means that is positive definite. The PSD square
root factor of a Hermitian PSD matrix is denoted by .
The symbol represents the statistical expectation of the ar-
gument. The notation means that is a random
vector following a complex circular Gaussian distribution with
mean and covariance .

II. PROBLEM FORMULATION

In this section, we describe the system model and formulate
the proposed secret transmit beamforming designs.

A. Signal Model

Our scenario of interest is that of one single-antenna legiti-
mate receiver overheard by multiple single-antenna eavesdrop-
pers. A simple diagram is depicted in Fig. 1 to illustrate the sce-
nario. For convenience, we will refer to the transmitter, the legit-
imate receiver, and the eavesdroppers as Alice, Bob, and Eves,
respectively. Alice is equipped with transmit antennas, using
transmit beamforming to send information to a single-antenna
Bob; the transmission is overheard by single-antenna Eves.
At this moment we assume that Eves do not collude. By letting

be the transmit signal vector of Alice, the received
signals at Bob and Eves are, respectively, modeled as

(1)

(2)

where is the channel from Alice to Bob,
is the channel from Alice to the Eve, and and
are independent and identically distributed (i.i.d.) complex cir-
cular Gaussian noises with variances and ,
respectively.

This paper considers AN-aided transmit beamforming. In
such a scheme, the transmit vector takes the structure

(3)

Here, is the data stream intended for Bob only, where
we assume without loss of generality;
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Fig. 1. The idea of AN-aided transmit beamforming.

is the transmit weight vector corresponding to ;
is a noise vector artificially generated by Alice to interfere Eves;
i.e., the so-called AN. We assume that

(4)

where denotes the AN spatial covariance. It is worth-
while to point out that most existing endeavors assume isotropic
AN; i.e., the AN covariance is chosen as , where

is the orthogonal complement pro-
jector of , and is a scale factor determining the power
invested on AN [24], [25], [28]. The isotropic AN is often used
when Eves’ CSI is unknown, and it is found to be effective for
such passive Eves cases. The interest here is in active Eves cases,
where Alice has knowledge of Eves’ CSI to a certain extent and

can be spatially non-isotropic to interfere Eves selectively.

B. The QoS Measure

The proposed QoS-based secret transmit beamforming de-
signs, to be presented in the next subsection, is based on the
SINR measure. Suppose that the Alice-to-Bob channel is
random with mean and covariance . From Bob’s model
(1) and the AN-aided transmit structure (3), the SINR of Bob
with respect to can be defined as (see, e.g., [3])

(5)

where

(6)

is the correlation matrix of . It will be assumed in the sequel
that is known to Alice. Moreover, for the case where the
instantaneous channel realization of Bob is known to Alice, we
should redefine as .

Likewise, the SINRs of Eves under the model (2) are

(7)

where, for the case where the instantaneous channel realizations
of Eves are known to Alice, we define ; and,

for the case where only Eves’ channel correlation matrices are
available to Alice, we define

with and being the mean and covariance of ,
respectively. Again, are assumed to be avail-
able to Alice. We should note that for the correlation-based CSI
case, the channel covariances characterize the uncertainty
to Eves’ channels in a second-order statistics sense. In par-
ticular, in an extreme setting of for some

, the physical meaning is that we have no informa-
tion about the channel direction of that Eve.

C. The Proposed Design Formulations

With the SINRs defined in the last subsection, we can now de-
scribe the proposed secret transmit beamforming design formu-
lations. As previously mentioned, our general goal is to jointly
optimize the transmit weight vector and AN spatial covari-
ance such that Bob’s and Eves’ SINRs are enhanced and de-
graded, respectively. To this end, we propose two design formu-
lations. The first formulation is a power minimization formula-
tion, described as follows:

Formulation 1 (minimizing the total power subject to
SINR constraints on Bob and Eves): Given a minimum SINR
requirement on Bob and a maximum allowable SINR
threshold on Eves , design by solving

(8)

It should be noticed that the specification , which is
chosen by the system operator, is meaningful only when is
much greater than ; say, e.g., , . More-
over, in principle, there may exist circumstances where there
is no feasible solution for Formulation 1; e.g., when the
specification is set too demanding. Fortunately, it can be
shown that feasibility is not a serious issue for the case where
Bob’s instantaneous CSI is available.

