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Outage Constrained Robust Transmit Optimization
for Multiuser MISO Downlinks: Tractable
Approximations by Conic Optimization
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Abstract—In this paper, we study a probabilistically robust
transmit optimization problem under imperfect channel state
information (CSI) at the transmitter and under the multiuser
multiple-input single-output (MISO) downlink scenario. The
main issue is to keep the probability of each user’s achievable rate
outage as caused by CSI uncertainties below a given threshold. As
is well known, such rate outage constraints present a significant
analytical and computational challenge. Indeed, they do not admit
simple closed-form expressions and are unlikely to be efficiently
computable in general. Assuming Gaussian CSI uncertainties,
we first review a traditional robust optimization-based method
for approximating the rate outage constraints, and then develop
two novel approximation methods using probabilistic techniques.
Interestingly, these three methods can be viewed as implementing
different tractable analytic upper bounds on the tail probability
of a complex Gaussian quadratic form, and they provide convex
restrictions, or safe tractable approximations, of the original rate
outage constraints. In particular, a feasible solution from any
one of these methods will automatically satisfy the rate outage
constraints, and all three methods involve convex conic programs
that can be solved efficiently using off-the-shelf solvers. We then
proceed to study the performance-complexity tradeoffs of these
methods through computational complexity and comparative
approximation performance analyses. Finally, simulation results
are provided to benchmark the three convex restriction methods
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against the state of the art in the literature. The results show that
all three methods offer significantly improved solution quality and
much lower complexity.

Index Terms—Imperfect channel state information, MIMO pre-
coder designs, multiuser MIMO, outage probability, robust opti-
mization.

I. INTRODUCTION

I N multiuser multi-antenna downlink channels, linear pre-
coding has been recognized as a practically powerful tech-

nique that is capable of leveraging quality of service (QoS) and
improving system throughput [3], [4]. Fundamentally, linear
precoding methods assume knowledge of the downlink chan-
nels at the transmitter side, or simply channel state information
(CSI), and use it to perform interference management and re-
source optimization among users. In particular, it is common to
assume perfect CSI. However, such an assumption is considered
idealistic for several reasons [5]. Firstly, in the time division du-
plex (TDD) setting, where there is a reciprocity between the up-
link and downlink channels, CSI is acquired by uplink channel
estimation. As such, noise and limited training will introduce er-
rors into the acquired CSI. Secondly, in the frequency division
duplex (FDD) setting, where users estimate the downlink chan-
nels and inform the transmitter by rate-limited quantized CSI
feedback, the acquired CSI is plagued by quantization errors,
in addition to the channel estimation errors mentioned above.
Thirdly, the acquired CSI may become outdated if the user mo-
bility speed is faster than the CSI update speed.
In general, imperfect CSI can lead to substantial performance

degradation, such as QoS outages, if not taken care of properly.
It is therefore natural to consider the case of imperfect CSI and
investigate how CSI error effects may be mitigated through per-
tinent system designs. In fact, the topic is important and has re-
ceived a great deal of attention lately. One branch of research
focuses on achievable rate analyses, wherein the aim is, roughly
speaking, to study how performance depends on system param-
eters (such as those of the CSI errors) and to obtain implica-
tions for the design of channel estimation and CSI feedback
schemes. There are several works in this direction, where op-
timal CSI feedback bit scaling and optimal resource allocation
for downlink/uplink training are studied; see, e.g., [6]–[9]. How-
ever, it is generally very challenging to analyze the achievable
rates of such schemes under imperfect CSI. In fact, in order to
obtain a more tractable problem, many of the existing works
fix the linear precoder to be the relatively simple zero-forcing
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(ZF) beamformer and analyze the subsequent ergodic achiev-
able rate performance. This implicitly assumes that the system
is able to perform coding across a large number of differently
faded frames [6]–[9]. In comparison, there are far fewer re-
sults on the outage rate metric, which is motivated by the sce-
nario of one-frame coding over a slowly fading environment.
Most results in this direction apply only to the single-user mul-
tiple-input single-output (MISO) scenario; see, e.g., [10]–[12].
This is primarily due to the fact that the outage rate probability
is difficult to evaluate and does not have a closed-form expres-
sion in general.1

Another branch of research tackles the imperfect CSI
problem by optimizing the precoder design based on a pre-
scribed model of the CSI errors, rather than focusing on a fixed
precoder such as the ZF beamformer. Currently, the CSI error
models considered in the literature give rise to three different
design approaches. The first is the worst-case robust approach,
in which the CSI errors are assumed to lie within a bounded
set, and the goal is to design the precoder so that it is robust
against the worst-case QoS under the prescribed CSI error
model. Such an approach has attracted considerable attention
in recent years; some notable contributions include the robust
second-order cone program (SOCP) methods [14], [15], the
robust minimum-mean-square-error (MMSE) methods [15],
[16], and semidefinite relaxation [17]–[19].
The second approach assumes a probabilistic CSI error

model such as the Gaussian model and optimizes the pre-
coder design with respect to (w.r.t.) the average QoS under
that model. Such an average robust approach aims at good
on-average performance, as opposed to the good worst-case
performance sought by the worst-case robust approach. The
average robust approach often amounts to solving stochastic
optimization problems. For example, the very recent works
[20], [21] tackle the ergodic sum rate maximization problem
by stochastic gradient-type methods.
The third is the outage-based approach, whose design focus

