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Abstract—The impact of quantized channel direction informa-
tion (CDI) on the achievable secrecy rate is studied for multiple
antenna wiretap channels. By assuming that the eavesdropper’s
channel is unknown at the transmitter, we adopt the transmission
scheme where artificial noise (AN) is imposed in the null space
of the legitimate receiver’s channel to disrupt the eavesdropper’s
reception. It has been shown that, in the ideal case where perfect
CDI is available at the transmitter, the achievable secrecy rate can
be made arbitrarily large by increasing the transmission power.
However, when only quantized CDI is available, the AN that was
originally intended to jam the eavesdropper may now leak into
the legitimate receiver’s channel, causing significant secrecy rate
loss. For a given number of feedback bits 𝐵 and transmission
power 𝑃 , we derive the optimal power allocation among the
message-bearing signal and the AN to maximize the secrecy rate
under AN leakage. We show that, when 𝐵 is sufficiently large,
one should allocate power evenly among the message-bearing
signal and the AN; whereas when 𝐵 is small, one should be
more conservative in allocating power to the AN. Moreover, by
showing that the achievable secrecy rate under quantized CDI
is bounded by a constant, we derive a scaling law between 𝐵
and 𝑃 that is necessary to maintain a constant secrecy rate loss
compared to the perfect CDI case. The scaling of 𝐵 is shown to be
logarithmic of 𝑃 . These results are first derived for the multiple-
input single-output single–antenna-eavesdropper scenario and
are later extended to the multiple-input multiple-output multiple-
antenna-eavesdropper case. Numerical simulations are provided
to verify our theoretical claims.

Index Terms—Wiretap channels, secrecy, MIMO, beamform-
ing, quantized channel.

I. INTRODUCTION

THE notion of physical-layer secrecy was first introduced
by Wyner in [1], where the maximum achievable secrecy

rate between the transmitter and a legitimate receiver is exam-
ined subject to a secrecy constraint on the information attain-
able by an eavesdropper. Under the perfect secrecy constraint
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where the eavesdropper is not allowed to infer any information
from its received signal, a non-zero secrecy capacity in a static
channel can only be achieved when the legitimate receiver
has a better channel condition than the eavesdropper. Yet, this
can be overcome in wireless environments by exploiting the
time-varying characteristic of fading channels [2], [3]. Further
enhancements are attainable by employing multiple antennas
at the transceivers, e.g., in [4]–[6]. However, most of these
works rely on perfect knowledge of the legitimate receiver’s
and the eavesdropper’s channels. To guarantee secrecy without
knowing the eavesdropper channel, the work in [5] proposed
the use of artificial noise (AN) in the null space of the
legitimate channel to disrupt the eavesdropper’s reception. The
secret message is then beamformed towards the legitimate
receiver on top of the AN. With perfect knowledge of the
legitimate receiver’s channel direction information (CDI) at
the transmitter, it has been shown that the secrecy rate achiev-
able by using AN can be made arbitrarily large by increasing
the transmission power. However, this may not be the case in
practice since in general only quantized CDI is available at the
transmitter due to rate limitations on the feedback channel.

The main contribution of this paper is to study the impact
of quantized CDI on the secrecy rate achievable by AN-
assisted beamforming. Although the optimal signaling scheme
is unknown for cases without knowledge of the eavesdropper’s
channel, AN-assisted beamforming has been shown to be
optimal in the high SNR regime when the transmitter has
full knowledge of the legitimate receiver’s channel and is
equipped with a large number of antennas [4]. This scheme
is also optimal when the transmitter perfectly knows both
the legitimate receiver’s and the eavesdropper’s channels [6].
When only quantized CDI is available at the transmitter, the
AN that was originally intended to disrupt the eavesdropper’s
reception may now leak into the legitimate channel, causing
degradation in the achievable secrecy rate. We refer to this as
the AN leakage problem.

