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ABSTRACT Heterogeneous network (HetNet), employingmassivemultiple-input multiple-output (MIMO),
has been recognized as a promising technique to enhance network capacity, and to improve energy efficiency
for the fifth generation of wireless communications. However, most existing schemes for coordinated
beamforming (CoBF) for a massive MIMO HetNet unrealistically assume the availability of perfect channel
state information (CSI) on one hand, and cascade of each antenna with a distinct radio-frequency chain in
massive MIMO is neither power nor cost-efficient on the other hand. In this paper, we consider a massive
MIMO-enabled HetNet framework, consisting of one macrocell base station (MBS) equipped with an analog
beamformer, followed by a digital beamformer, and one femtocell base station (FBS) equipped with a digital
beamformer. In the presence of Gaussian CSI errors, we propose a robust hybrid CoBF (HyCoBF) design,
including an analog beamforming design for MBS, and a digital CoBF design for both MBS and FBS.
To this end, an outage probability-constrained robust HyCoBF problem is formulated by minimizing the
total transmit power. The analog beamforming mechanism at MBS is a newly devised low-complexity beam
selection scheme by selecting analog beams from a discrete Fourier transform matrix codebook. Then,
a conservative approximate CoBF solution is obtained via semidefinite relaxation and an extended Bernstein-
type inequality. Furthermore, a distributed implementation for the obtained CoBF solution using alternating
direction method of multipliers is proposed. Finally, numerical simulations are provided to demonstrate the
efficacy of the proposed robust HyCoBF algorithm.

INDEX TERMS Heterogeneous network (HetNet), massive MIMO, hybrid coordinated beamform-
ing (HyCoBF), semidefinite relaxation (SDR), alternating direction method of multipliers (ADMM).

I. INTRODUCTION
One primary objective of fifth generation (5G) of wireless
communications is to support the ever-increasing network
services, including Mobile Internet, Internet of Things (IoT)
and Vehicular Ad-hoc Network (VANET). To meet various
demands in 5G wireless communication systems (e.g., high
data rates, extremely low latency and high energy efficiency),
a 5G wireless network may employ advanced deployments,
such as massive multiple-input multiple-output (MIMO)
and superdense heterogeneous deployment of cells [1], [2].
In a massive MIMO enabled 5G heterogeneous net-
work (HetNet), the macrocell base station (MBS) can

be equipped with hundreds of antennas to simultaneously
serve tens of user equipments (UEs), and the remain-
ing degrees of freedom (DoF) of massive MIMO can
be used to mitigate the inter-tier interference. Moreover,
ultra dense femtocell base station (FBS) deployment can
effectively increase network capacity by more than two
order of magnitude and offload the wireless data from
the MBS [3]. Besides, millimeter wave (mmWave) with
short wavelength enables massive MIMO to pack more
antennas into highly directional footprint and to readily
adjust beamforming [4], making massive MIMO practically
feasible.
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Although massive MIMO enabled HetNet is a promis-
ing technique for meeting 5G system requirements, there
are still quite some unresolved challenges [2]. Firstly, radio
resource management (RRM) for HetNet plays a crucial
role in achieving the desired system performance. In other
words, all the available radio resources (e.g., bandwidth,
transmission power, and antennas) ought to bemaximally and
efficiently exploited, and meanwhile the targeted quality of
service (QoS) for active users must be guaranteed with a min-
imum amount of radio resources, by means of advanced inter-
cell/tier and intra-cell interference management schemes.
In addition, the deployment of reliable backhaul networks
with the designed resource management schemes is also a
very important issue. Secondly, it may not be realistic to
assume the availability of instantaneous channel state infor-
mation (CSI) of each user in massive MIMO enabled HetNet.
Particularly, in a multicell setup, pilot contamination
imposes a fundamental performance bottleneck for the mas-
sive MIMO systems [5]. Thirdly, 3GPP Long-Term Evo-
lution (LTE) Release 13 has specified that each base
station (BS) can have at most 64 antennas and at most 8
radio frequency (RF) chains [6], because deploying many RF
chains in massive MIMO may not be a practical solution due
to expensive hardware cost and low energy efficiency.

A judicious approach for reducing hardware cost and train-
ing overhead is hybrid beamforming (HyBF), constituted by
analog beamforming in the RF domain, and digital beam-
forming (with a much smaller dimension than the former)
in the baseband domain, having received enormous attention
in recent years [7]. In fact, it has been shown that HyBF
design, depending on available CSI (instantaneous versus sta-
tistical CSI), beamformer structure (full-connected, partial-
connected, or switched), and carrier frequency (centimeter
wave versus millimeter wave), can achieve the same perfor-
mance as the fully digital (FD) design, when the number of
RF chains is twice more than that of data streams [8], [9].

Assuming that full instantaneous CSI is available, some
HyBF designs have been proposed, in the context of both
full-connected and partial-connected structures for mmWave
systems [9]–[13]. In [14] and [15], two-stage hybrid pre-
coding for frequency-division duplex (FDD) massive MIMO
systems, where the analog precoder is only adaptive to
channel statistics and the digital precoder is designed by
effective low-dimensional channel. Furthermore, to reduce
the number of required RF chains, the so-called beamspace
MIMO and the switched-beam selection have been recently
proposed in mmWave/massive MIMO systems [16]–[20].
By employing the discrete lens array (DLA) (which induces
negligible performance loss), a conventional spatial chan-
nel can be transformed to a beamspace channel so as to
capture the channel sparsity at mmWave frequencies. Since
each beam corresponds to a single RF chain in beamspace
MIMO [17], [18], only a small number of beams can be
selected according to the sparse beamspace channel for
reduction of required RF chains. For switched-beam schemes
(e.g., Butler method [21]), a fixed number of beams are

generated and pointed to different predetermined directions
to cover the whole cell [19], [20].

In view of significant system throughput gains over the
conventional single-cell design and a limited amount of infor-
mation exchange (e.g., scheduling, power allocation) among
the coordinated BSs, the multicell coordinated beamforming
(CoBF) has been studied extensively both in academia and
industry recently [22], [23]. Nevertheless, CSI is never per-
fectly known and the CSI uncertainty may vary from one
BS to another, depending on the bandwidth of the network
backhaul. To tackle CSI errors, two major types of robust
transmit designs have been studied. One is the worst-case
robust design, where CSI errors are constrained in a bounded
set, and the other is the outage-constrained robust design,
where CSI errors are modeled in a probabilistic fashion. The
main bottleneck for the latter consists in intractable or even
no explicit expression for the probabilistic constraint [24].

When an explicit expression exists for the probabilistic
constraint, CoBF algorithms have been proposed such as
using successive convex approximation (SCA) in [25] and
using block successive upper boundminimization in [26]. For
the case of no explicit expression for the probabilistic con-
straint, Monte Carlo sampling based approaches [27]–[29]
have been proposed by generating channel realizations fol-
lowing the distribution of the channel uncertainty to obtain an
approximate outage constraint. However, its computational
complexity is high and its performance is sensitive to the
accuracy of channel distribution information in some scenar-
ios. The second approach is to find a restrictive (i.e., con-
servative) convex approximation to each outage constraint in
terms of signal-to-interference-plus-noise ratio (SINR) [30],
thereby obtaining an approximate CoBF solution with good
performance and low complexity. Moreover, [31], [32] also
studied the same problem for more specific scenarios. On the
other hand, the distributed CoBF algorithm design has also
been studied for practical applications [25], where multiple-
input single-output (MISO) interference channel (IFC) is
considered, but the corresponding design for interference
broadacst channel (IBC) within the HetNet scenario still
remains an open problem.

In this paper, we consider the hybrid coordinated beam-
forming (HyCoBF) within the HetNet scenario, as illustrated
in Figure 1, where a large-scale antenna MBS equipped with
an analog beamformer cascaded with a digital beamformer,
and a conventional multiple-antenna FBS equipped with a
digital beamformer, serve their respective users. The pro-
posed HyCoBF design includes a beam selection algorithm
for the analog beamformer at MBS and a digital CoBF
design for both MBS and FBS. To the best of our knowl-
edge, there is no existing work, that studies the HyCoBF
in massive MIMO enabled HetNet such that the HyCoBF
design is robust against CSI uncertainty under the preas-
signed outage probability constraints. We formulate such
problem as a total power minimization problem, subject to
preassigned users’ outage probability constraints. However,
this problem is almost intractable due to no closed-form
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expressions for probabilistic outage constraints (induced by
the CSI uncertainty), and due to a high-dimensional combi-
natorial optimization problem involved in the analog beam
selection problem [24].