is on constraining QoS outages under a probabilistic CSI
error model. In contrast to the average robust approach, this
approach seeks to provide “safe” performance, guaranteeing
a certain chance (often high) of success of QoS deliveries.
The outage-based approach is essential in delay-sensitive or
low-latency applications, but dealing with the outage proba-
bility appears to be hard, especially in the multiuser context.
Hence, it is of great interest to find approximate solutions
that are efficiently computable and can give good approxi-
mation accuracies. For instance, the works [22]–[24] employ
techniques from [25] (see [26], [27] for the latest results) to
develop convex restrictions, or safe tractable approximations,
of outage-based QoS constrained precoder optimization prob-
lems. There are also endeavors that study outage-based power
allocation methods under a fixed precoder structure [28]–[30].

A. Contributions

This paper considers outage-based precoder optimization.
Specifically, the scenario of interest is the multiuser MISO
downlink, and the Gaussian CSI error model is adopted. We
focus on a rate outage constrained problem, in which the

1The work [13] provides integral expressions of the rate outage probability
under Gaussian CSI errors and ZF beamforming. However, the results are too
complicated for practical precoder optimization.

goal is to optimize users’ signal covariance matrices for total
transmit power minimization while satisfying achievable rate
outage constraints. As in [22]–[24], our designs follow the
convex restriction philosophy. In other words, we formu-
late tractable convex optimization problems whose solutions
will automatically satisfy the rate outage specifications. It
should be noted that convex restriction methods do not require
Monte-Carlo (MC) sampling, say, for rate outage verification
or optimization purposes, as in some other concurrent works
[29]. In general, MC sampling will become prohibitively costly
under very low outage specifications, although it is also fair to
say that MC sampling allows one to consider non-restrictive
approximations, which may bring advantages in approximation
accuracies. We now summarize our contributions as follows.
1) We develop two novel convex restriction methods for the
aforementioned rate outage constrained problem using
probabilistic techniques. We show that these methods,
together with a traditional robust optimization-based
convex restriction method, can be viewed as imple-
menting different tractable analytic upper bounds on the
tail probability of a complex Gaussian quadratic form.
Furthermore, all three methods involve convex conic
optimization problems that can be efficiently solved by
an interior-point method (IPM). We use simulations to
demonstrate that the presented methods perform better
than the one developed in [22]–[24], in terms of both
computational complexity and solution quality.

2) We analyze the performance-complexity tradeoff of the
three presented convex restriction methods. The com-
plexity orders of the three methods, when implemented
by a generic IPM, are shown. We then analyze the relative
tightness of these methods. It should be emphasized that
the tightness analysis is particularly non-trivial from a
theoretical viewpoint. The insights obtained from our
analyses are in agreement with the simulation results.

B. Organization and Notations

The rest of this paper is organized as follows. The system
model and problem statement are given in Section II. Our
overall approach to developing convex restriction methods is
then discussed in Section III. In Section IV, the three convex
restriction methods are presented. The complexity and compar-
ative approximation performance of these three methods are
analyzed in Section V. Simulation results are then provided in
Section VI, and conclusions are drawn in Section VII.
We use boldfaced lowercase letters (e.g., ) to represent vec-

tors and boldfaced uppercase letters (e.g., ) to represent ma-
trices. and stand for the sets of -dimensional real and
complex vectors, respectively, while and stand for the
sets of real symmetric matrices and complex Hermitian
matrices, respectively. and denote the sets of non-
negative and positive real numbers, respectively. The super-
scripts ‘ ’ and ‘ ’ represent the transpose and (Hermitian)
conjugate transpose, respectively. For a matrix (or

), we write and to mean that is
positive semidefinite and positive definite, respectively. ,

, and denote the trace, maximum eigenvalue,
and minimium eigenvalue of , respectively. For convenience,
we define . stands for
the vector obtained by stacking the column vectors of .
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and (or simply and ) stand for the th entry of
and th entry of , respectively. For a complex , we use

and to denote its real and imaginary parts, re-
spectively. denotes the identity matrix. Given scalars

, we use to denote the di-
agonal matrix whose th diagonal entry is . , , and

represent the vector Euclidean norm, vector 1-norm, and
matrix Frobenius norm, respectively. , , and
denote the statistical expectation, probability function and expo-
nential function, respectively. We write if
is a circularly symmetric complex Gaussian random vector with
covariance matrix .