Lemma 1: Suppose that , and
for any and for . Then, (8) in Formulation 1 is
feasible.

Proof: The proof is to exploit the fact that an isotropic AN
solution is a feasible point of (8). Suppose that we fix the struc-
ture of as

(9)

for some . It can be verified that satisfies all the
SINR constraints in (8) if , are chosen as

(10a)

(10b)

Note that under the premise of
for any . As an aside, the power allocation in (10) can be shown
to yield the smallest total power under the isotropic AN structure
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(9). We therefore have shown that (8) is always feasible under
the assumption in Lemma 1.

The second design formulation is as follows.
Formulation 2 (maximizing Bob’s SINR subject to con-

straints on power and Eves’ SINRs): Given a maximum al-
lowable SINR threshold on Eves and a transmit power
limit , design by solving

(11)

The design criterion of Formulation 2 is to offer the best pos-
sible SINR on Bob, given a power specification and an
SINR limit on Eves . Problem (11) always has a feasible solu-
tion. However, in some instances; e.g., demanding specifications
and/or having many Eves, it is possible that the best SINR on
Bob found by (11) be lower than . Under such circumstances,
the system operator should consider relaxing the power specifi-
cation such that a reasonable SINR on Bob is attained.

The goal of this paper lies in finding the optimal transmit
design solutions of the above two design formulations. This will
be addressed in the following two sections.

III. OPTIMIZATION IN THE POWER MINIMIZATION DESIGN

This section considers the optimization aspects of the power
minimization design for AN-aided transmit beamforming. The
first subsection studies the nature and challenge of the problem,
while the second subsection describes the proposed approach to
handling the problem.

A. The Problem Nature

Let us explicitly express the power minimization design (8)
as

(12a)

(12b)

(12c)

(12d)

It is interesting to note that (12) is related to a CR transmit
design problem [15], [30], when we remove all the AN terms in
(12) to form the following no-AN design:

(13a)

(13b)

(13c)

In particular, from a CR perspective, (13c) represents interfer-
ence temperature constraints for keeping interference to the pri-
mary users below a tolerable level. The no-AN design (13) is
generally nonconvex, but can be turned to a convex problem for
the case of (i.e., instantaneous CSI on Bob). In
that case, (13) can be reformulated as a second order cone pro-
gram [1], [3], [5]. However, one may verify that the same convex
reformulation trick does not work for the AN-aided design (12).

The AN-aided design (12) is a nonconvex quadratic opti-
mization problem, only because of Bob’s nonconvex SINR con-
straint in (12b). Unfortunately, the fact that only one constraint
in (12) is nonconvex leads to the claim that (12) is a very diffi-
cult problem in general.

Lemma 2: Both (12) and (13) are NP-hard in general.

The proof of Lemma 2 is shown in Appendix A. We should
mention that the NP-hardness claim in Lemma 2 is based on
the argument that for a general class of problem instances

, , there exist problem
instances where (12) can become very hard to solve. While this
means that we may not be able to find an optimization algorithm
that can solve (12) efficiently for all problem instances, it might
be possible that (12) can be handled quite well for most of the
problem instances that are of practical interest. This motivates
our endeavor to use SDR to handle (12), the development of
which is presented in the next subsection.

B. Semidefinite Relaxation, and Its Optimality Conditions

To describe the application of SDR to the AN-aided design
(12), let us define and rewrite (12) as

(14a)

(14b)

(14c)

(14d)

where the constraints , in (14d) are
equivalent to constraining . In the SDR approach,
we relax (14) by neglecting the constraint in
(14d)

(15a)

(15b)

(15c)

(15d)

The relaxed problem above, which we will call the SDR
problem of the original design problem (12), is convex—it is
a semidefinite program whose optimal solution can be effi-
ciently obtained by available interior-point algorithms; e.g., the
off-the-shelf solvers SeDuMi [33] and CVX [34].
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The SDR (15) is generally an approximation to the
AN-aided design (12), because the former does not guar-
antee a rank-one optimal given an arbitrary problem
instance , . There are
standard methods for generating a suboptimal transmit weight

from SDR; see [9], [32], and the references therein. But, for
instances where an SDR optimal happens to be of rank one,
we can simply extract the rank-one decomposition of that SDR
optimal (essentially, the principal eigenvector of ) and
the SDR for those instances is optimal to the original AN-aided
design (12).