Because none of the existing beam search algorithms, such
as greedy-pursuit algorithms [18], sum-rate-maximization
based beam allocation algorithms (for a switched-beam based
massive MIMO system) [19], and interference-aware (IA)
beam selection methods (that consider multiuser interfer-
ence) [17], can be applied due to complicated interference
links involved in HetNet. Motivated by a well-known detec-
tion scheme for seismic events in geophysical signal pro-
cessing, called the single most likely replacement (SMLR)
detector [33], the proposed low-complexity analog beam
selection algorithm tries to search for the best subset from the
columns of a discrete Fourier transform (DFT) matrix code-
book by enhancing the total channel power of macrocell user
equipments (MUEs) and reducing the interference channel
power of femtocell user equipments (FUEs) in the meantime.

With the designed analog beamformer applied, the power
minimization problem (only for the digital CoBF design)
is still hard to solve, due to no closed-form expressions
for the probabilistic constraints. By virtue of semidefi-
nite relaxation (SDR) technique, we reformulate the digital
CoBF problem into a semidefinite program (SDP), where
an extended Bernstein-type inequality is derived for finding
conservative convex approximations to the original noncon-
vex probabilistic constraints. Furthermore, we develop a dis-
tributed implementation for the obtained digital CoBF by the
alternating direction method of multipliers (ADMM) [34].
Finally, some numerical simulations are presented to demon-
strate the efficacy of the proposed HyCoBF design.

The rest of this paper is organized as follows.
In Section II, we present the system model and the problem
formulation. The HyCoBF design (for both analog beam
selection algorithm and robust digital CoBF) is proposed in
Section III. In Section IV, we present a distributed implemen-
tation for the robust digital CoBF using ADMM. Simulation
results are then provided in Section V to demonstrate the
efficacy of the proposed HyCoBF design. Finally, some
conclusions are drawn in Section VI.
Notation: Rn, Rn

+ (Rn
++, Rn

−), Sn (Sn+), Cn, Hn and
Cm×n stand for the sets of n-dimensional real vectors, non-
negative (positive, non-positive) real n-vectors, real symmet-
ric (positive semidefinite) matrices, complex n-vectors, n×n
Hermitian matrices andm×n complex matrices, respectively.
In and e(i), respectively, denote the n × n identity matrix,
and the i-th unit column vector of proper dimension. The
superscripts ‘T ’ and ‘H ’ represent the matrix transpose and
conjugate transpose, respectively. ‖ · ‖ and ‖ · ‖F denote the
vector Euclidean norm and matrix Frobenius norm, respec-
tively. The trace of matrix A is denoted as Tr(A). sup (C),
A† and λmax(A) denote the supremum of a nonempty set C ,
the pseudoinverse and the maximum eigenvalue of matrix A.
A � 0 means that A is a positive semidefinite (PSD) matrix
and A1/2

� 0 is a square root of A; Re{·} and Im{·} represent

real and imaginary parts of the argument; A \ B denotes the
set by eliminating the elements of A ∩ B from A; IK =
{1, . . . ,K } and {ak} ({wk}, {Wk}) denotes the set of all scalars
ak (vectorswk , matricesWk ) with the subscript k covering all
the admissible integers that are defined in the context; CN (·)
denotes the complex Gaussian distribution; ln(·), Pr{·} and
E{·} stand for the natural log function, probability function,
and expectation operator, respectively.

FIGURE 1. Illustration of a two-tier heterogeneous network, where the
MBS employs large-scale antennas and the FBS employs conventional
multiple antennas.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider the time-division duplex (TDD) downlink mul-
tiuser transmission with full spectrum reuse in HetNet, which
consists of an MBS equipped with large-scale NMBS anten-
nas, an FBS equipped with NFBS antennas, K single-antenna
MUEs and J single-antenna FUEs, as illustrated in Fig. 1.
Instead of adopting FD beamforming, for which each antenna
is connectedwith one distinct RF chain, we consider HyCoBF
at MBS with NRF RF chains, where NMBS � NRF ≥ K .
Specifically, the HyBF vector for MUE k at the MBS is given
by Vwk ∈ CNMBS , where V ∈ CNMBS×NRF and wk ∈ CNRF

denote the analog beamformingmatrix and digital beamform-
ing vector, respectively.

Typically, the analog beamformer is implemented using a
phase-shifter network with constant modulus for each entry
of V. In contrast to the full-connected HyBF structure, the
HyBF with a selection structure is more economical and
energy efficient [19] and hence is considered in this work. The
analog beamformer can be implemented using a RF switch,
followed by a fixed DFT beamformer using RF phase-shifter
network [15]. Let F ∈ CNMBS×NMBS be the NMBS-point DFT
matrix, and

B , {b ∈ {1, . . . ,NMBS}
NRF | bi 6= bj, ∀i 6= j}, (1)

where bi denotes the ith component of b, collects all per-
mutations of any subset of {1, . . . ,NMBS} with cardinality
NRF. The selected analog beamforming matrix V and the RF
switch matrix 3(b) consisting of NRF unit column vectors of
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dimension NMBS can then be conveniently expressed as

3(b) = [e(b1), . . . , e(bNRF )], b ∈ B,
V = F3(b) ∈ CNMBS×NRF , (2)

which contains NRF distinct columns of F. Let sMk and sFj
denote the transmit signals intended for MUE k and FUE j,
respectively.Without loss of generality (w.l.o.g.), assume that
E{|sFj|2} = 1 and E{|sMk |2} = 1. Then, the received signal
of MUE k is given by

yMk = hHMMkVwksMk +
K∑

l=1,l 6=k

hHMMkVwlsMl

+

J∑
j=1

hHFMkujsFj + nMk , (3)

where hMMk ∈ CNMBS and hFMk ∈ CNFBS , respectively,
denote the channel vector from MBS and FBS to MUE k ,
nMk ∼ CN (0, σ 2

Mk ) is the additive white Gaussian noise
(AWGN) at MUE k with noise variance σ 2

Mk > 0, and uj ∈
CNFBS is the beamforming vector for FUE j at FBS. Similarly,
the received signal of FUE j is given by

yFj = hHFFjujsFj +
J∑

m=1,m6=j

hHFFjumsFm

+

K∑
k=1

hHMFjVwksMk + nFj, (4)

where hMFj ∈ CNMBS and hFFj ∈ CNFBS , respectively,
denote the channel vectors fromMBS and FBS to FUE j, and
nFj ∼ CN (0, σ 2

Fj) is the AWGN at FUE j. Then, the SINRs of
MUE k and FUE j can be expressed as

SINRMk =
|hHMMkVwk |

2

K∑
l=1,l 6=k

|hHMMkVwl |
2 +

J∑
j=1
|hHFMkuj|

2 + σ 2
Mk

,

(5a)

SINRFj =
|hHFFjuj|

2

J∑
m=1,m 6=j

|hHFFjum|
2 +

K∑
k=1
|hHMFjVwk |

2 + σ 2
Fj

.

(5b)

B. PROBLEM FORMULATION
Due to the channel reciprocity of TDD systems, the downlink
CSI can be estimated1 from the uplink pilot symbols trans-
mitted from the users [35]. However, besides the CSI esti-
mation error, some more CSI uncertainties are also inevitable
due to delays in CSI acquisition, partial CSI acquisition and
hardware impairment, etc. With regard to imperfect CSI, the
actual channels of MUEs and FUEs can be modeled as [36]

hMMk = ĥMMk + eMMk , hMFj = ĥMFj + eMFj, (6a)

hFFj = ĥFFj + eFFj, hFMk = ĥFMk + eFMk , (6b)

where ĥMMk , ĥMFj ∈ CNMBS , and ĥFFj, ĥFMk ∈ CNFBS are the
given channel estimates and known to MBS and FBS, and

CSI errors eMMk , eMFj ∈ CNMBS and eFFj, eFMk ∈ CNFBS are
modeled as

eMMk ∼ CN (0,CMMk) , eMFj ∼ CN
(
0,CMFj

)
, (7a)

eFFj ∼ CN
(
0,CFFj

)
, eFMk ∼ CN (0,CFMk) , (7b)

in which all CMMk and CFFj are positive definite. Thus, the
outage constrained robust HyCoBF design problem can be
formulated as

min
V,{wk },{uj}

∑
k∈IK

‖Vwk‖
2
+

∑
j∈IJ

‖uj‖2 (8a)

s.t. Pr(SINRMk ≥ γMk ) ≥ 1− ρMk , ∀k ∈ IK , (8b)

Pr(SINRFj ≥ γFj) ≥ 1− ρFj, ∀j ∈ IJ , (8c)

V ∈ {F3(b) | b ∈ B} (cf. (2)), (8d)

where γMk and γFj are target SINRs for MUEs and FUEs,
respectively, ρMk and ρFj denote the associated outage prob-
abilities, respectively.