In this work, we first examine the optimal power allocation
between the message-bearing signal and the AN for a given
number of feedback bits 𝐵. We show that, when 𝐵 is
sufficiently large (good CDI quality), the power should be
allocated evenly among the message-bearing signal and the
AN; whereas, when 𝐵 is small (poor CDI quality), the power
allocated to the AN must be more conservative in order to
limit the effects of AN leakage. Moreover, when 𝐵 is fixed, we
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observe that in contrast to the perfect CDI case, the achievable
secrecy rate will be upper-bounded by a constant regardless
of the transmission power. Therefore, to maintain a constant
secrecy rate loss (compared to the perfect CDI case), we show
that 𝐵 must scale logarithmically with the transmission power
𝑃 . In this work, the channel quality information (CQI) is
assumed to be unknown at the transmitter. However, we are
able to show that, in the case of quantized CDI, additional CQI
at the transmitter provides little performance gains when 𝑃 is
sufficiently large, which justifies our interest at the CDI only.
The results of this work are first examined for the multiple-
input single-output single-antenna eavesdropper (MISOSE)
case, where the transmitter has multiple antennas and both
the receiver and the eavesdropper have only a single antenna.
The results are later extended to the multiple-input multiple-
output multiple-antenna-eavesdropper (MIMOME) scenario,
where both the receiver and the eavesdropper are assumed
to have multiple antennas.

The effects of quantized channel feedback on the transceiver
design have been studied in the literature for both single user
and multiuser downlink systems (without eavesdroppers), e.g.,
in [7]–[9] and references therein. However, to the best of
our knowledge, these issues have not been addressed before
in the context of secret communications. Compared to our
previous works [10], [11], we improve the bit scaling law for
the MISOSE case in [10] by removing some approximation
steps, and provide detailed proofs for the results in [11]. The
results on the AN power allocation and the impact of CQI
have not been presented before.

The rest of this paper is organized as follows. In Section II,
we provide the system model and background on AN-assisted
beamforming. In Section III, we examine the optimal power
allocation between the message-bearing signal and the AN for
the MISOSE case. The MISOSE feedback bit scaling law is
provided in Section IV and discussions on the impact of CQI
are provided in Section V. In Section VI, we extend the bit
scaling law to the MIMOME scenario. Simulation results are
provided in Section VII. Finally, the conclusion is drawn in
Section VIII.

Notations: We denote I𝑛 as the 𝑛× 𝑛 identity matrix, and
denote ∣B∣ and Tr(B) as the determinant and trace of matrix
B, respectively. x ∼ 𝒞𝒩 (0, 𝜎2I𝑛) means that x is a complex
Gaussian random vector with zero mean and covariance matrix
𝜎2I𝑛, and 𝑥 ∼ 𝛽(𝑎, 𝑏) means that 𝑥 is a Beta-distributed
random variable with parameters (𝑎, 𝑏). E[⋅] stands for the
statistical expectation of a random variable, 𝐻(⋅) stands for the
entropy of a random variable (vector), and 𝐼(𝑥; 𝑦) represents
the mutual information between random variables (vectors) 𝑥
and 𝑦. Almost-sure convergence is denoted by

𝑎.𝑠.→ . The 2-norm
of a vector x is denoted by ∥x∥. The function [𝑥]+ represents
max{𝑥, 0}. The log and ln functions are with base 2 and
natural number e respectively. For an event 𝐴, the indicator
function 1{𝐴} is 1 if 𝐴 occurs, and is 0 otherwise.

II. SYSTEM MODEL AND BACKGROUND

Let us consider a wireless system that consists of a trans-
mitter, a legitimate receiver, and an eavesdropper with 𝑀𝑡,
𝑀𝑟, and 𝑀𝑒 antennas, respectively, as shown in Figure 1. The
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Fig. 1. A network diagram consisting of a multi-antenna transmitter, a
legitimate receiver and an eavesdropper. Eavesdropper is assumed to know
the full channel state information (including both CDI and channel quality
information (CQI)) of the legitimate receiver.