Interestingly, we are able to show that for a practically rep-
resentative class of problem instances, SDR always yields a
rank-one transmit beamforming solution [or SDR is an exact
solver of the AN-aided design (12)]. This is described in the
following proposition.

Proposition 1: Consider the AN-aided power minimiza-
tion design (12), and its SDR problem (15). Suppose that

satisfy either one of the following
conditions:

C1) (Instantaneous CSI on Bob) , while
are arbitrary PSD matrices.

C2) (Correlation-based CSI on Bob and Eves, with white
channel covariance) , and the channel correla-
tion matrices take the form

where , and
are such that .

C3) (The number of Eves is no greater than two) ,
and are arbitrary.

Also, suppose that the SDR problem (15) is feasible. Then, there
exists an optimal SDR solution, denoted by , for which

is of rank one; viz.

Moreover, for Cases C1) and C2), any optimal SDR solution
must have rank-one .

The rank-one optimality of SDR for Cases C1) and C2) was
obtained by examining the Karush-Kuhn-Tucker (KKT) condi-
tions of the SDR problem (15), where we found that any SDR
optimal solution has to have rank-one . As for Case C3), it is
a direct consequence of the SDP rank reduction result [13], [35],
which identifies existence of a rank-one SDR solution; readers
are referred to [13] for further details, such as the generation of
a rank-one SDR solution. The proof of Proposition 1 is given in
Appendix B.

IV. OPTIMIZATION IN THE SINR MAXIMIZATION DESIGN

We now turn our attention to Formulation 2, the SINR max-
imization design alternative. The design problem, according to
(11), can be expressed as

(16a)

(16b)

(16c)

(16d)

In the same spirit as treating the power minimization design in
the last section, we will handle (16) using the SDR approach.

The SINR maximization design (16) is also a very difficult
problem. We show in Appendix C that

Lemma 3: Problem (16) is NP-hard in general.

Let us consider applying SDR to (16). Using the same idea as
described in Section III-B, the SDR problem for (16) is shown
to be

(17a)

(17b)

(17c)

(17d)

Unlike the SDR of the power minimization design, the SDR
problem (17) does not immediately lead to an SDP. The SDR
problem (17) is a quasi-convex problem, due to the linear frac-
tional structure of its objective (17a). A standard approach to
solving this kind of quasi-convex problems is to employ a bisec-
tion methodology [5], [36], where the globally optimal solution
is sequentially searched by solving a sequence (often many) of
SDPs.

Here we develop a simpler alternative to solving (17). The
idea is to reformulate the quasi-convex problem (17) to a convex
SDP through the Charnes-Cooper transformation [37]. Let

(18)

By using the following transformation of variables

(19)

we may rewrite (17) as an SDP

(20a)

(20b)

(20c)

(20d)

(20e)

under the assumption that an optimal solution of (20), denoted
by , has . In general, it is true that :
If , then, according to (20d), we have .
However, that violates (20b). Hence, we arrive at
the following conclusion.
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Proposition 2: The quasi-convex SDR problem in (17) is
equivalent to the SDP in (20). The equivalence lies in that if

is optimal to (20), then is op-
timal to (17).

The above described equivalent SDP reformulation of the
SDR problem not only provides a computationally more effi-
cient way of solving SDR (compared to the bisection search), it
also sheds light into conditions under which SDR exactly solves
the SINR maximization design. By examining the equivalent
SDR problem (20), we show in Appendix D that

Proposition 3: Consider the AN-aided SINR maximiza-
tion design (16), and its SDR problem (17). Suppose that

satisfy either one of the following
conditions:

C1) (Instantaneous CSI on Bob) , while
for any scaling , for all .

C2) (Correlation-based CSI on Bob and Eves, with white
channel covariance) , and the channel correla-
tion matrices take the form

where , and
are such that .

C3) (The number of Eves is no greater than two) ,
and are arbitrary.