III. PROPOSED OUTAGE CONSTRAINED HyCoBF DESIGN
Solving the HyCoBF design problem (8) is a daunt-
ing task, partly because the nonconvex probabilistic con-
straints (8b) and (8c) do not have closed-form expressions
in general [24]; partly because the analog beam selection
constraint (8d) makes the reformulation of (8) into a tractable
convex problem almost formidable. We handle this problem
by decoupling the design of V (analog beamforming) and
the joint design of wk and uj (digital CoBF), and they are
presented in the following subsections, respectively.

A. ANALOG BEAMFORMING ALGORITHM
Motivated by the fact that SINRs of MUEs are larger
for larger received signal power, and SINRs of FUEs are
larger for smaller inter-cell interference power, we propose a
new beam selection criterion named power ratio maximiza-
tion (PRM), by maximizing the ratio of the total channel
power of MUEs to the total inter-cell interference channel
power from MBS to FUEs, as follows:

V? = F3(b?) (cf. (2)), (9)

b? = argmax
b∈B

{
J (b) ,

‖ĤH
MMF3(b)‖2F

‖ĤH
MFF3(b)‖

2
F

}
, (10)

where B was defined in (1), ĤMM , [ĥMM1, . . . , ĥMMK ]
and ĤMF , [ĥMF1, . . . , ĥMFJ ]. Obviously, the aim of (10)
is to select NRF best distinct beams from a total of NMBS
beams, by maximizing J (b). However, obtaining the global
optimum of (10) is computationally prohibitive. For instance,
supposing that NMBS = 128 and NRF = K = 16, the num-
ber of possible beam selection combinations is of the order
O(1020). In view of this, a low-complexity beam selection

1Essentially, for a quasi-stationary fading channel, MBS can only estimate
partial CSI in a hybrid-structured TDD massive MIMO system with the
received pilot or training signal due to limited RF chains. However, it can
repeatedly obtain other partial CSI within a coherence interval until the full
CSI estimates are obtained.
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Algorithm 1 Proposed Analog Beam Selection Algorithm
(PRM)

1: Given ĤMM , ĤMF ;

2: Initialize b = (b1, b2, . . . , bNRF ) ∈ B,
and let S = INMBS \ {b1, b2, . . . , bNRF};

3: Compute J (b) by (10);
4: repeat
5: Obtain j` = argmaxj∈S J (b`(j)), ` = 1, . . . ,NRF,

where b`(j) , (b1, . . . , b`−1, j, b`+1, . . . , bNRF );

6: Obtain l = argmax{J (b`(j`)), ` = 1, . . . ,NRF};

7: If J (bl(jl)) > J (b), update b := bl(jl), S := INMBS\

{b1, . . . , bNRF}; and J (b) := J (bl(jl));
8: until J (bl(jl)) ≤ J (b).
9: Output selected analog beamforming matrix V? =

F3(b).

algorithm for solving (10) is proposed, by employing the
idea of SMLR used in seismic deconvolution for detecting
a Bernoulli-Gaussian signal with nonzero magnitudes [33].
The proposed algorithm is summarized in Algorithm 1, that
updates only one component in b by maximizing J (b) at
each iteration. The associated objective value J (b) increases
monotonically whenever b is updated, so the convergence
can be guaranteed. The computational cost mainly consists
in calculating J (b) NRF × (NMBS − NRF) times (in step 5 of
Algorithm 1) at each iteration. Surely, an initial beam switch
vector b is needed to initialize the Algorithm 1. A fast beam
selection algorithm proposed in [17], that selects best NRF
distinct beam indices according to rowmagnitudes of ĤH

MMF,
can be used to obtain the initial b for Algorithm 1.

B. OUTAGE CONSTRAINED DIGITAL CoBF:
CONSERVATIVE APPROXIMATION
Even when the analog beamformer V? is given, problem
(8) is still intractable due to the probabilistic constraints
((8b) and (8c)) that do not have closed-form expressions in
general. It is noticeable that problem (8) can be thought of as
a dimension-reduced problemwith effective channel ĥ(eff)MMk =

(V?)H ĥMMk ∈ CN RF and ĥ(eff)MFj = (V?)H ĥMFj ∈ CNRF for
MBS. Applying SDR (i.e., replacing wkwH

k by Wk � 0 and
ujuHj by Uj � 0) [37] to problem (8) yields

min
{Wk },{Uj}

∑
k∈IK

Tr
(
V?Wk (V?)H

)
+

∑
j∈IJ

Tr
(
Uj
)

(11a)

s.t. Pr
{
δH1 QMMkδ1 + δ

H
2 QFMkδ2 + 2Re{δH1 rMMk}

+ 2Re{δH2 rFMk} + cMk ≥ 0
}
≥ 1− ρMk , ∀k ∈ IK ,

(11b)

Pr
{
δH1 QMFjδ1 + δ

H
2 QFFjδ2 + 2Re{δH1 rMFj}

+ 2Re{δH2 rFFj} + cFj ≥ 0
}
≥ 1− ρFj, ∀j ∈ IJ , (11c)

Wk � 0, ∀k ∈ IK , Uj � 0, ∀j ∈ IJ , (11d)

whereV? is the analog beamformer obtained by Algorithm 1,
δ1 ∼ CN (0, INRF ), δ2 ∼ CN (0, INFBS ), and the remaining
parameters in (11) are defined in (12) at the top of next page.

A good approach, as proposed in [30], for handling
(11b) and (11c), is to find conservative convex approxima-
tions to the constraints (11b) and (11c). Such approach can
safely approximate the two probability inequalities by con-
vex ones so that the resulting algorithm is computationally
tractable. Specifically, the Bernstein-type inequality [38] for
finding such conservative convex approximations has been
applied to robust digital beamforming design under similar
constraints as in problem (11) for the single-cell case [30].
However, the Bernstein-type inequality in [30] is not directly
applicable to problem (11), mainly owing to different antenna
deployments at MBS and FBS, resulting in channel vectors
of different dimensions. In view of this, we need an exten-
sion form of the Bernstein-type inequality as derived in the
following lemma.
Lemma 1: Let δ1 ∼ CN (0, INRF ), δ2 ∼ CN (0, INFBS ),

QMMk ∈ HNRF , QFMk ∈ HNFBS , rMMk ∈ CNRF , rFMk ∈
CNFBS , and define

g1(δ1,QMMk , rMMk )
1
= δH1 QMMkδ1 + 2Re{rHMMkδ1}, (13)

g2(δ2,QFMk , rFMk )
1
= δH2 QFMkδ2 + 2Re{rHFMkδ2}. (14)

Then, the following inequality holds true, ∀k ∈ IK ,

Pr
{
g1(δ1,QMMk , rMMk )+ g2(δ2,QFMk , rFMk )

≥ ϒ(ln(1/ρMk ) | QMMk , rMMk ,QFMk , rFMk )
}

≥ 1− ρMk ,

(15)

where ϒ : R++→ R is defined as

ϒ(ln(1/ρMk ) | QMMk , rMMk ,QFMk , rFMk )
1
= Tr(QMMk )

+Tr(QFMk )− ln(1/ρMk ) · λ+(QMMk ,QFMk )− αMk

·

√
‖QMMk‖

2
F + 2‖rMMk‖2 + ‖QFMk‖

2
F + 2‖rFMk‖2,

(16)

in which αMk =
√
2 ln(1/ρMk ) and λ+(QMMk ,QFMk ) ,

max{λmax(−QMMk ), λmax(−QFMk ), 0}.
The proof of Lemma 1 is relegated to Appendix A.