system model presented in this section is focused only on the
MISOSE case where 𝑀𝑡 > 𝑀𝑒 = 𝑀𝑟 = 1; while extensions
to the MIMOME case (where 𝑀𝑒 ≥ 1 and 𝑀𝑟 ≥ 1) will be
presented in Section VI. Let x[𝑖] ∈ ℂ𝑀𝑡×1 be the symbol
vector transmitted in the 𝑖th time slot under the average
power constraint E

[∥x[𝑖]∥2] ≤ 𝑃 . The signals received at
the receiver and the eavesdropper are

𝑦𝑟[𝑖] = h𝑟x[𝑖] + 𝑧𝑟[𝑖] and 𝑦𝑒[𝑖] = h𝑒x[𝑖] + 𝑧𝑒[𝑖], (1)

respectively, where h𝑟,h𝑒 ∈ ℂ1×𝑀𝑡 are channel vectors
of the receiver and the eavesdropper, respectively, with the
same distribution 𝒞𝒩 (0, I𝑀𝑡), and 𝑧𝑟[𝑖] ∼ 𝒞𝒩 (0, 1), 𝑧𝑒[𝑖] ∼
𝒞𝒩 (0, 𝜎2

𝑒) are the additive white Gaussian noise (AWGN).
Note that, in this case, the channel directions g𝑟 = h𝑟/∥h𝑟∥
and g𝑒 = h𝑒/∥h𝑒∥ are isotropically distributed on the unit
sphere [12]. In this paper, we will assume that h𝑟 and h𝑒
are ergodic block-fading channels that remain constant over a
sufficient amount of time for signal transmission and feedback,
and the messages are coded across multiple fading blocks (c.f.
(9) below). Our results can be readily extended to the case with
ergodic fast-fading channels [3].

Most works on physical-layer secrecy consider the problem
of reliably communicating a secret message from the
transmitter to the legitimate receiver subject to a constraint
on the information attainable by the eavesdropper. Consider
a (2𝑛𝑅, 𝑛)-code with an encoder 𝜇𝑛 : 𝒲𝑛 → ℂ𝑀𝑡×𝑛 that
maps the message 𝑤 ∈ 𝒲𝑛 = {1, 2, . . . , 2𝑛𝑅} into a length-𝑛
codeword {x[𝑖]}𝑛𝑖=1 and a decoder 𝜈𝑛 at the legitimate
receiver that maps the received sequence {𝑦𝑟[𝑖]}𝑛𝑖=1 to an
estimated message 𝑤̂ ∈ 𝒲𝑛. Define the error event as
ℰ𝑛 = {𝑤̂ ∕= 𝑤}. Perfect secrecy and secrecy capacity are
defined as follows.

Definition 1 (Secrecy Capacity [2][4]): Perfect secrecy is
achievable with rate 𝑅 if, for any 𝜀′ > 0, there exists a
sequence of (2𝑛𝑅, 𝑛)-codes and an integer 𝑛0 such that, for
any 𝑛 > 𝑛0,

Pr(ℰ𝑛) ≤ 𝜀′, and 𝐻(𝑤∣{𝑦𝑒[𝑖]}𝑛𝑖=1,h
𝑛
𝑟 ,h

𝑛
𝑒 )/𝑛 > 𝑅− 𝜀′,
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where 𝑤 is the secret message, h𝑛𝑟 and h𝑛𝑒 are the collections
of h𝑟 and h𝑒 over code length 𝑛, respectively. The secrecy
capacity is the supremum of all achievable secrecy rates.

Note that the secrecy rate considered here is achieved by
encoding over multiple channel states and the perfect secrecy
constraint must be satisfied for all 𝑛 > 𝑛0. This implies that no
secrecy outage [13] is allowed. In delay-limited applications,
such perfect secrecy condition may not be achievable and,
thus, a tradeoff exists between secrecy rate and secrecy outage
probability. These issues have been discussed in [13] and are
beyond the scope of this paper.