II. PROBLEM FORMULATION

We consider a multiuser MISO downlink scenario, wherein
a multi-antenna base station sends independent messages to
a number of single-antenna users over a quasi-static channel.
The system model adopted is standard and is briefly described
as follows. Let denote the number of antennae at the base
station, and the number of users. The received signal of
user , , is modeled as ,
where is the channel of user ; is
the transmit signal from the base station; is noise with
distribution . We assume a general vector-Gaussian
linear precoding strategy, where the transmit signal is given
by with denoting an in-
formation signal for user . Each user’s information signal is
independently vector-Gaussian encoded and is characterized
by , where denotes the signal
covariance matrix. On the user side, each user decodes only
its own information signal and treats other users’ information
signals as interference. Under the above system setup, the
achievable rate of user may be formulated as

(1)

The problem of interest here is to design the signal covari-
ance matrices via a rate constrained formulation. To
facilitate its description, let us assume for the time being that

are known at the base station; i.e., perfect CSI. The
rate constrained problem (under perfect CSI) is formulated as

(2a)

(2b)

(2c)

where each is a pre-specified constant and describes the
system’s requirement on user ’s information rate. As can be
seen above, the aim of the rate constrained problem is to find
a set of signal covariance matrices such that the system’s rate
requirements are met using the smallest possible total transmis-
sion power. The rate constrained problem is an important formu-
lation to study, as it offers insights into how other design formu-
lations can be handled. For instance, optimization solutions de-
rived for the rate constrained problem have been used as a basic
building block (in the form of a sub-solver) for tackling sum rate
maximization and max-min-fairness problems [31], [32].

To formulate the rate constrained problem under imperfect
CSI, it is essential to first describe the CSI error model. In the
imperfect CSI case, the actual channel of each user can be rep-
resented by

where is the presumed channel at the base station,
and is the channel error vector. We adopt the com-
monly used Gaussian channel error model; see, e.g., [22], [33],
[34]. Specifically, each channel error vector is assumed to have
a circularly symmetric complex Gaussian distribution, viz.

for some known error covariance matrix . Now, consider
the following probabilistically robust design formulation:

Rate Outage Constrained Problem: Given rate
requirements and maximum tolerable
outage probabilities , solve

(3a)

(3b)

(3c)

The above rate outage constrained problem emphasizes ser-
vice fidelity—a feasible solution to problem (3) guarantees that
under CSI errors, each user, say, user , can still reliably decode
its rate- message at least of the time. This
kind of design is desirable for, e.g., delay-sensitive applications,
where the system is requested to provide stable or low-outage
performance.
The rate outage constrained problem (3) is not known to

be computationally tractable, which is in sharp contrast to the
well-known fact that the perfect CSI-based rate constrained
problem (2) is efficiently solvable.2 The main challenge lies
in the rate outage probability constraints in (3b), which do
not admit simple closed-form expressions. In the sequel, we
will describe our approach for overcoming the computational
difficulties arising from problem (3).

III. PROPOSED CONVEX RESTRICTION APPROACH:
AN OVERVIEW

A. A Restriction Approach for Problem (3)

Our strategy for tackling the rate outage constrained problem
(3) is to pursue a convex restriction approach, also known as safe
tractable approximation in the chance constrained optimization
literature; see, e.g., [38]. The idea is to develop convex and ef-
ficiently computable upper bounds on the rate outage probabil-
ities in (3b). The key technical challenge can be abstracted as
follows:

2Specifically, problem (2) can be reformulated as a semidefinite program
(SDP), which is polynomial-time solvable [35], [36]; see also the classic con-
tributions [31], [37] related to this topic.
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TABLE I
SUMMARY OF THE CONVEX RESTRICTIONS OF THE RATE OUTAGE CONSTRAINED PROBLEM (3)

Challenge 1: Let be a standard
circularly symmetric complex Gaussian random vector
and be an arbitrary 3-tuple of
(deterministic) variables. Find an efficiently computable
convex function such that

(4)

Clearly, once a function having the properties stipulated in
Challenge 1 is found, we have the implication

(5)

(6)

Hence, the constraint (5) gives a convex restriction or safe ap-
proximation of the generally intractable probabilistic constraint
(6). Returning to the rate outage constrained problem (3), we
note that the rate outage constraints in (3b) can be expressed as

where and

(7a)

(7b)

(7c)

Thus, we see the relevance of Challenge 1 in tackling the rate
outage constrained problem (3). Table I summarizes all the
convex restrictions of problem (3) to be developed in later
sections. One noteworthy feature of the formulations in Table I
is that they are all conic programs with linear matrix inequality
(LMI) and second-order cone (SOC) constraints. As such,
they can be easily solved by off-the-shelf convex optimization
softwares, e.g., [39] and [40].

B. Beamforming as Rank-One Solutions

In formulating the rate outage constrained problem (3),
we follow an information theoretic (and arguably standard)
development, where the achievable rates to be optimized (cf.
(1)) are based on the assumption of vector-Gaussian encoded
transmit signals. In practice, one would naturally be inter-
ested in finding conveniently implementable physical-layer
transceiver schemes that can approach such rates. When the
solution to problem (3) satisfies the rank con-
dition for all , it is known that the achievable
rates can be attained using single-stream transmit beamforming
(for each user). However, if the solution does not satisfy the
rank condition, more sophisticated transceiver schemes would
be required, e.g., beamformed space-time coding, and more
recently, stochastic beamforming; see [44] and the references
therein. On the other hand, it is common in practice to fix the
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TABLE II
GAUSSIAN RANDOMIZATION PROCEDURE FOR PROBLEM (11)

transceiver scheme as single-stream beamforming for imple-
mentation simplicity. Let us consider the problem formulation
in such a scenario.
In beamforming, each user’s information signal takes

the form , where is the
beamforming vector and is user ’s data
stream. We may model as ,
and the beamforming achievable rates can be obtained
by substituting into
the achievable rate formula in (1). Using the fact that