By virtue of Lemma 1, problem (11) can be approximated
as the following convex SDP and the detailed derivations are
relegated to Appendix B:

min
{Wk },{Uj},
PM ,PF ,tM ,tF

PM + PF (17a)

s.t.
(
{Wk}, {Uj}, tM ,PM

)
∈ CM , (17b)(

{Wk}, {Uj}, tF ,PF
)
∈ CF , (17c)

Wk � 0, ∀k ∈ IK , Uj � 0, ∀j ∈ IJ , (17d)

where CM and CF defined in (41) and (43) in Appendix B
denote the conservative convex approximations to the con-
straint sets associated with (11b) and (11c), respectively;
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QMMk
1
= C̃1/2

MMkBk C̃
1/2
MMk ; QFMk

1
= C1/2

FMkDC
1/2
FMk ; QFFj

1
= C1/2

FFjFjC
1/2
FFj; QMFj

1
= C̃1/2

MFjGC̃1/2
MFj; (12a)

rMMk
1
= C̃1/2

MMkBk ĥ
(eff)
MMk ; rFMk

1
= C1/2

FMkDĥFMk ; rFFj
1
= C1/2

FFjFjĥFFj; rMFj
1
= C̃1/2

MFjGĥ(eff)MFj; (12b)

cMk
1
= (ĥ(eff)MMk )

H
Bk ĥ

(eff)
MMk︸ ︷︷ ︸

, cMMk

+ ĥHFMkDĥFMk︸ ︷︷ ︸
, cFMk

−σ 2
Mk ; cFj

1
= ĥHFFjFjĥFFj︸ ︷︷ ︸

, cFFj

+ (ĥ(eff)MFj)
H
Gĥ(eff)MFj︸ ︷︷ ︸
, cMFj

−σ 2
Fj; (12c)

Bk
1
= γ−1MkWk −

∑K

l 6=k
Wl; D

1
= −

∑J

j=1
Uj; (12d)

Fj
1
= γ−1Fj Uj −

∑J

l 6=j
Ul; G

1
= −

∑K

k=1
Wk ; (12e)

C̃MMk
1
= E

[
(V?)HeMMkeHMMkV

?)
]
= (V?)HCMMkV? (cf. (7a)); (12f)

C̃MFj
1
= E

[
(V?)HeMFjeHMFjV

?)
]
= (V?)HCMFjV? (cf. (7a)). (12g)

tM ∈ R3K , tF ∈ R3J , PM (denoting transmit power of
MBS), PF (denoting transmit power of FBS) are auxiliary
variables. Note thatW?

k andU
?
j (the solution of problem (17))

may not be rank-one matrices. If they are of rank one, i.e.,
W?

k = w?k
(
w?k
)H and U?j = u?j

(
u?j
)H . Then, given the

reference point V = V? (obtained by Algorithm 1), the block
minimizer of (8) with respect to the remaining block variables
(i.e., {wk} and {uj}) can be directly obtained as w?k and u?j ;
otherwise, Gaussian randomization [37] can be employed to
obtain a rank-one approximate solution.

Off-the-shelve convex solvers (e.g., CVX) can be used to
obtain the centralized solution of problem (17). As previ-
ously mentioned, distributed solution to (17) is essential and
indispensable to HetNet (due to frequent reconfiguration and
scalability). Next, we present a distributed algorithm, for
MBS and FBS to solve (17) with only local CSI and limited
information exchange in a cooperative fashion.

IV. DISTRIBUTED ROBUST DIGITAL CoBF USING ADMM
Note that the two convex constraint sets CM and CF
(cf. (41) and (43)) in problem (17) are coupled. We need to
reformulate the feasible set of problem (17) into a pair of
uncoupled constraint sets, denoted as C̃M (cf. (19)) and C̃F
(cf. (20)), and some linear equality constraints that couple
C̃M and C̃F , so that ADMM can be employed for efficient
distributed algorithm design, as detailed in Subsection IV-A.
Some implementation issues and complexity analysis are then
discussed in Subsection IV-B.

A. DISTRIBUTED CoBF ALGORITHM
Let us define the following vector variables:

τ
1
=
[
aT ,bT , yT

]T
∈ R3(K+J), (18a)

a 1
=
[
aMF1, . . . , aMFJ , aFM1, . . . , aFMK

]
∈ R(K+J )
− , (18b)

b 1
=
[
tMF1, . . . , tMFJ , tFM1, . . . , tFMK

]
∈ R(K+J )
+ , (18c)

y 1
=
[
tM1, . . . , tMK , tF1, . . . , tFJ

]
∈ R(K+J )
+ . (18d)

Then the feasible set of problem (17) can be equivalently re-
expressed as follows:

C̃M
1
=

{ (
PM , τM , {Wk}, {aMMk}, {tMMk}

)∣∣
aMMk + aFMk + ln(ρMk )tMk − σ 2

Mk

−αMk

∥∥∥[tMMk , tFMk ]T∥∥∥ ≥ 0,∀k ∈ IK∥∥∥∥[ vec(QMMk )√
2rMMk

]∥∥∥∥ ≤ tMMk ,∀k ∈ IK∥∥∥∥[ vec(QMFj)√
2rMFj

]∥∥∥∥ ≤ tMFj,∀j ∈ IJ
tMkINRF +QMMk � 0, tMk ≥ 0,∀k ∈ IK
tFjINRF +QMFj � 0, tFj ≥ 0, ∀j ∈ IJ
aMMk

1
= Tr(QMMK )+ cMMK , ∀k ∈ IK

aMFj
1
= Tr(QMFj)+ cMFj,∀j ∈ IJ

PM
1
=

∑
k∈IK

Tr
(
V?Wk (V?)

H )
,

τM , τ ,Wk � 0, ∀k ∈ IK
}
, (19)

C̃F
1
=

{ (
PF , τF , {Uj}, {aFFj}, {tFFj}

)∣∣
aFFj + aMFj + ln(ρFj)tFj − σ 2

Fj

−βFj

∥∥∥[tFFj, tMFj]T∥∥∥ ≥ 0,∀j ∈ IJ∥∥∥∥[ vec(QFFj)√
2rFFj

]∥∥∥∥ ≤ tFFj,∀j ∈ IJ∥∥∥∥[ vec(QFMk )√
2rFMk

]∥∥∥∥ ≤ tFMk ,∀k ∈ IK
tFjINFBS +QFFj � 0, tFj ≥ 0,∀j ∈ IJ
tMkINFBS +QFMk � 0, tMk ≥ 0, ∀k ∈ IK
aFFj

1
= Tr(QFFj)+ cFFj,∀j ∈ IJ

aFMk
1
= Tr(QFMk )+ cFMk ,∀k ∈ IK

PF
1
=

∑
k∈IK

Tr
(
Uj
)
,

τF , τ ,Uj � 0,∀j ∈ IJ
}
. (20)
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As a result, problem (17) is equivalent to the following
problem:

min
W,U ,δ

PM + PF (21a)

s.t.W 1
= (PM , τM , {Wk}, {aMMk}, {tMMk}) ∈ C̃M , (21b)

U 1
=
(
PF , τF , {Uj}, {aFFj}, {tFFj}

)
∈ C̃F , (21c)

δ = τM = τF . (21d)

Note that the auxiliary variable δ serves as a public variable
for MBS and FBS to update their local variables indepen-
dently in the distributed algorithm to be presented next.

According to ADMM, the proposed distributed robust
CoBF algorithm tries to solve the following penalty terms
augmented problem:

min
W,U
XM ,XF

PM + PF +
c
2
{‖δ − τM‖

2
+ ‖δ − τF‖

2

+ (pM − PM )2 + (pF − PF )2 } (22a)

s.t.W 1
= (PM , τM , {Wk}, {aMMk}, {tMMk}) ∈ C̃M , (22b)

U 1
=
(
PF , τF , {Uj}, {aFFj}, {tFFj}

)
∈ C̃F , (22c)

XM , (δ, pM ) = (τM ,PM ) ∈ R3(K+J )+1, (22d)
XF , (δ, pF ) = (τF ,PF ) ∈ R3(K+J )+1, (22e)

where c > 0 is a preassigned penalty parameter, pM and pF
are auxiliary variables. The corresponding ADMM for solv-
ing (22) actually solves the dual optimization problem of (22),
which is also a max-min problem defined as

max
µM ,µF∈R

νM ,νF∈R3(K+J )

{
min

W∈C̃M ,U∈C̃F ,
XM ,XF∈R3(K+J )+1

(
gM (W,XM , νM , µM )

+ gF (U ,XF , νF , µF )
)}

(23)

where

gM (W,XM , νM , µM )

, PM +
c
2

{
‖δ − τM‖

2
+ (pM − PM )2

}
+ νTM (δ − τM )+ µM (pM − PM ), (24a)

gF (U ,XF , νF , µF )

, PF +
c
2

{
‖δ − τF‖

2
+ (pF − PF )2

}
+ νTF (δ − τF )+ µF (pF − PF ), (24b)

in which {νM , µM } and {νF , µF } are the dual variables asso-
ciated with constraints (22d) and (22e), respectively. The
resulting iterative distributed algorithm is summarized in
Algorithm 2, that can yield a global optimal solution of (17)
after convergence by the following theorem (whose proof is
given in Appendix C):
Theorem 1: Assume that problem (17) is solvable and

strictly feasible (i.e., strong duality holds). Every limit point
Wk (q) and Uj(q) generated by Algorithm 2 is an optimal
solution of problem (17).