There exists an optimal SDR solution, denoted by , for
which is of rank one. Moreover, for Cases C1) and C2), any
optimal SDR solution must have rank-one .

Interestingly, the cases for which SDR is identified to give
exactly optimal solutions to the SINR maximization design, as
shown above, are almost the same as those for the power mini-
mization design (see Proposition 1).

V. EXTENSIONS

We herein describe two possible extensions of the above
described AN-aided secret transmit beamforming designs,
namely, to the colluding-Eve scenario and the multigroup
multicast scenario. They are, respectively, considered in the
following two subsections.

A. Colluding Eves

We consider a scenario where some Eves cooperate to form
joint receive beamforming, in an attempt to improve their
interception. For ease of exposition of the ideas, we assume that
all Eves are colluding. Moreover, Eves are assumed to perform
joint maximum SINR receive beamforming. Following the
model in (1) and (2), the maximum receive SINR achieved by
colluding Eves is defined to be

(21)

where denotes the receive beamformer weight of Eves,
, and . It is

shown that the SINR in (21) can be reduced to

(22)

where , and is a
linear matrix function whose entry is

(23)

with for the correlation-based CSI case;
and for the instantaneous CSI case.

Our idea is to bound below a known threshold
by bounding the per-Eve SINRs . We found by
analysis that bounding the per-Eve SINRs may not be enough
to bound the colluding-Eve SINR, but there is a simple remedy
as described in the following proposition.

Proposition 4: Consider a variation of Formulations 1 and 2,
where we add the following convex constraint on their respective
design problems in (8) and (11):

(24)

For such modified design problems, it holds true that any fea-
sible satisfies

(25)

The proof of Proposition 4 is described in Appendix E.
Proposition 4 indicates that by adding the constraint (24) in
the designs, the maximum allowable colluding-Eve SINR is
constrained below indirectly. We should emphasize that
the SDRs of the resultant modified designs are simply those of
the original [(15) and (20)] with the addition of the constraint
(24). Those modified SDRs are again convex SDPs, and it can
be verified that the SDR rank-one optimality for Cases C1) and
C2) in Propositions 1 and 3 still holds for the modified SDRs.

B. Multigroup Multicast

In multigroup multicast, we consider a general multi-Bob set-
ting described as follows. Alice is intended to transmit multiple
data streams to multiple groups of Bobs. The transmit signal
vector at Alice becomes

(26)

where is the number of data streams, is the data
stream which is assumed to be independent of one another,

is the transmit weight vector corresponding to , and
is again the AN. There are Bobs to be served, and the

received signal of each Bob is modeled as

(27)
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where is the channel vector from Alice to the Bob, and
is a complex circular Gaussian noise with zero mean and

variance . Again, there are Eves eavesdropping, and
that their received signal model is the same as in (2). Each Bob
is assigned to receive only one data stream. We denote

to be the set of Bobs assigned to the data
stream; i.e., if then it means that the Bob is intended
to receive only. These grouping sets are disjoint and

.
Following the signal model in (26) and (27), the SINR of the

Bob is formulated as

(28)

where if we assume that
is random with known mean and covariance , and

if we assume perfect knowledge of the instanta-
neous CSI of the Bob. The SINR for the Eve to eaves-
drop the data stream is

(29)

where and .
We consider a transmit design formulation that follows the

max-min-fair criterion for standard multigroup multicast [7],
and that is an extension of the SINR maximization design in
the previous section (the power minimization formulation may
also be employed; we skip this alternative due to limit of space).
The design problem is formulated as follows:

(30a)

(30b)

(30c)

(30d)

where specifies the maximum allowable SINR
threshold for Eves to eavesdrop the data stream, and
is a given transmit power limit. As seen in (30), the design goal
is to maximize the weakest SINR among all Bobs, under SINR
constraints on Eves and a total transmit power constraint.

Problem (30) is more complicated than the one-Bob SINR
maximization formulation in the previous section. However,
SDR remains applicable. The SDR of (30) can be shown in
(31), at the bottom of the page. The resultant SDR problem,
shown above, is a quasi-convex problem. Its optimal solution
can be obtained by applying a bisection search in which a
sequence of SDPs is solved; see [36] for the details.