, the rate outage
constrained problem under beamforming can be formulated as

(11a)

(11b)

(11c)

(11d)

Now, when we compare the beamforming problem (11) with the
rate outage constrained problem (3), we see that the latter can be
alternatively considered as a rank relaxation of the former—in
fact, this is exactly the idea of the well-known semidefinite re-
laxation (SDR) technique [45], [46]. This connection allows us
to apply results in SDR to handle the beamforming problem.
Specifically, it is immediate that a rank-one solution to the rank-
relaxed problem (3), if exists, is also a solution to the beam-
forming problem (11). Moreover, one can recover a rank-one
approximate solution to the beamforming problem (11) from
a higher rank solution to the rank-relaxed problem (3) via a
standard Gaussian randomization procedure [45]. Note that the
above two results also apply to the convex restriction counter-
parts of problems (3) and (11). Table II shows the Gaussian ran-
domization procedure for the beamforming problem, assuming
that one of the convex restriction formulations in Table I is em-
ployed.
While obtaining a rank-one beamforming solution is not

our main focus in this paper, quite surprisingly, we find via
simulations that the three convex restriction formulations in

Table I usually yield rank-one solutions (higher than 99% of
the tested cases). Thus, the obtained rank-one solutions can be
used directly as safe approximate solutions to the beamforming
problem (11) without the need of the Gaussian randomization
procedure. This suggests that beamforming could be an optimal
transceiver scheme for the convex restriction formulations in
Table I. We shall return to this point in Section VI. In the next
two sections, we will present the convex restriction methods
for tackling Challenge 1.

IV. DERIVATION OF CONVEX RESTRICTION METHODS

Since the convex restriction approach proposed in the pre-
vious section entails finding convex upper bounds on the viola-
tion probability , it is natural
to aim at finding the tightest one. However, even if such a bound
can be found, it may not be efficiently computable; cf. [47].
Hence, it is worthwhile to find bounds that are not necessarily
the tightest but are more amenable to computation. In the se-
quel, we will derive three different convex upper bounds on the
violation probability. The resulting convex restriction methods
differ in terms of both computational complexity and tightness.
In Section V and Section VI, we will compare these methods in
more detail via theoretical analysis and numerical simulations.

A. Method I: Sphere Bounding

It has long been known that the probabilistic constraint (6)
can be approximated in a conservative fashion using robust op-
timization techniques—see, e.g., [41]–[43]—although its appli-
cation to the multiuser MISO downlink scenario has not been
explicitly considered. Let us concisely review the idea here.
Consider an arbitrary set satisfying

. One can easily show that the following implication holds:

(12)

In particular, the worst-case robust constraint on the left-hand
side (LHS) of (12) is a safe approximation of the probabilistic
constraint (6). Note that in this approach, we have the freedom
to choose the set in principle. However, in order to have a
more tractable problem, it is desirable to choose so that the
condition can be easily verified and the
resulting worst-case robust constraint is efficiently computable.
Given these considerations, a common choice of is the ball

where

(13)

is the ball radius and is the inverse cumulative distribu-
tion function of the (central) Chi-square random variable with
degrees of freedom. It is routine to verify that

and hence the implication (12) holds. Moreover, using
the -lemma [48], it can be shown that the semi-infinite con-
straint on the LHS of (12) is equivalent to the following system
of LMIs:
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which is efficiently computable. This yields the following
convex restriction method for tackling the probabilistic con-
straint (6):

Method I (Sphere Bounding): The following feasibility
problem is a convex restriction of (6):

where .

By applying Method I to the rate outage constrained problem
(3), we obtain the convex restriction formulation (8) in Table I.
Such a formulation has several interesting connections. Firstly,
the sphere bounding formulation (8) takes exactly the same
form as that in another design context, namely, SDR for the
worst-case robust beamforming problem [17], which deals with
worst-case robust constraints rather than the outage constraints.
The notable difference between the two formulations is that the
worst-case robust SDR formulation pre-specifies the ball radii
’s, while the sphere bounding formulation (8) controls the
’s according to the requirements of the maximum tolerable

outage probabilities ’s. Secondly, it is worthwhile to mention
that two independent studies [18], [19] have shown that the
worst-case robust SDR formulation, or equivalently, the sphere
bounding formulation (8), is guaranteed to have rank-one so-
lutions under some mild conditions. Thirdly, although Method
I is widely known, we should point out a perhaps less known
interpretation that puts Method I under the framework of Chal-
lenge 1. Specifically, let be
the indicator of the set

which is defined as

if
,

otherwise.

Then, is convex (as a function) if and only if is convex (as
a set), and

i.e., is an upper bound on the violation probability (see (4)).
Moreover, if , then the worst-case ro-
bust constraint on the LHS of (12) is equivalent to the constraint

(see (5)). This shows that when is a ball, the
function defined above satisfies the requirements of Challenge
1, and Method I is simply an implementation of the convex re-
striction approach proposed in Section III-A.