In Algorithm 2, steps 4-6 update the primal variables W ,
U , XM , and XF by solving the inner minimization problem
of (23). Specifically, the primal variablesW, U are updated

Algorithm 2 Proposed Distributed Robust CoBF Algorithm
1: Input a set of the initial variables {δ(0), νM (0), νF (0),
µM (0), µF (0), pM (0), pF (0)} that are known to both
MBS and FBS; choose a penalty parameter c > 0 and
an over-relaxation parameter θ ∈ (1, 2).

2: Set q = 0.
3: repeat
4: MBS and FBS update primal variables W(q + 1) and

U(q + 1) by (25a) and (25b), respectively, and then
further update {τM (q + 1),PM (q + 1)} in W(q + 1)
and {τF (q + 1),PF (q + 1)} in U(q + 1) by (26a) and
(26b), respectively;

5: MBS and FBS exchange local iterates τM (q + 1) and
τF (q+ 1);

6: MBS and FBS update δ(q + 1) using (28a), and then
update pM (q + 1), and pF (q + 1) by (28b) and (28c),
respectively;

7: MBS updates {νM (q + 1), µM (q + 1)} by (29a) and
(29b), and FBS updates {νF (q+1), µF (q+1)} by (29c)
and (29d);

8: Set q := q+ 1;
9: Set c := min{qc, 1};
10: until the predefined stopping criterion is met.
11: OutputW?

k =Wk (q+1),U?j = Uj(q+1),∀k ∈ IK , j ∈
IJ (yielded in step 4) and the associated beamformers
w?k ,u

?
j .

in step 4 by solving the following convex subproblems:

W(q+ 1) = arg min
W∈C̃M

gM (W,XM (q), νM (q), µM (q)),(25a)

U(q+ 1) = arg min
U∈C̃F

gF (U ,XF (q), νF (q), µF (q)), (25b)

where q denotes the iteration number. Moreover, let
zM = [τTM (q+1),PM (q+1)]T and zF = [τTF (q+1),PF (q+
1)]T . Then, over-relaxation strategy [34] for faster conver-
gence is performed by

[τTM (q+ 1),PM (q+ 1)]T := θzM+ (1− θ )[δT (q), pM (q)]T,
(26a)

[τTF (q+ 1),PM (q+ 1)]T := θzF+ (1− θ )[δT (q), pF (q)]T,
(26b)

where θ ∈ (1, 2) is the over-relaxation parameter. Step 5 is
interchange of local iterates τM (q+1) and τF (q+1) between
MBS and FBS. Step 6 solves the convex subproblems:

(XM (q+ 1),XF (q+ 1))

= arg min
XM ,XF

{
gM
(
W(q+ 1),XM , νM (q), µM (q)

)
+ gF

(
U(q+ 1),XF , νF (q), µF (q)

)}
, (27)

thereby yielding the closed-form solutions:

δ(q+ 1) = �†(̃τ (q+ 1)− ν̃(q)/c
)
, (28a)

pM (q+ 1) = PM (q+ 1)− µM (q)/c, (28b)

pF (q+ 1) = PF (q+ 1)− µF (q)/c, (28c)
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where τ̃ (q + 1) = [τTM (q + 1), τTF (q + 1)]T and ν̃(q) =
[νTM (q), νTF (q)]

T , and � is defined in (45c) in Appendix C.
Finally, in step 7, the dual variables {νTM , µM } and {ν

T
F , µF }

are updated using

νM (q+ 1) = νM (q)+ c(δ(q+ 1)− τM (q+ 1)), (29a)

µM (q+ 1) = µM (q)+ c (pM (q+ 1)− PM (q+ 1)) , (29b)

νF (q+ 1) = νF (q)+ c(δ(q+ 1)− τF (q+ 1)), (29c)

µF (q+ 1) = µF (q)+ c (pF (q+ 1)− PF (q+ 1)) . (29d)

B. COMPLEXITY AND INFORMATION
EXCHANGE OVERHEAD ANALYSIS
The dominant computation complexity of Algorithm 2
consists in step 4 where the two convex subproblems
(25a) and (25b) can be solved by using the primal-dual
interior-point method (IPM), thereby involving linear matrix
inequality (LMI), second-order cone (SOC) and equality con-
straints. The worst-case complexity analysis for solving a
conic problem defined in (46) by the primal-dual IPM is
summarized in Appendix D [39]. Because the complexity
induced by equality constraints are negligible compared to
that of the inequality constraints, we apply this analysis to
(25a) and (25b) by ignoring the complexity induced by equal-
ity constraints. Next, we focus on the complexity analysis for
(25a).

Before presenting the complexity analysis for subprob-
lem (25a), we need to reformulate it into the same problem
form as (46). By epigraph representation and Schur comple-
ment, problem (25a) can be written as the following SDP:

min
W

PM +
c
2
(t1 + t2)+ νTM (q)(δ(q)− τM )

+µM (q)(pM (q)− PM ) (30a)

s.t.W 1
= (PM , τM , {Wk}, {aMMk}, {tMMk}) ∈ C̃M , (30b) I δ(q)− τM

(δ(q)− τM )T t1

 � 0, (30c)

 1 pM (q)− PM

pM (q)− PM t2

 � 0. (30d)

Secondly, we need to convert the complex SDP (30) into the
corresponding real SDP, which maintains the same problem
type except for doubled problem dimension. For simplicity,
our complexity analysis for solving (30) assumes w.l.o.g. that
it is a real SDP.

By (19), the inequality constraints in (30b), (30c), and
(30d), consist of K + J LMI constraints of size 1; 2K + J
LMI constraints of size NRF; two LMI constraints of size
3(K + J ) + 1 and 2, respectively, (i.e., p = 3K + 2J + 2,
cf. (46b)); K + J SOC constraints of size N 2

RF+NRF+ 1 and
K SOC constraints of size 6 (i.e., m = p+2K + J ; cf. (46c)).
Moreover, the number of decision variables of problem (30)
is on the order of (4K + 2J )N 2

RF , ñ. Hence, the complexity
order of the primal-dual IPM for solving (25a) is given by

C(25a) =
√
ϕ̃(K) ·

(
C̃form + C̃fact

)
· ln(1/ε), (by (49)) (31)

FIGURE 2. Feasibility rates of the various methods versus target SINR γ ,
for NMBS = 16, NRF = 4, K = 4; NFBS = 2, J = 2; ρ = 0.1,
ε2 ∈ {0.001,0.002}.

where ε denotes the solution accuracy, and

ϕ̃(K) = (2K + J )NRF + 8K + 6J + 3, (by (47))

C̃form = ñ(2K + J )(N 3
RF + ñN

2
RF)

+ ñ(3(K + J )+ 1)3 + ñ2(3(K + J )+ 1)2

+ ñ(K + J )(ñ+ 1)+ ñ(8+ 4ñ)

+ ñ (K + J)
(
N 2
RF + NRF + 1

)2
+ 36ñK , (by (48a))

C̃fact = ñ3. (by (48b))

Similarly, one can obtain the complexity order of the primal-
dual IPM for solving (25b),C(25b), by interchangingK with J ,
and replacingNRF withNFBS in (31). Thus, the total complex-
ity order of Algorithm 2 is approximately Iiter × (C(25a) +

C(25b)), where Iiter is the number of outer iterations spent
before convergence of Algorithm 2.

On the other hand, the information exchange overhead of
Algorithm 2 can be easily seen to be the exchange of local
iterates τM of MBS and τF of FBS in step 5 at each iteration.
In LTE-Advanced based cellular systems, this information
exchange of 6(K + J ) real values can be achieved by X2
interface (wired fiber connection).