In the study of standard multigroup multicast, it has been
known that SDR may not yield rank-one solution [7]. Hence, for
the secret multigroup multicast design (30), we need a procedure
that turns the SDR solution in (31) to an approximate solution to
(30). In Table I, we provide such an approximate solution gen-
eration procedure custom-designed for (30). See (32a)–(32c) at
the bottom of the next page. The principle is based on that of
Gaussian randomization; see [32] for a general review of the
notion of randomization, and [7] for specific details on random-
ization for standard multigroup multicast.

VI. SIMULATION RESULTS

We now demonstrate the performance of the proposed
AN-aided secret transmit beamforming designs by simulations.
In the simulation examples to be shown soon, we will adopt
either one of the following two CSI settings:

i) Instantaneous CSI Case: Both the CSIs of Bob and Eves
are instantaneous; i.e., (or for
all for the multigroup multicast extension), and

for all . The channel realizations
are i.i.d. Gaussian distributed. Specifically, in the sim-
ulations, the channels were randomly generated by ,

on a per-trial basis.

(31a)

(31b)

(31c)

(31d)
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ii) Correlation-based CSI Case: In this case, the channels of
Bob and Eves are assumed to be random with correlation
matrices given, respectively, by

(33)

(34)

where describes the level of channel uncer-
tainty ( means instantaneous CSI, means no
knowledge of the channel directions at all). The channel
means are isotropically distributed on a
unit sphere. Specifically, for , we generate in each sim-
ulation trial a random vector , and then
set . The same generation procedure applies
to each .

The following settings are assumed for all the following sim-
ulation examples, unless specified: Bob’s noise power is
0 dB. All Eves have identical noise powers, and we denote

. The number of trials for Monte Carlo
simulations is 1000. All the optimization problems involved in
the proposed designs were solved by SeDuMi [33].

A. Example 1: Power Minimization Design, Instantaneous
CSI Case

This example demonstrates the performance of the proposed
AN-aided design under the power minimization formulation in
Formulation 1. The instantaneous CSI case is assumed. The
chosen design is solved by SDR; cf., Proposition 1, Case C1).
We also consider two other designs in our simulations, namely,
the no-AN design in (13), and the isotropic AN design in (9) and
(10). These two designs are based on the power minimization
formulation, with some restrictions on the transmit structures.
The other simulation settings are , , 0 dB,

10 dB.
The simulation results are shown in Fig. 2. In Fig. 2(a), the

average transmit powers of the various designs are plotted over
a wide range of values of . Note that large physi-
cally means strong (clean) overhearing ability for Eves, while
small means weak (noisy) overhearing ability. We ob-
serve that for 10 dB, the powers used in all the de-
signs are quite similar. This is because the designs do not need

TABLE I
GAUSSIAN RANDOMIZATION PROCEDURE FOR THE MAX-

MIN-FAIR PROBLEM (30)

to spend much resource to deal with weak Eves. However, for
0 dB, there are significant performance differences.

The proposed AN-aided design generally yields the smallest
powers among the three designs, and its performance gaps rel-
ative to the other two designs are wider as increases. For
example, at 20 dB, the performance gap between the
proposed and no-AN designs is 12 dB in power, while that be-
tween the proposed and isotropic AN designs is 4 dB. Fig. 2(a)
also reveals that for the strong Eves regime (say, 0 dB),
using AN, even in an isotropic manner, would give better per-
formance than not using AN.

To get more insights, in Fig. 2(b) we separately plot the
transmit powers of the transmit weight vector and AN. It can
be seen that the power allocated to AN increases with .
This further confirms that using AN is the reason behind the
good power saving performance of the proposed AN design.
The figure also shows that the power allocated to AN in the
proposed design is less than that in the isotropic AN design.