B. Method II: Bernstein-Type Inequality

An alternative way of implementing the convex restriction
approach in Section III-A is to use large deviation techniques.
In this subsection, we propose the Bernstein-type inequality

method, which is based on the following large deviation in-
equality for complex Gaussian quadratic forms:

Lemma 1 Let , and let and be
given. Then, for any , we have

(14)

where is defined by

Lemma 1 can be established by extending the corresponding re-
sult in [49] for real Gaussian quadratic forms; see Appendix A
for the derivation. The inequality (14) is a so-called Bernstein-
type inequality,3 which bounds the probability that the quadratic
form of complex Gaussian random vari-
ables deviates from its mean . This explains the name of
the method.
Since is monotonically decreasing, its inverse mapping

is well defined. In particular, the Bern-
stein-type inequality (14) can be expressed as

which suggests us to take in Challenge
1. The resulting safe approximation (see (5)) is
then equivalent to

(15)
By introducing suitable slack variables, one can easily show that
the above constraint is equivalent to the following system of
LMI and SOC constraints:

Method II (Bernstein-Type Inequality): The following
feasibility problem is a convex restriction of (6):

Upon applying Method II to the rate outage constrained
problem (3), we obtain the convex restriction formulation (9) in
Table I. From a computational perspective, one would expect
that Method II is more costly to implement than Method I, as
the former involves a more complicated set of constraints. This
is indeed the case, as we shall see in Section V. On the other
hand, from an approximation quality perspective, our analysis
in Section V shows that Method II exhibits better performance
than Method I.

C. Method III: Decomposition-Based Large Deviation
Inequality

Although the convex restrictions derived using Methods I
and II can be formulated as semidefinite programs (SDPs) and

3Roughly speaking, a Bernstein-type inequality bounds the probability that a
sum of random variables deviates from its mean. The famous Markov, Cheby-
shev, and Chernoff inequalities can all be viewed as Bernstein-type inequalities.
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hence are polynomial-time solvable, they can still be expensive
to solve in practice if the size of the LMI constraint is large.
Thus, it is of interest to develop convex restrictions of (6)
that involve simpler convex conic constraints, such as SOC
constraints. In this subsection, we propose yet another convex
restriction method that has such a property. The method is
based on the following large deviation inequality for complex
Gaussian quadratic forms, which, to the best of our knowledge,
has not appeared in the literature before:

Lemma 2 Let , and let and be
given. Then, for any and , we have

for ,

for
(16)

where

Since the proof of Lemma 2 is quite technical, let us relegate it
to Appendix B and simply describe the ideas here. A key step
in the proof is to show that the quantity ,
which is a sum of dependent random variables, can be decom-
posed into two parts, each of which is a sum of certain inde-
pendent random variables. This allows us to bound the moment
generating function of each part separately using standard argu-
ments. By stitching the resulting bounds together in a judicious
manner, we obtain the desired inequality (16). We remark that
the idea of decomposing a sum of dependent random variables
into sums of independent random variables has been used exten-
sively in probability theory; see, e.g., [27], [50]. Nevertheless,
as mentioned above, the inequality (16) appears to be new.
To derive a convex restriction of (6) using Lemma 2, we set

and choose to be the solution to the quadratic
equation that satisfies .
Note that such a must exist, as when

and is monotonically increasing
on . Moreover, the choice of and the definition of
imply that . Now, by Lemma 2, the probabilistic
constraint (6) will be satisfied if ,
or equivalently, . On the other hand, if

, then Lemma 2 yields

which implies that the probabilistic constraint (6) will still be
satisfied. Thus, we have

which suggests that we can take
in Challenge 1 (see (4)).

The resulting safe approximation (see (5)) can
then be expressed as

(17)

Using the definition of , it is not hard to show that (17) can
be expressed as a system of SOC constraints. In particular, we
obtain the following convex restriction method for tackling
Challenge 1:

Method III (Decomposition-Based Large Deviation
Inequality): Let be such that ,
where . Then, the following feasibility
problem is a convex restriction of (6):

Since the above convex restriction contains only SOC con-
straints, it can be solved more efficiently than the convex re-
strictions obtained using Methods I and II; see Section V for
details. By applying Method III to the rate outage constrained
problem (3), we obtain the convex restriction formulation (10)
in Table I.

V. PERFORMANCE ANALYSES OF THE PROPOSED CONVEX
RESTRICTION METHODS

In the previous section, we present three tractable convex re-
striction formulations of the rate outage constrained problem
(3). This naturally leads to the question about the relative perfor-
mance of these formulations. In the following subsections, we
address this question by comparing their computational com-
plexities, as well as their tightness in approximating the orig-
inal rate outage constrained problem (3). As will be seen from
our analyses, the three formulations exhibit a tradeoff between
computational efficiency and approximation quality.

A. Complexity Analysis

Recall that the three convex restriction formulations (8), (9),
and (10) involve only LMI and SOC constraints. As such, they
can all be solved by a standard IPM; see, e.g., [48, Lecture 6].
This suggests that the worst-case runtime of such a method can
be used to compare the computational complexities of the dif-
ferent formulations. To set the stage for comparison, let us re-
view the basic elements in the complexity analysis of IPMs;
see [48, Lecture 6] for details. Consider the following conic
program:

(18a)

(18b)

(18c)

Here, for and ;
and for ; ;

is the set of real positive semidefinite matrices;
is the second-order cone of dimension ; i.e.,

. Note that the

linear constraint is equivalent to the LMI con-
straint and hence can be put into the form (18b).
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TABLE III
COMPLEXITY ANALYSIS OF THE CONVEX RESTRICTION FORMULATIONS IN TABLE I

The complexity of a generic IPM for solving (18) consists of
two parts:
1) Iteration Complexity: Given an , the number of
iterations required to reach an -optimal solution to (18)
is on the order of , where

is the so-called barrier parameter

associated with the cone .
Roughly speaking, the barrier parameter measures
the geometric complexity of the conic constraints in (18).