V. SIMULATION RESULTS
In this section, we present some simulation results to demon-
strate the effectiveness of the proposed HyCoBF algorithm,
constituted by Algorithm 1 for analog beam selection, and
Algorithm 2 for digital CoBF, where problem (25) (for the
distributed solution) is solved by using the off-the-shelf con-
vex optimization parser software, CVX [40]. The simulation
results for the centralized solution (obtained by solving (17)
using CVX) are also provided for justifying the performance
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FIGURE 3. Histograms of the actual SINR satisfaction probabilities of various methods at target SINR γ = 9
dB, for NMBS = 16, NRF = 4, K = 4; NFBS = 2, J = 2; ρ = 0.1, ε2 = 0.002.

of the proposed HyCoBF design. The simulation settings are
as follows. Users’ noise powers are identical, i.e., σ 2

k =

σ 2
j = σ 2, ∀k ∈ IK , ∀j ∈ IJ ; target SINRs for all

MUEs and FUEs are identical, i.e., γMk = γFj = γ,∀k ∈
IK , ∀j ∈ IJ ; SINR outage probabilities are also identically
set to ρMk = ρFj = ρ = 0.1 for all k and j, i.e., SINR
satisfaction probabilities are higher than 90%. BothMBS and
FBS are assumed to be able to track the large-scale fading
while the small-scale components for CSI errors are complex
Gaussian distributed with zero mean and identical covariance
matrices CMMk = CMFj = ε2INMBS and CFFj = CFMk =

ε2IN FBS , where ε
2 > 0 denotes the variance of each com-

ponent of channel error vectors. Channel estimates of ĥMMk ,
ĥFMk , ĥFFj and ĥMFj are randomly generated according to the
standard circularly symmetric complex Gaussian distribution
with variances determined by large scale fading due to path
loss and shadowing effect. The simulation results are obtained
by averaging over all 500 channel realizations for which all
the methods under test yield feasible solutions.

A. PERFORMANCE OF THE PROPOSED HyCoBF DESIGN
We first investigate the feasibility rate of the proposed
HyCoBF design. As Algorithm 1 is used for analog beam
selection, the obtained design is denoted as HyCoBF-PRM;
as magnitude maximization based beam selection is used
instead [20], the corresponding design is denoted as
HyCoBF-MM. The results of feasibility rate obtained by
calculating the percentage proportions (i.e., feasibility rates)
of feasible solutions over the generated 500 channel real-
izations, are illustrated in Fig. 2, where the corresponding

results for the robust FD design (for which NMBS = NRF,
denoted as ‘‘Robust FD’’) are also provided. One can see,
from this figure that, the proposed designs for ε2 = 0.001
(dashed lines) yield much higher feasibility rates than for
ε2 = 0.002 (solid lines). It can be observed that the robust
FD outperforms the proposed HyCoBF design for NRF = 4
RF chains equipped at the MBS, simply because the latter
has less DoF at the MBS, thereby leading to lower feasibility
rates. Moreover, the HyCoBF-PRM performs better than the
HyCoBF-MM for SINR from 1 dB to 15 dB, while for SINR
higher than 15 dB, their feasibility rates are comparable.

The conservatism in terms of satisfaction probability for
the various methods is evaluated by histograms (counted over
all feasible channel realizations associated with the results
shown in Fig. 2) versus actual SINR satisfaction probabil-
ities. The actual SINR satisfaction probability, defined as
the minimum of actual SINR satisfaction probabilities of all
the MUEs and FUEs by applying the designed beamformers
(i.e., V?, w?k at MBS and u?j at FBS) to probability function
in (8b) and (8c), was obtained by calculating the relative fre-
quency over 10,000 randomly generated CSI errors (cf. (7)).
Fig. 3 shows the obtained histograms for γ = 9 dB and ε2 =
0.002. From this figure, one can see that the non-robust FD
design (that treats all the given channel estimates as perfect
channels) does not achieve the target SINR satisfaction prob-
ability due to its actual SINR satisfaction probabilities below
40% (average satisfaction probability is only around 21%) for
all the channel realizations. This justifies that the non-robust
FD design is quite sensitive to CSI errors. It can be seen that
HyCoBF-PRM, HyCoBF-MM and robust FD designs indeed
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TABLE 1. For some results in Fig.2, counts of rank-one solutions and all the feasible solutions for each simulation case for ε2 ∈ {0.01,0.002} and
γ ∈ {1,5,9,13} dB are shown here.

FIGURE 4. Total transmit power of the proposed HyCoBF versus target
SINR γ , for NMBS = 16, NRF = {4,8,16}, K = 4; NFBS = 2, J = 2; ρ = 0.1,
ε2 = 0.002.

have higher than 90% SINR satisfaction probability over all
feasible channel realizations. In spite of both of HyCoBF-
PRM design and HyCoBF-MM design over meet the target
satisfaction probability (as shown in Figure 3), the former
(for which the PRM beam selection scheme is initialized by
the MM beam scheme) also yields higher feasibility rate (as
shown in Fig. 2) than the latter, implying that the former is
also more power efficient than the latter as shown in Fig. 4.

As discussed in the Section III-B, when the designed W?
k

andU?j are not of rank one, one may need to find approximate
rank-one solutions from them by Gaussian randomization.
Therefore, we examine the proportion of rank-one solutions
out of those feasible solutions associated with the results
shown in Fig. 2. Numerically, W?

k and U?j are regarded as
rank-one matrices if the following conditions hold:

λmax
(
W?

k

)
Tr
(
W?

k

) ≥ 0.9999,
λmax

(
U?j
)

Tr
(
U?j
) ≥ 0.9999,

k ∈ IK , j ∈ IJ . (32)

As shown in Table I, each entry is a pair (p, q) in which p
(q) denotes the number of realizations for which the obtained
solutions are feasible (feasible and rank one) for each simu-
lation case for γ ∈ {1, 5, 9, 13} (dB) and ε2 ∈ {0.01, 0.02}.
Due to p = q for all the entries in Table I, all the yielded

FIGURE 5. Total transmit power of the HyCoBF-PRM (‘‘4’’ for NRF = 4,
‘‘5’’ for NRF = 8, and ‘‘+’’ for NRF = 16); non-robust FD design (denoted
as ‘‘©’’) and robust FD design (denoted as ‘‘�’’), for K = 4 and J = 2;
ρ = 0.1, and (a) NMBS = 16, NFBS = 2, ε2 ∈ {0.001,0.002}, (b) NMBS = 64,
NFBS ∈ {2,4}, ε2 = 0.002.

feasible solutions are of rank one, indicating that the desired
HyCoBF strategy is also a single stream transmission scheme,
thus suitable for practical deployment.
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FIGURE 6. Total transmit power of the proposed HyCoBF-PRM (‘‘∗" for centralized solutions, and ‘‘5" and ‘‘©" for distributed solutions obtained using
Algorithm 2 after 15 and 25 iterations, respectively) versus 50 randomly generated channel realizations, for NMBS = 16, NRF = 4, K = 4; γ = 9 dB, ρ = 0.1,
ε2 = 0.002, and (a) NFBS = J = 2, (b) NFBS = J = 4.

Next, let us examine the transmit power performances of
the proposed HyCoBF-PRM by the averaged transmit powers
over the channel realizations for which all the designs yield
feasible solutions. Fig. 5(a) shows the power performances of
the proposed HyCoBF-PRM design, and the corresponding
results for the robust FD design as well as the non-robust FD
method. It can be observed that the power performances of
all the designs under test are better for smaller γ , and that
the transmit powers of the non-robust method are the least.
As expected, the proposed HyCoBF-PRM design performs
better for larger NRF and smaller ε2; and its performance for
NRF = NMBS = 16 is the same as that of robust FD design.
Let us emphasize that the SINR outage probabilities (i.e., (8b)
and (8c)) for the non-robust FD method are never satisfied
over all feasible channel realizations (cf. Fig. 3). Compared
with the robust FD design, the extra power consumption of
the proposed HyCoBF-PRM design for N RF = 8 is quite
small for both ε2 = 0.001 and ε2 = 0.002, demonstrating its
promising performance for this case.

The corresponding simulation results (not including the
robust FD design) for NMBS = 64, NRF ∈ {4, 8, 16},
NFBS ∈ {2, 4} and ε2 = 0.002 are shown in Fig. 5(b).
It can be seen from this figure that the relative performances
among all the designs under test remain the same as shown
in Fig. 5(a). Moreover, the total transmit powers for the
proposed HyCoBF-PRM for NRF = 8 and NRF = 16 are
comparable, indicating that the MBS has almost achieved the
‘‘best’’ performance for this case of NMBS = 64, whereas
increasing NFBS (i.e., more spatial DoF) can further reduce
the total transmit power by more than 5 dB for this case.
These results demonstrate the efficacy of the proposed

FIGURE 7. Typical convergence curves of Algorithm 2 under NMBS = 16,
NRF = 4, K = 4; NFBS = J ∈ {2,4}; γ = 9 dB, ρ = 0.1, ε2 = 0.002.