We are also interested in seeing how the transmit powers of
the various designs change with the number of Eves. The sim-
ulation settings are the same as the previous, except that we
modify 20 and we fix 15 dB. The results are

(32a)

(32b)

(32c)
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Fig. 2. Performance of the various secret transmit designs under the power minimization formulation; (a) transmit powers versus the reciprocals of Eves’ noise
powers,� � ��� � �; (b) power allocations of the isotropic and proposed AN designs, corresponding to the result in (a); (c) transmit powers versus the number
of Eves, � � ��� ��� � 15 dB; (d) power allocations of the isotropic and proposed AN designs, corresponding to the result in (c).

shown in Fig. 2(c). Again, the proposed design is seen to ex-
hibit the best performance. Moreover, the no-AN design pro-
vides better performance than the isotropic AN design, except
at . We should recall that the no-AN design focuses
on manipulating the transmit DoF to deal with Eves, while the
isotropic AN design does not. In Fig. 2(d) where the transmit
weight and AN power allocations corresponding to Fig. 2(c) are
shown, we see that the proposed design tends to use less AN
for small . Hence, our interpretation with the results is that
for small numbers of Eves, using transmit DoF to degrade Eves
would be more effective than using AN.

B. Example 2: SINR Maximization Design, Correlation-Based
CSI Case

We consider the SINR maximization formulation, operating
under the correlation-based CSI case. The simulation results, to-
gether with the simulation settings, are given in Fig. 3. The fig-
ures only show the performance of the proposed AN-aided de-
sign and the no-AN design, since the isotropic AN design is not
applicable when Bob’s CSI is correlation-based. Once again, we

see that the proposed design can yield SINR performance sig-
nificantly better than that of the no-AN design.

From Fig. 3(a) we notice the following phenomenon: When
5 dB, Bob’s SINR achieved by the no-AN design is

even lower than the Eves’ maximum SINRs specification ,
which is not reasonable from a system design viewpoint. In fact,
from an information theoretic perspective, this means that the
no-AN design may fail to provide information secrecy for such
operating conditions [25]. We also see from Fig. 3(a) that the
proposed AN-aided design does not have such an issue.

We should point out that as our numerical experience with this
simulation example, SDR was always found to yield a rank-one
solution; i.e., an exactly optimal solution to the SINR maximiza-
tion design formulation. For the result in Fig. 3(b) with ,
this is somewhat expected since those settings fit into the SDR
rank-one optimality result in Proposition 3, specifically, Case
2). However, the result in Fig. 3(a) does not fall into that case,
where we have [instead of required in Case
2) of Proposition 3]. In fact, Proposition 3 shows only sufficient
conditions for which SDR is provably optimal to the SINR max-
imization design, and they are not the necessary conditions. This
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Fig. 3. Performance of the various secret transmit designs under the SINR maximization formulation with� � 25 dB (a) Correlation-based CSI with� � ���,
� � �, � � �; (b) correlation-based CSI with � � ���, � � ��, ��� � 10 dB.

Fig. 4. Performance of the various designs in the colluding Eves scenario under the power minimization formulation, � � �, � � �, � � 10 dB, and
�� � 5 dB, and ��� � 0 dB.

empirical observation suggests that SDR may be more powerful
in practice than what the presently available analysis outlines.

C. Example 3: Colluding Eves, Power Minimization Design,
Instantaneous CSI Case

This example considers the colluding-Eve scenario. The
simulation settings are the same as those in Example 1. We
should reiterate that the proposed design incorporates the indi-
rect method in Proposition 4 for bounding the colluding-Eve
SINR. As for the no-AN and isotropic AN designs, their simple
transmit structures enable them to deal with the colluding-Eve
SINR [cf., (22)] directly. In the simulation, the maximum
allowable colluding-Eve SINR threshold is set to 5 dB.
The simulation results are shown in Fig. 4. We see that the
proposed design exhibits marginal performance loss compared
to the no-AN design for 10 dB 5 dB, but
the proposed design outperform the other two designs for

0 dB.