2) Per-Iteration Computation Cost: In each iteration, a search
direction is found by solving a system of linear equations
in unknowns. The computation cost is dominated by (i)
the formation of the coefficient matrix of the linear
system, and (ii) the factorization of . The cost of forming
is on the order of

while the cost of factorizing is on the order of
. Hence, the total computation cost per iteration is on the

order of .
By combining the above two parts, it follows that the complexity
of a generic IPM for solving (18) is on the order of

.
Armed with the above results, we are now ready to analyze

the complexities of the three convex restriction formulations (8),
(9) and (10). First, note that through the transformation

we can convert the complex-valued conic programs (8), (9) and
(10) into equivalent real-valued conic programs of the form
(18); see, e.g., [51]. For the sake of simplicity, let us assume
that the decision variables in (8), (9), and (10) are real-valued.
Now, consider formulation (8), which has LMI constraints
of size , LMI constraints of size , and LMI
constraints of size 1. Moreover, for all three formulations (8),
(9), and (10), the number of decision variables is on the order
of . Hence, the complexity of a generic IPM for solving
(8) is on the order of the quantity shown on the first row of
Table III. In a similar fashion, we can determine the complexi-
ties of the formulations (9) and (10), and the results are shown
on the second and third row of Table III, respectively. From
Table III, it is straightforward to show that Method III has the
lowest worst-case complexity, followed by Method I and then

Method II.4 This is also consistent with our simulation results,
as we shall see in Section VI.

B. Relative Tightness Analysis

Given the conservative nature of the formulations in Table I,
an immediate question is how well they approximate the orig-
inal rate outage constrained problem (3). While this remains a
formidable challenge even in the field of chance constrained op-
timization, in this subsection we tackle the more manageable
task of analyzing the relative tightness of the different formula-
tions. As we shall see, Method II generally yields the tightest ap-
proximation of problem (3) among the three presented methods.
1) Method II vs. Method III: Let us first compare the convex

restriction formulations (9) and (10) derived using Methods II
and III, respectively. The following result shows that as long as
the outage probabilities are sufficiently small, every
feasible solution to (10) is feasible for (9). Thus, from a power
minimization perspective, the performance of the convex re-
striction formulation (9) will be no worse than that of (10).

Theorem 1 Consider the convex restriction formulations (9)
and (10). Suppose that

(19)

where , for . Then, every feasible
solution to (10) is feasible for (9).

The proof of Theorem 1 can be found in Appendix C. We
remark that besides condition (19), there could be other condi-
tions under which the conclusion of Theorem 1 holds. Indeed,
as will be shown in Section VI, the performance of the convex
restriction formulation (9) can be considerably better than that
of (10), even though condition (19) is not satisfied.
2) Method I vs. Method II: Let us now turn our attention to

the convex restriction formulations (8) and (9) derived using
Methods I and II, respectively. The comparative analysis of
these two formulations is much more involved than that of the
formulations (9) and (10) presented above, in part because the
structure of the constraints in (8) is quite different from that in
(9). In particular, we are only able to guarantee that the perfor-
mance of (9) is no worse than that of (8) under a stronger set of
conditions:

4As an illustration, consider the simple case where and
. For large , the dominating terms in the complexities

of Methods I to III are , , and
, respectively.
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Theorem 2 Consider the convex restriction formulations (8)
and (9). Let be a feasible solution to (8), with

given by (7). Suppose that

(20)

and

(21)

where , for . Then, there exist
such that is a feasible solution

to (9).

Theorem 2 is proven in Appendix D. Compared with The-
orem 1, Theorem 2 requires not only the violation probabilities

to be small but also the eigenvalue condition (20)
on the solution . Nevertheless, such a condition has a
nice interpretation in the context of the rate outage constrained
problem (3). Indeed, the following result implies that the con-
dition (20) can be ensured if the total transmission power asso-
ciated with an optimal solution to (8) is not concentrated on a
few users:

Proposition 1 Let be given transmit signal covariance
matrices, and define via (7). Furthermore, let

be the transmission power of user , for .
Consider now a fixed user , and let be its
channel error covariance matrix. Suppose that and

(22)
Then, we have .

We relegate the proof to Appendix E.
We emphasize that the conditions (20) and (21) in Theorem

2 are by no means necessary for the convex restriction formu-
lation (9) to outperform the formulation (8). In fact, our simu-
lation results in Section VI suggest that the former formulation
performs much better than the latter in fairly general settings.

VI. SIMULATION RESULTS

This section presents simulation results to illustrate the per-
formance of the three convex restriction methods for handling
the rate outage constrained problem (3). Let us first describe
the general simulation setting. We assume that the users’ noise
powers are identical and given by . We
fix , unless specified. The outage specifications for all
users are also set the same; i.e., . In each
simulation trial, the presumed channels are randomly
and independently generated according to the standard circu-
larly symmetric complex Gaussian distribution. The convex
restriction formulations listed in Table I are solved by the conic
optimization solver [40], implemented through the
parser software [39].