HyCoBF-PRM design, and the performance dependence and
perspective over different values of NMBS, NRF and NFBS.

B. PERFORMANCE OF THE PROPOSED DISTRIBUTED
DIGITAL CoBF DESIGN
To examine the performance of the proposed distributed
CoBF design (Algorithm 2), we set the initial input
values {δ(0), νM (0), νF (0), µM (0), µF (0), pM (0), pF (0)} all
to zero, the over-relaxation parameter θ = 1.8, and for less
dependence on the initial values [34], the augmented penalty
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parameter c(q) is iteratively updated by rules described in
steps 8 and 9 of Algorithm 2 (with c(0) = 10−6) [41].
According to Theorem 1, Algorithm 2 will converge to the
global optimum of (17) as q increases. From Fig. 6, it can be
observed that Algorithm 2 can yield near-optimal solutions
within 25 iterations for different simulation settings over
different channel realizations.

To further look into the convergence behavior of
Algorithm 2, the normalized power accuracy defined as

Normalized power accuracy =
|P? (q)− P?|

P?
, (33)

where P? is the centralized solution (obtained by solving
(17)); P? (q) = P?M (q) + P?F (q) is the total power at iter-
ation q, where P?M (q) and P

?
F (q) are obtained in step 4 of

Algorithm 2. A typical convergence curve for each simulation
case shown in Fig. 6 is shown in Fig. 7. As can be seen
from this figure that Algorithm 2 yields a solution with the
normalized power accuracy smaller than 0.01 within 30 iter-
ations. Moreover, only in a few tens of iterations, Algorithm
2 can yield a solution with the normalized power accuracy
less than 10−3. One can also see that higher normalized
power accuracy (e.g., 10−5) needs more iterations due to the
fluctuating convergence behavior, and that the convergence
speed is slower for larger network scale. Nevertheless, these
simulation results well demonstrate the convergence of Algo-
rithm 2, as proved in Theorem 1.

VI. CONCLUSION
Within the umbrella of the massive MIMO enabled HetNet,
we have presented an outage constrained robust HyCoBF
design for the 5G wireless communications, in the presence
of of Gaussian CSI errors. The proposed HyCoBF design is
a cascade of a low-complexity analog beam selection mecha-
nism (Algorithm 1) followed by a robust digital CoBF design.
The former obtains the analog beamformer by maximizing
the ratio of the total channel power of all the MUEs to the
total interference channel power impinged on FUEs. With
the designed analog beamformer by Algorithm 1, the later
obtains the digital beamfomers at MBS and FBS by solving
a conservative convex approximation problem, by the use of
SDR and an extended form of Bernstein-type inequality. Fur-
thermore, by using ADMM, we have presented a distributed
robust digital CoBF algorithm (Algorithm 2). The conver-
gence property of the proposed distributed algorithm, which
yields the same solution as the centralized version, has been
demonstrated theoretically (Theorem 1) and numerically.
Our simulation results have demonstrated that the proposed
conservative convex approximation can yield promising
performance and, most importantly, it can achieve accept-
able performance comparable to the FD beamforming
scheme with much smaller number of RF chains. Although
the proposed algorithm can solve the SDR based robust
CoBF problem within polynomial time, the computational
cost of the IPM may still be too expensive as the problem
size increases, such as in the scenarios with large number

of antennas and/or dense wireless networks. As a future
research, it is worth studying other variations of ADMM for
distributed CoBF design for faster convergence.

APPENDIX A
PROOF OF LEMMA 1
To prove Lemma 1, we need the following Lemma:
Lemma 2: [38, Lemma 0.1] Let a = [a1, . . . , ap+q]T ∈

Rp+q and b = [b1, . . . , bp+q]T ∈ Rp+q be real vectors,
z = [z1, . . . , zp+q]T ∈ Rp+q be a real random vector,
where z1, . . . , zp+q are independent identically distributed
(i.i.d.) real random variables following the standard normal
distribution N (0, 1), and define

g =
p+q∑
`=1

a`z2` + 2b`z`. (34)

Then, given η > 0, the following concentration result holds
true:

Pr

g ≤
p+q∑
`=1

a` − 2
√
η

√√√√p+q∑
`=1

a2` + 2b2` − 2ηa−

 ≤ e−η,
(35)

where a− , sup{sup{−a` | 1 ≤ ` ≤ p+ q}, 0}.
To employ the real-valued Bernstein-type inequality (35)

in proving the complex-valued inequality (15), we define the
following real-form counterparts:

Q̄1 =
1
2

[
Re{QMMk} −Im{QMMk}

Im{QMMk} Re{QMMk}

]
∈ Sp,

Q̄2 =
1
2

[
Re{QFMk} −Im{QFMk}

Im{QFMk} Re{QFMk}

]
∈ Sq,

r̄1 =
1
√
2

[
Re{rMMk}
Im{rMMk}

]
∈ Rp,

r̄2 =
1
√
2

[
Re{rFMk}
Im{rFMk}

]
∈ Rq,

z̄1 =
√
2
[
Re{δ1}
Im{δ1}

]
∼ N (0, Ip),

z̄2 =
√
2
[
Re{δ2}
Im{δ2}

]
∼ N (0, Iq),

where p , 2NRF and q , 2NFBS. Moreover, by the
eigenvalue decomposition of the real symmetric matrices
Q̄1 = U131UT

1 and Q̄2 = U232UT
2 (where U1 and U2 are

orthogonal matrices, and 31 and 32 are diagonal matrices),
we can re-express g1 (cf. (13)) and g2 (cf. (14)) in the same
form as (34):

g1(δ1,QMMk , rMMk ) = z̄T1 Q̄1z̄1 + 2r̄T1 z̄1

= z̃T131̃z1 + 2̃rT1 z̃1 =
p∑

k=1

h1k z̃21k + 2̃r1k z̃1k , (36)

g2(δ2,QFMk , rFMk ) = z̄T2 Q̄2z̄2 + 2r̄T2 z̄2

= z̃T232̃z2 + 2̃rT2 z̃2 =
q∑
j=1

h2j̃z22j + 2̃r2j̃z2j, (37)
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where h1k is the kth diagonal element of 31, h2j is the jth
diagonal element of 32, z̃1 = [̃z11, . . . , z̃1p]T , UT

1 z̄1 ∼
N (0, Ip), z̃2 = [̃z21, . . . , z̃2q]T , UT

2 z̄2 ∼ N (0, Iq), r̃1 =
[̃r11, . . . , r̃1p]T , UT

1 r̄1, and r̃2 = [̃r21, . . . , r̃2q]T , UT
2 r̄2.

By substituting a , [h11..., h1p, h21, ..., h2q]T ∈ Rp+q,
b , [̃rT1 , r̃

T
2 ]
T
∈ Rp+q, and z = [̃zT1 , z̃

T
2 ]
T into (35), we have

the following inequality, ∀η > 0:

Pr


p∑

k=1

h1k̃z21k + 2̃r1k̃z1k +
q∑
j=1

h2j̃z22j + 2̃r2j̃z2j ≤
p∑

k=1

h1k

+

q∑
j=1

h2j − 2η sup

{
sup

k=1,...,p
{−h1k}, sup

j=1,...,q
{−h2j}, 0

}

− 2
√
η

√√√√ p∑
k=1

(h21k + 2̃r21k )+
q∑
j=1

(h22j + 2̃r22j)

 ≤ e−η.
(38)

Furthermore, one can easily verify the equalities that
z̄T1 Q̄1z̄1 + 2r̄T1 z̄1 = δ

H
1 QMMkδ1 + 2Re{rHMMkδ1}, z̄

T
2 Q̄2z̄2 +

2r̄T2 z̄2 = δ
H
2 QFMkδ2 + 2Re{rHFMkδ2}, ‖rMMk‖

2
= 2‖̃r1‖2 =

2‖r̄1‖2, ‖rFMk‖2 = 2‖̃r2‖2 = 2‖r̄2‖2, Tr(QMMk ) =∑p
k=1 h1k = Tr(Q̄1), Tr(QFMk ) =