In this paper, we consider the case where the eavesdropper’s
channel h𝑒 and noise variance 𝜎2

𝑒 are unknown to the trans-
mitter. In this case, the optimal signaling for the MISOSE
channel is unknown (except for special cases given in [2]
[4]). To guarantee secrecy, Goel and Negi proposed in [5]
the use of artificial noise (AN) to disrupt the reception of
eavesdropper while beamforming the message towards the
legitimate receiver. The transmitted signal is given by

x[𝑖] = p𝑠[𝑖] +Qa[𝑖], (2)

where 𝑠[𝑖] is the message-bearing signal with E[∣𝑠[𝑖]∣2] = 𝜎2
𝑠 ,

p ∈ ℂ𝑀𝑡×1 is the normalized beamforming vector for 𝑠[𝑖],
Q ∈ ℂ𝑀𝑡×(𝑀𝑡−1) is a matrix with columns that form an
orthonormal basis for the AN subspace, and a[𝑖] is the AN
vector which is a random Gaussian vector with distribution
𝒞𝒩 (0, 𝜎2

𝑎I𝑀𝑡−1). Here 𝑠[𝑖] and a[𝑖] are assumed to be inde-
pendent.

MISOSE Secrecy Rate with Quantized CDI

Following the studies on quantized channel feedback in
[7], [8], we assume that the receiver is able to obtain perfect
knowledge of h𝑟, but can send back only a quantized version
of the CDI, i.e., g𝑟 = h𝑟/∥h𝑟∥, to the transmitter due to
limited feedback channel bandwidth. The CQI, i.e., ∥h𝑟∥,
is assumed unknown at the transmitter. However, as we
show later in Section V, lack of such information under the
quantized feedback scenario has little impact on the secrecy
rate when the transmission power 𝑃 is large.

Suppose that the CDI g𝑟 is quantized into one of 2𝐵 unit-
norm channel vectors in the codebook 𝒞 ≜ {c1, ..., c2𝐵}
according to the minimum distance criterion [7], and the corre-
sponding index, denoted by ℓ★ = argmaxℓ=1,...,2𝐵 ∥g𝑟c𝐻ℓ ∥, is
sent back to the transmitter. Let ĝ𝑟 ≜ cℓ★ be the corresponding
quantized CDI vector. The quantization cell associated with
cℓ ∈ 𝒞 is given by

𝒱ℓ = {g∣ ∣gc𝐻ℓ ∣2 ≥ ∣gc𝐻𝑗 ∣2 ∀ 𝑗 ∕= ℓ}. (3)

To gain analytical insights on the impact of quantized CDI,
we adopt the random vector quantization (RVQ) codebook [7],
[8], where each codeword is a randomly and independently
generated 𝑀𝑡-dimensional unit-norm complex Gaussian vec-
tor and, thus, is isotropically distributed in ℂ1×𝑀𝑡 [12]. More-
over, we will also utilize the quantization cell approximation
(QCA) model [7], [14], where each quantization cell 𝒱ℓ is
approximated by a Voronoi region of a spherical cap with the
surface area approximately equal to 2−𝐵 of the total surface

area of the 𝑀𝑡-dimensional unit sphere. It has been shown in
[7], [8] that the behavior of RVQ can be closely approximated
by this model, even for small 𝐵. Specifically, the quantization
cell 𝒱ℓ in (3) is approximated by

𝒱ℓ ≈ {g∣ ∣gc𝐻ℓ ∣2 ≥ 1− 𝛿}, 𝛿 = 2−
𝐵

𝑀𝑡−1 . (4)

Define ∣g𝑟ĝ𝐻𝑟 ∣2 = ∣g𝑟c𝐻ℓ★ ∣2 ≜ cos2 𝜃 ≥ 1− 𝛿. The cumulative
distribution function (CDF) of sin2 𝜃 is [7]

Pr(sin2 𝜃 ≤ 𝑥) =

{
2𝐵𝑥𝑀𝑡−1, for 0 ≤ 𝑥 ≤ 𝛿
1, otherwise.