Fig. 1. Feasibility and transmit power performance of the various methods.
; ; spatially i.i.d. Gaussian CSI errors with .

A. Simulation Example 1

We start with the simple case of ; i.e., three
antennae at the base station, and three users. The CSI errors are
spatially i.i.d. and have standard circularly symmetric complex
Gaussian distributions; i.e., , where

denotes the error variance. We set .
The outage probability requirement is set to ,
which is equivalent to having a 90% or higher chance
of satisfying the rate requirements. Recall from (7c) that

, which is the signal-to-interference-and-noise
ratio (SINR) requirement of user for ; cf.
the term in (1). We set

. In addition to the presented methods, we
evaluate the performance of the probabilistic SOCP method
in [22], which considers transmit beamforming structures
and applies a different chance constrained optimization tech-
nique. Also, for reference purposes, we run a conventional
perfect-CSI-based SINR constrained design (e.g., [31]), where
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TABLE IV
RATIOS OF RANK-ONE SOLUTIONS

Fig. 2. Average runtimes of the various methods.

the presumed channels are used as if they were perfect
CSI. The aforementioned method will be called the “non-robust
method” for convenience. Both methods are implemented by

through .
We first investigate the conservatism of the various methods

by evaluating their feasibility rates; i.e., the chance of getting
a feasible solution to the rate outage constrained problem (3)
in 500 realizations of the presumed channels . The ob-
tained result is shown in Fig. 1(a), where the feasibility rates
of the various methods are plotted against the SINR require-
ments . Remarkably, the three presented methods yield fea-
sibility rates much higher than that of the probabilistic SOCP
method. In particular, Method II has the best feasibility rate per-
formance, while the feasibility rates of Methods I and III are
a close match: For , Method I slightly outperforms
Method III; for , we see the converse.
In addition to the feasibility rate, it is important to examine

the transmit power consumptions of the design solutions of-
fered by the various methods. Fig. 1(b) shows the result. It is
based on channel realizations for which all methods yield fea-
sible solutions at ; 181 such realizations were found
out of 500 realizations (the same realizations used in the last
result in Fig. 1(a)). As can be seen from Fig. 1(b), Method II
yields the best average transmit power performance, followed
byMethods I and III (with Method I exhibiting noticeably better
performance for ), and then the probabilistic SOCP
method in [22]. As a reference, we also plot the transmit powers
of the non-robust method in the figure, so as to get an idea
of how much additional transmit power would be needed for
the robust methods to accommodate the outage specification.
We see that for , the transmit power difference be-

tween a proposed method and the non-robust method is about
1.5 dB, which is reasonable especially when compared to the
probabilistic SOCP method. The gaps gradually widen other-
wise. This seems to indicate that imperfect CSI effects are more
difficult to cope with when we demand higher SINRs (or rates).
Now, let us consider the computation times of the various

methods. The result is illustrated in Fig. 2. To obtain this result,
we use a desktop PCwith 2.13 GHzCPU and 3GBRAM.More-
over, instead of calling the convenient parser , we use direct

implementations of all the methods, done by careful
manual problem transformation and programming. The reason
of doing so is to bypass parsing overheads, which may result
in unfair runtime comparisons. From the figure, we see that the
runtime ranking, from fast to slow, is: Method III, Method I,
Method II, and the probabilistic SOCP method. Interestingly
and coincidentally, the runtime ranking of the proposedmethods
is exactly the opposite of their performance ranking obtained
from previous simulation results. The performance and runtime
rankings are also consistent with our analysis results presented
in Section V.
As the last result in this example, we numerically inspect

the rank-one beamforming solution issue as discussed in
Section III-B. Recall that for instances that have rank-one
solutions, beamforming solution generation is simple (simple
rank-one decomposition, no Gaussian randomization). We
examine how frequent the formulations in Table I can yield
rank-one solutions. Numerically, we declare that
is of rank one if the following conditions hold:

Table IV shows the result. In the entries that contain a fraction,
the denominator counts the number of realizations for which the
formulation is feasible, while the numerator counts the number
of realizations for which the formulation yields a rank-one so-
lution. Again, 500 channel realizations are used. Curiously, al-
most all the entries in Table IV indicate rank-one solution all
the time. We encounter only three non-rank-one instances out
of 480 for the setting of , , Method II. We
therefore conclude, on the basis of numerical evidence, that oc-
currence of high-rank solutions is very rare for the unicast rate
outage constrained problem considered here.

B. Simulation Example 2

This example considers the following more challenging set-
ting: and ; spatially correlated CSI errors with

, where

; (or 99% rate satisfaction probability).
We do not run the probabilistic SOCP method in [22], since, as
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Fig. 3. Performance under spatially correlated Gaussian CSI errors. ;
; ; .

seen in Fig. 2, it is computationally very demanding for large
problem sizes. The same simulation method in Simulation Ex-
ample 1 is used to produce the results here. Fig. 3 shows the
resulting feasible rates and average transmit powers. A minor
simulation aspect with the transmit power performance plot in
Fig. 3(b) is that we choose as the pick-up point
of feasible channel realizations of all the methods. We can see
that, once again, Method II offers superior performance over the
others. Another observation is that Method III manages to out-
perform Method I this time.