D. Example 4: Multigroup Multicast, Max-Min-Fair Design,
Instantaneous CSI Case

This last example demonstrates the viability of the proposed
design in the multigroup multicast scenario. We consider a two-
group multicast transmission, where there are four Bobs and
two Bobs form one group (thereby , ,

). There are four Eves . The number
of transmit antennas at Alice is . The instantaneous
CSI case is assumed. The max-min-fair design formulation and
the subsequent SDR approximation described in Section V-B is
used to provide the AN-aided and no-AN designs. The transmit
power limit is 25 dB. The number of randomizations in
the SDR approximation is . The respective simulation re-
sults are shown in Fig. 5(a), where we plot the worst-Bob SINR
with respect to . It is observed that for the specification

0 dB, the SINR gaps between the no-AN and AN-aided
designs are small and do not exceed 1.1 dB. Our speculation
for such a marginal performance difference is that the no-AN
design can wisely exploit interferences between transmit beams
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Fig. 5. Performance in the multigroup multicast scenario with instantaneous CSI, � � �, � � �, � � 25 dB: (a) 2-group multicast �� � �� �� � �
��� � ��, � � � (b) 1-group multicast �� � ��, � � �5 dB.

to block Eves’ interceptions, making the need of AN not as sig-
nificant as in the previous examples. But, when we apply a more
stringent specification on Eves by setting 5 dB, we can
see in Fig. 5(a) that the AN-aided design significantly outper-
forms the no-AN design for large .

We also consider a one-group multicast transmission with
four Bobs (i.e., , , ). We fix

5 dB and the other simulation settings are the same
as above. The results are shown in Fig. 5(b). We notice that
for , the SINR gaps of the two designs are no greater
than 2.2 dB. We believe that may have provided suf-
ficient spatial DoF for the no-AN design to suppress Eves’ in-
terceptions effectively. However, when we reduce the number
of transmit antennas to , we see from Fig. 5(b) that,
for large , the SINR performance of the no-AN design is
much deteriorated; for example, for 15 dB, Bob’s SINR
achieved by the no-AN design is even lower than the Eves’ max-
imum SINRs specification . In comparison, the AN-aided de-
sign provides promising SINR performance even for large .

VII. CONCLUSION

In this paper, we have established a secret transmit beam-
forming approach using a QoS-oriented perspective. A partic-
ularly meaningful part of this work is judicious utilization of
artificial noise, via joint optimization of its spatial distribution
and the transmit weights. This has enabled us to cripple eaves-
droppers’ interceptions significantly, as compared to a no-AN
approach or an isotropic AN approach. The formulated designs
turn out to be difficult optimization problems, and we employ
the SDR technique to approximate the designs. Interestingly,
we show that SDR is actually an exact solver of the formu-
lated designs for a practically representative class of problem
instances. The extensions to the multigroup multicast scenario
and the colluding-Eve scenario are also considered. Simulation
results show that the proposed AN-aided transmit beamforming
designs are highly effective in blocking eavesdroppers’ inter-
ceptions, especially when there are many eavesdroppers and/or

when the eavesdroppers’ channels have good overhearing
ability.

APPENDIX

A. Proof of Lemma 2

The NP-hardness of (12) is claimed by showing that (12) in-
cludes the following complex quadratic program as a special
case:

(A1)

where . Problem (A1) has been shown to be NP-hard
[38]. Let us consider a transformation of variables

By letting , and for all
(which we have assumed that is invertible), we can rewrite
(12) as

(A2)

Suppose that we have , ,
, , and for . The

resultant problem in (A2) is

(A3a)

(A3b)

(A3c)
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We see that for , (A3b) and (A3c) are satisfied simul-
taneously only when . With , the constraints in
(A3b) and (A3c) are the same as . Hence, (A3) is
equivalent to the NP-hard problem in (A1). This completes the
proof of the NP-hardness of (12).

Moreover, (13) can be shown to be NP-hard by following the
same proof as above.

B. Proof of Proposition 1

The proof of Proposition 1 for the three cases is as follows.
Case C1: The idea of the proof is that the KKT conditions

of the SDR problem (15) automatically restrict its optimal solu-
tion to have rank-one . Let be an optimal
dual variable for the constraint (15b), ,
be those for the constraints (15c), and be that for the
constraint . We consider only the KKT equations rele-
vant to , given as follows:

(A4a)

(A4b)

(A4c)

Equation (A4b) implies that the columns of must lie in the
nullspace of . Therefore, we get

(A5)

We will show that the occurrence of C1) implies that
, and, subsequently, .

Since is not a feasible point due to (15b), the re-
maining possibility is that .