(5)

When only the quantized CDI ĝ𝑟 is available at the trans-
mitter, the beamforming vector p and the matrix Q in (2) are
set to ĝ𝐻𝑟 and Nĝ𝑟

, respectively, where Nĝ𝑟
has columns that

form an orthonormal basis for the null space of ĝ𝑟. Therefore,
the transmitted signal is given by

x[𝑖] = ĝ𝐻𝑟 𝑠[𝑖] +Nĝ𝑟
a[𝑖]. (6)

Note that finding the optimal p and Q under quantized CDI
is in general difficult due to AN leakage. Our choice of
using p = ĝ𝑟 is motivated by [7], [9] where the multi-
user interference in their case has a similar effect as the
AN leakage in our case. To satisfy the power constraint
E[∥x[𝑖]∥2] = 𝜎2

𝑠 +(𝑀𝑡− 1)𝜎2
𝑎 ≤ 𝑃 , we set 𝜎2

𝑠 = 𝛼𝑃 and
𝜎2
𝑎 =

(1−𝛼)𝑃
𝑀𝑡−1 , where 𝛼 ∈ [0, 1] denotes the fraction of

power allocation. Since the eavesdropper’s noise variance 𝜎2
𝑒

is assumed unknown to the transmitter, we shall consider
throughout the rest of this paper the worst-case scenario where
𝜎2
𝑒 = 0. By (1), the received signals of the receiver and the

eavesdropper are given by

𝑦𝑟[𝑖] = ∥h𝑟∥(g𝑟ĝ𝐻𝑟 )𝑠[𝑖] + ∥h𝑟∥(g𝑟Nĝ𝑟
)a[𝑖] + 𝑧𝑟[𝑖], (7)

and

𝑦𝑒[𝑖] = h𝑒ĝ
𝐻
𝑟 𝑠[𝑖] + h𝑒Nĝ𝑟

a[𝑖], (8)

respectively. One can observe from (7) that, due to imperfect
CDI, the AN that was originally intended for the eavesdropper
also interferes with the legitimate receiver. By assuming that
𝑠[𝑖] is Gaussian and from (7) and (8), the achievable secrecy
rate under quantized CDI is

𝑅̂(𝛼) = (𝐼(𝑠; 𝑦𝑟∣h𝑟)− 𝐼(𝑠; 𝑦𝑒∣h𝑟,h𝑒))+

=

(
E

⎡⎣log
⎛⎝1+ ∥h𝑟∥2 cos2 𝜃 ⋅ 𝛼𝑃

∥h𝑟∥2 sin2 𝜃
(

1−𝛼
𝑀𝑡−1

)
𝑃 + 1

⎞⎠⎤⎦
−E

⎡⎣log
⎛⎝1+ ∣∣h𝑒ĝ𝐻𝑟 ∣∣2 𝛼

∥h𝑒Nĝ𝑟
∥2
(

1−𝛼
𝑀𝑡−1

)
⎞⎠⎤⎦)+

, (9)

where we have used the fact that ∥g𝑟Nĝ𝑟
∥2 = 1−∣g𝑟ĝ𝐻𝑟 ∣2 =

sin2 𝜃. The secrecy rate in (9) is achievable by coding across
multiple fading states, as shown in [1], [2]1. However, it is easy

1Note that, without CQI, the variable-rate coding in [2] can not be applied
and, thus, the result in (9) is derived based on the constant-rate coding scheme,
which can also be found in [2].
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to see that, as 𝑃 goes to infinity, this secrecy rate converges
to the constant(

E

[
log

(
1+

𝛼 cos2 𝜃

sin2 𝜃 ⋅ (1− 𝛼)/(𝑀𝑡 − 1)
)

− log
(
1 +

∣h𝑒ĝ𝐻𝑟 ∣2𝛼
∥h𝑒Nĝ𝑟

∥2(1− 𝛼)/(𝑀𝑡 − 1)
)])+

. (10)

In fact, this secrecy rate is bounded even for arbitrary distri-
butions of 𝑠[𝑖] and with the CQI at the transmitter, as we will
show later in Section V.