VII. CONCLUSION

In this paper, we considered the multiuser MISO downlink
scenario with Gaussian CSI errors and studied a rate outage
constrained optimization problem. Such a problem contains rate
outage probability constraints, which are difficult to process
computationally. To tackle these constraints, we presented three

methods—namely, sphere bounding, Bernstein-type inequality,
and decomposition-based large deviation inequality—for
obtaining efficiently computable convex restrictions of the
probabilistic constraints at hand. We then carried out perfor-
mance analyses to study the complexity and relative tightness
of these methods. Our simulation results indicated that all
three methods provide good approximations to the rate outage
constrained problem, and they significantly improve upon
the existing state of the art in terms of both computational
complexity and solution quality. In closing, we remark that the
rate outage constrained formulation considered in this paper
can be used to tackle other problems, such as the rate outage
constrained max-min-fairness formulation and achievable rate
region characterization. In the companion technical report [52],
we discuss some of these formulations in detail and provide
simulation results on the performance of the three presented
methods when applied to those formulations.

APPENDIX

A. Proof of Lemma 1

The proof is based on the following result:

Fact 1 (cf. [49, Lemma 0.2]) Let be a standard
real Gaussian random vector, and let and be
given. Then, for any , we have

where is defined by

To prove Lemma 1, observe that since , ,
and , we have

It is straightforward to verify that
, and that

Thus, by invoking Fact 1, we obtain the desired result.

B. Proof of Lemma 2

The proof consists of four steps.
Step 1: Decomposition Into Independent Parts: Let

be the spectral decomposition of , where
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and are the eigenvalues
of . Since and is unitary, we have

. Thus, we can write

Now, observe that both

are sums of independent random variables. Moreover, for each
, and are i.i.d. real Gaussian

random variables with mean zero and variance . This
implies that

(23)

(24)

Step 2: Establishing a Preliminary Inequality: Let
be arbitrary. We claim that

(25)

To prove (25), let and .
Consider the following cases:
Case I: . It is easy to verify that .

Furthermore, we have

for all . It follows that for all .
Case II: . Observe that if and

only if . This, together with the fact that
, implies that for all .

By combining Cases I and II above, we obtain the inequality
(25).
Step 3: Bounding the Moment Generating Function of

: Let be such that , and
let be arbitrary. Suppose that satisfies

for . Using the fact
that , we compute

(26)

(27)

(28)

where (26) follows from the convexity of , (27)
follows from the independence of the random variables in
and , and (28) is due to (23)–(25). By setting

we conclude from (28) that

(29)

Step 4: Deriving the Large Deviation Inequality: Using
Markov’s inequality and (29), we have, for any ,

Upon optimizing the right-hand side of the above inequality and
noting that and , we obtain (16).
This completes the proof of Lemma 2.

C. Proof of Theorem 1

Let be a feasible solution to (10), with
given by (7). Without loss of generality, we

may assume that and for
. Then, we have

Comparing the above inequality with (15), we see that
can be extended to a feasible solution to (9) if
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or equivalently,

(30)

Using the fact that and , as
well as the inequality , which is valid
for any , we obtain the following chain of implications:

(31)

Using (7), we can write , where . By
substituting this into (31) and using the fact that

, we see that a sufficient condition for (31) to hold
is

Upon rearranging the above inequality, we obtain the sufficient
condition (19).

D. Proof of Theorem 2

Consider a fixed . For notational simplicity,
let us drop the subscripts and write , , ,

, , and . Since is
feasible for (8), we have

(32)

Let be the spectral decomposition of ,
where are the orthonormal eigenvectors of
and are the associated eigenvalues. Define

Then, (32) implies that

or equivalently,

(33)

Upon summing the inequalities in (33), we obtain the following
chain of implications:

(34)

(35)

where (34) follows from

, and (35) follows from , which is a consequence
of (32).
To proceed, we assume that is sufficiently small,

so that

(36)

(recall from (13) that increases as decreases, and that
as ). Then, (35) implies that

(37)

By comparing (37) with (15), we see that is feasible
for (9) if

(38)

(39)

where (38) follows from the inequality
, which is valid for any , and (39) follows from the

definition of . Now, by recalling (7) and the definition of , we
have

(40)

On the other hand, by (32), we know that and
. This yields

(41)

It then follows from (40) and (41) that

(42)
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Using condition (20), we bound

where . In particular, we have

(43)

Hence, as long as satisfies condition (21) (which is equivalent
to satisfying both conditions (36) and (43)), the triplet
is feasible for (9). This completes the proof.

E. Proof of Proposition 1

We proceed in three steps.
Step 1: Bounding : We first compute

(44)

(45)

(46)

where (44) follows from the inequality ,
which is valid for any ; (45) follows from the inequality

, which is
valid for any and ; (46) is implied by (22).
Hence, by definition of , we have

(47)

Step 2: Bounding : Next, we bound

(48)

(49)

where (48) follows from the fact that for ;
(49) follows from the inequality

. Since , this
yields

(50)

Step 3: Completing the Proof: Our assumption (22),
together with the inequalities (47) and (50), implies that

. This completes the proof.
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