∑q
j=1 h2j = Tr(Q̄2),

‖QMMk‖
2
F = 2

∑p
k=1 h

2
1k = 2‖Q̄1‖

2
F , ‖QFMk‖

2
F =

2
∑q

j=1 h
2
2j = 2‖Q̄2‖

2
F , and λ+(QMMk ,QFMk ) =

2λ+(Q̄1, Q̄2) = 2 sup{supk=1,...,p{−h1k}, supj=1,...,q{−h2j},
0}; these, together with (38) and η = ln(1/ρMk ) > 0 (since
0 < ρMk ≤ 1), directly imply that the probability inequality
(15) holds true. �

APPENDIX B
CONSERVATIVE CONVEX APPROXIMATION PROBLEM
(17)
Since ϒ (cf. (16)) is monotonically decreasing, its inverse
mappingϒ−1 : R→ R++ is well defined. Then, by applying
Lemma 1 and the fact that e−ϒ

−1(−cMk ) > 0 (where cMk is
given in (12c)), we have the following inequality:

Pr
{
g1(δ1,QMMk , rMMk )+ g2(δ2,QFMk , rFMk )

+ cMk ≥ 0
}
≥ 1− e−ϒ

−1(−cMk ), (39)

implying that e−ϒ
−1(−cMk ) ≤ ρMk is a conservative approxi-

mation to (11b), which can be equivalently expressed as

Tr(QMMk )+ Tr(QFMk )+ ln(ρMk ) · λ+(QMMk ,QFMk )

−αMk

√
‖QMMk‖

2
F + 2‖rMMk‖2 + ‖QFMk‖

2
F + 2‖rFMk‖2

+ cMk ≥ 0 (40)

Following a similar reformulation procedure for the single-
cell case as reported in [30] and [42], the convex constraint
(40) can be expressed in the following form:

CM
1
=

{ (
{Wk}, {Uj}, tM , {aMMk}, {aFMk},PM

)∣∣
aMMK + aFMK + ln(ρMk )tMk − σ 2

Mk

−αMk

∥∥∥[tMMk , tFMk ]T∥∥∥ ≥ 0,∀k ∈ IK∥∥∥∥[ vec(QMMk )√
2rMMk

]∥∥∥∥ ≤ tMMk ,∀k ∈ IK∥∥∥∥[ vec(QFMk )√
2rFMk

]∥∥∥∥ ≤ tFMk ,∀k ∈ IK

tMkINRF +QMMk � 0,∀k ∈ IK
tMkINFBS +QFMk � 0, tMk ≥ 0,∀k ∈ IK
aMMk

1
= Tr(QMMK )+ cMMK ,∀k ∈ IK

aFMk
1
= Tr(QFMK )+ cFMK ,∀k ∈ IK

PM
1
=

∑
k∈IK

Tr
(
V?Wk (V?)

H )
) }

(41)

where tM
1
= [tMM1, . . . , tMMK , tFM1, . . . , tFMK , tM1, . . . ,

tMK ]T ∈ R3K (auxiliary variables), and cMMk and cFMk are
given in (12c). Similarly, we can show that the following
inequality is a conservative approximation to (11c):

Tr(QFFj)+ Tr(QMFj)+ ln(ρFj) · λ+(QFFj,QMFj)

−βFj

√
‖QFFj‖

2
F + 2‖rFFj‖2 + ‖QMFj‖

2
F + 2‖rMFj‖2

+ cFj ≥ 0 (42)

where βFj ,
√
2 ln(1/ρFj), which can be represented as the

following form:

CF
1
=

{ (
{Wk}, {Uj}, tF , {aFFj}, {aMFj},PF

)∣∣
aFFj + aMFj + ln(ρFj)tFj − σ 2

Fj

−βFj

∥∥∥[tFFj, tMFj]T∥∥∥ ≥ 0,∀j ∈ IJ∥∥∥∥[ vec(QFFj)√
2rFFj

]∥∥∥∥ ≤ tFFj,∥∥∥∥[ vec(QMFj)√
2rMFj

]∥∥∥∥ ≤ tMFj,∀j ∈ IJ

tFjINFBS +QFFj � 0,∀j ∈ IJ
tFjINRF +QMFj � 0, tFj ≥ 0,∀j ∈ IJ
aFFj

1
= Tr(QFFj)+ cFFj,∀j ∈ IJ

aMFj
1
= Tr(QMFj)+ cMFj,∀j ∈ IJ

PF
1
=

∑
j∈IJ

Tr
(
Uj
) }

(43)

where cFFj and cMFj are given in (12c), and tF
1
= [tFF1,

. . . , tFFJ , tMF1, . . . , tMFJ , tF1, . . . , tFJ ]T ∈ R3J collects all
the auxiliary variables in the derivation of (43). �

APPENDIX C
PROOF OF THEOREM 1
Let us consider the following structured convex optimization
problem:

min
x∈Rn,z∈Rm

F (x)+ G (z) (44a)

s.t. x ∈ S1, z ∈ S2, (44b)

Ax = z, (44c)
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where A is an m × n matrix, and F : Rn
7→ R and

G : Rm
7→ R are convex functions; and S1 ⊂ Rn and

S2 ⊂ Rm are nonempty convex sets. Assume that (44) is
solvable and strong duality holds. Problem (21) (which is
equivalent to problem (17)) can be re-expressed in the same
form as (44) by the following correspondences:

x = [δT , pM , pF ]T , z = [τTM , τ
T
F , PM ,PF ]

T , (45a)

F(x) = 0, G(z) = PM + PF , (45b)

A =
[
� 0
0 I2

]
, � , [I3(K+J ), I3(K+J )]T , (45c)

S1 , R6(K+J )+2, (45d)

S2 ,
{
z | (PM , τM , {Wk}, {aMMk}, {tMMk}) ∈ C̃M ,(
PF , τF , {Uj}, {aFFj}, {tFFj}

)
∈ C̃F

}
. (45e)

Since ATA = I6(K+J )+2 is invertible, and both
C̃M and C̃F are convex sets, the ADMM based distributed
algorithm (Algorithm 2) can be guaranteed to converge and
the yielded solution is globally optimal to problem (17)
by [41, Lemma 2]. �

APPENDIX D
SUMMARY OF WORST-CASE COMPLEXITY FOR
A CONIC PROGRAM BY PRIMAL-DUAL IPM
Consider the following conic problem:

min
x∈Rn

cT x (46a)

s.t.
n∑
i=1

xiA
j
i + Bj ∈ Skj+ for j = 1, . . . , p, (46b)

Tjx− bj ∈ Lkj for j = p+ 1, . . . ,m. (46c)

where c ∈ Rn;Aj
i,B

j
∈ Skj for i = 1, . . . , n and j = 1, . . . , p;

Tj ∈ Rkj×n and bj ∈ Rkj ; Lkj is the SOC of dimension
kj ≥ 1; i.e., Lkj =

{
x ∈ Rkj | xkj ≥

√
x21 + · · · + x

2
kj−1

}
.

Note that linear constraint aT x − b ≥ 0 is equivalent to the
LMI constraint aT x− b ∈ R+ = Sk+ for k = 1.
According to [39], the worst-case complexity of a generic

IPM for solving (46) consists of two parts:
1) Iteration Complexity: For obtaining an ε-suboptimal

solution of (46), the number of required iterations is on the
order of

√
ϕ(K) · ln(1/ε), whereK =

∏p
j=1 S

kj
+×

∏m
j=p+1 Lkj

is a cone measuring the geometric complexity of the conic
constraints with respect to (46b) and (46c), and

ϕ(K) =
p∑
j=1

kj + 2(m− p). (47)

2) Per-iteration Complexity: In each iteration of IPM,
a search direction is found by solving a system of ñ linear
equations in ñ unknowns, where ñ is the total number of pri-
mal and dual variables. The computational cost is dominated
by (i) the formation of the corresponding ñ × ñ coefficient
matrix H of ñ linear equations, and (ii) the factorization of
the coefficient matrix H. The cost of forming and that of

factorizing the coefficient matrixH for (46) are, respectively,
on the order of

Cform = ñ
p∑
j=1

k3j + ñ
2

p∑
j=1

k2j︸ ︷︷ ︸
due to (46b)

+ ñ
m∑

j=p+1

k2j︸ ︷︷ ︸
due to (46c)

, (48a)

Cfact = ñ3. (48b)

Therefore, the worst-case complexity order for
solving (46) is given by√

ϕ(K) · (Cform + Cfact) · ln(1/ε). (49)

�
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