In contrast, in the perfect CDI case where g𝑟 is perfectly
known at the transmitter, one can impose AN perfectly in the
null space of g𝑟 (i.e., choosing Q = Ng𝑟 ) so that there is no
noise leakage, that is, g𝑟Q = g𝑟Ng𝑟 = 0 (or cos 𝜃 = 1). The
resultant secrecy rate in (9) is given by

𝑅(𝛼) =

(
E

[
log(1 + ∥h𝑟∥2𝛼𝑃 )

−log
(
1+

∣h𝑒g𝐻𝑟 ∣2𝛼
∥h𝑒Ng𝑟∥2(1 − 𝛼)/(𝑀𝑡 − 1)

)])+

,

(11)

which obviously can be made arbitrarily large by increasing
𝑃 .

Notice that, in the worst-case scenario where 𝜎2
𝑒 = 0, AN

is essential to achieving a nonzero secrecy rate. Specifically,
if one sets 𝛼 equal to 1 (no AN), then the second terms inside
(⋅)+ in (9) and (11) will go to infinity, leading to a zero secrecy
rate. However, AN may also cause significant loss in secrecy
rate under imperfect CDI due to AN leakage. Therefore, the
power allocation between the message-bearing signal 𝑠[𝑖] and
the AN a[𝑖] must be carefully determined when the number
of feedback bits 𝐵 is limited.

III. POWER ALLOCATION OF SIGNAL AND ARTIFICIAL

NOISE UNDER QUANTIZED CDI

In this section, we study the power allocation between
message-bearing signal 𝑠[𝑖] and AN a[𝑖] for a given number
of feedback bits 𝐵. To this end, we first present a useful
lemma which shows that for 𝑀𝑡 large, the second term inside
(⋅)+ in (9) will converge to a fixed value.

Lemma 1: Let E1(𝑥) =
∫∞
𝑥

𝑒−𝑡

𝑡 𝑑𝑡 be the exponential
integral, it follows that

lim
𝑀𝑡→∞

E

[
log

(
1 +

∣h𝑒ĝ𝐻𝑟 ∣2
∥h𝑒Nĝ𝑟

∥2
𝛼

(1 − 𝛼)/(𝑀𝑡 − 1)
)]

=
1

ln 2
E1

(
1− 𝛼

𝛼

)
exp

(
1− 𝛼

𝛼

)
. (12)

The proof is given in Appendix A. In this case, for 𝑀𝑡

sufficiently large, the achievable secrecy rate in (9) can be

expressed approximately as

𝑅̂(𝛼) ∼=
(
E

[
log

(
𝛾ĝ𝑟

𝛼𝑃

𝛾ĝ⊥
𝑟
(1− 𝛼)𝑃 + 1

)]

− 1

ln 2
E1

(
1− 𝛼

𝛼

)
exp

(
1− 𝛼

𝛼

))+

(13)

where

𝛾ĝ𝑟
≜ ∥h𝑟∥2 cos2 𝜃 and 𝛾ĝ⊥

𝑟
≜ ∥h𝑟∥2

𝑀𝑡 − 1 sin
2 𝜃 (14)

are the squared channel gains of h𝑟 that fall, respectively, in
the direction of ĝ𝑟 and in the orthogonal subspace of ĝ𝑟 (while
normalized by their respective dimensions). Let us define

𝐹 (𝛼) ≜E

[
log

(
𝛾ĝ𝑟

𝛼𝑃

𝛾ĝ⊥
𝑟
(1 − 𝛼)𝑃 + 1

)]

− 1

ln 2
E1

(
1− 𝛼

𝛼

)
exp

(
1− 𝛼

𝛼

)
such that 𝑅̂(𝛼) ∼= (𝐹 (𝛼))+. By taking the derivative of 𝐹 (𝛼)
and setting it to zero, i.e., ∂𝐹 (𝛼)

∂𝛼 = 0, it follows that the
optimal 𝛼, denoted by 𝛼★, must satisfy the necessary condition

E

[
𝛾ĝ𝑟

𝑃 (𝛾ĝ⊥
𝑟
𝑃 + 1)(1− 𝛼★)