Under Case C1), the KKT equation (A4a) can be expressed
as

(A6)

(A7)

Since and for all , the matrix
in (A7) is positive definite. Thus, its square root factor

is invertible. Using this result, we can rewrite (A6) as

(A8)

From (A8) and by basic matrix analysis concepts, one can show
that

(A9)

and that
due to the underlying matrix structure. As a result, we have

under Case C1).
Case C2: The proof is similar to that of Case C1), where

the key is to prove that . Under Case C2),
the dual variable in (A4a) is expressed as

(A10)

(A11)

(A12)

Let us assume , in which case in (A11) is positive
definite. Following the same derivations as in C1), one can show
that . On the other hand, assume that .
Let us construct a vector

where , ,
is the orthogonal complement projector of
(here the superscript denotes the pseudo inverse). Since

, we have . Moreover, satis-
fies for all , and . Now, let
us inspect the quadratic form

(A13)

Since implies by (A12), we have .
This further implies that is not PSD, which in turn violates
the KKT condition in (A4a). Hence, we conclude that
must hold. Subsequently we have under
Case C2).

Case C3: The proof is based on a rank reduction result for
general SDPs, namely, Lemma 3.1 in [13]. By that lemma, there
exists an optimal solution to the SDR problem (15)
that satisfies

(A14)

The SDR problem may have and hence we generally
get . Moreover, we have , since

is not feasible. Putting these results together, we con-
clude that for .

C. Proof of Lemma 3

We show that the SINR maximization design in (16) includes
the following complex quadratic program as a special case:

(A15)

where . Problem (A15) is known to be NP-hard [38].
Suppose that , , , , and

, for . Problem (16) becomes

(A16)

Let us take for all , in which case (A16) is reduced to

(A17)
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Furthermore, consider that . Then, an optimal solution
to (A17), denoted by , must have . This can be
shown by contradiction: Suppose that . Then we have

(A18)

Equation (A18) suggests that yields an objective value
greater than . Since is also feasible to (A16),
it is a contradiction that , , is optimal. Hence,
(A17) is equivalent to

(A19)

where we fix . Problem (A19) is identical to the NP-hard
problem in (A15).

D. Proof of Proposition 3

The proof is similar to that of Proposition 1 in Appendix B.
Case C1: Let , , , and

be the optimum dual variables associated with the constraints in
(20b)–(20d), respectively. Moreover, let and be
the optimum dual variables associated with the PSD constraints

and , respectively. The KKT equations relevant to the
proof are as follows:

(A20)

(A21)

(A22)

(A23)

Suppose that Case C1) holds. We consider two cases, namely
and . For , we can use the same proof

as in Appendix B to show that must be of rank one under
the KKT conditions (A20) and (A22). For , we show that
the KKT condition (A21) can never be satisfied. Under C1) and

, (A21) is expressed as

(A24)

where . Note that : Having
is equivalent to , but the latter

violates (A20) under the assumption . Let define
the orthogonal complement subspace of . Since is PSD, we
have, for any

(A25)

On the other hand, the positive semidefiniteness of implies
for all . It follows that for

any , or equivalently, for some . Such
a condition can never be achieved under C1).

Case C2: The proof for Case C2) is essentially the same
as that of Proposition 1 in Appendix B, and hence is omitted for
brevity.

Case C3: By the SDP rank reduction result in Lemma
3.1 in [13], the equivalent SDR problem (20) has a solution

whose rank profile satisfies

(A26)

We have shown in Section IV that . This means
. Substituting this result into (A26) yields

. The remaining proof is
identical to that in Appendix B.

E. Proof of Proposition 4

Any feasible point of the design (12) or (16) satisfies
for all . Those constraints can be ex-

pressed as

(A27)

where . By considering the sum of (A27) over
all and by using the notation in (23), we obtain

(A28)
On the other hand, we consider deriving a bound on the col-

luding-Eve SINR in (21). Let be an optimal receive beam-
former weight of (21). Then, we have

(A29a)

(A29b)

(A29c)

(A29d)

where denotes the minimum eigenvalue of its argument.
The inequalities in (A29c) and (A29d) are due to the basic ma-
trix results , and
for , respectively. Moreover, the newly added constraint
(24) is equivalent to (see, e.g., [36])

(A30)

By putting (A30) and then (A28) into (A29d), we obtain the end
result .
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