(𝛾ĝ⊥
𝑟
(1−𝛼★)𝑃+1)(𝛾ĝ𝑟

𝛼★𝑃+𝛾ĝ⊥
𝑟
(1−𝛼★)𝑃 + 1)

]

=
1

𝛼★
− 1−𝛼★

(𝛼★)2
E1

(
1−𝛼★

𝛼★

)
exp

(
1−𝛼★

𝛼★

)
. (15)

Although a closed-form solution of 𝛼★ is not easily
computable due to the intractability of the expectation term
in (15), explicit results can be obtained for two interesting
special cases, namely, the case of weak AN leakage and the
case of strong AN leakage. In the case of weak AN leakage,
𝐵 is assumed sufficiently large such that AN leakage is much
smaller than AWGN, i.e. 𝛾ĝ⊥

𝑟
(1 − 𝛼)𝑃 ≪ 1. On the other

hand, in the case of strong AN leakage, 𝐵 is assumed to be
small such that 𝛾ĝ⊥

𝑟
(1 − 𝛼)𝑃 ≫ 1. For the former case, we

have the following proposition:

Proposition 1 (Weak AN Leakage): Let 𝛼𝑤 be the value
that satisfies 1−𝛼𝑤

𝛼𝑤
= 𝑑(𝛼𝑤), where

𝑑(𝛼★) ≜ 1

𝛼★
− 1−𝛼★

(𝛼★)2
E1

(
1−𝛼★

𝛼★

)
exp

(
1−𝛼★

𝛼★

)
.

Then, for 𝐵 > (𝑀𝑡 − 1) log(𝑃/𝜖) and any 𝜖 such that
1−𝛼𝑤

𝛼𝑤
> 𝜖 > 0, the optimal power allocation fraction 𝛼★

of 𝑅̂(𝛼) in (13) satisfies 𝛼𝑤 − 𝜖𝑙 < 𝛼★ < 𝛼𝑤 + 𝜖𝑢 for 𝑀𝑡

sufficiently large, where both 𝜖𝑢, 𝜖𝑙 > 0 and will approach 0
as 𝜖 approaches 0.

The proof is provided in Appendix B. Note that 𝑑(𝛼★)
comes from (15). Numerically, we can show that 𝛼𝑤 ≈ 0.554.
The fact that 𝛼★ is close to one half can also be roughly
observed from (9). Specifically, with 𝐵 sufficiently large, AN
leakage will be negligible and the first term in (9) will be
proportional to log𝛼 when 𝑀𝑡 is large. Also, by applying the
approximation E1(𝑥)𝑒

𝑥 ≈ ln(1+𝑥𝑥 ) (see [15]) and the results
of Lemma 1, the second term becomes − log(1 − 𝛼). In this
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case, (9) will be approximately proportional to log(𝛼(1−𝛼))
and the optimal 𝛼★ will be close to 0.5. The results of Propo-
sition 1 shows that, when channel knowledge is sufficiently
accurate, one should spend almost half the power on AN
to disrupt the eavesdroppers reception. However, this is not
the case under strong AN leakage as shown in the following
proposition.

Proposition 2 (Strong AN Leakage): For any 𝜖 > 0 and
𝑃 ≥ 1/(𝜖𝛿/2), the optimal power allocation fraction 𝛼★ of
𝑅̂(𝛼) in (13) satisfies

𝛼★ > min

{
1− 𝜖

1 + 𝜖
, 1− 1

𝜖(𝛿/2)𝑃

}
, (16)

for 𝜂 ≜ 𝐵/𝑀𝑡 > 0 fixed and for 𝑀𝑡 sufficiently large, where
𝛿 was defined in (4).

The proof is given in Appendix C. According to Proposition
2, when 𝑃 ≫ 1/(𝜖𝛿/2) = (2/𝜖)2𝐵/(𝑀𝑡−1) [by (4)], or
equivalently when 𝐵 ≪ (𝑀𝑡 − 1) log(𝜖𝑃/2), the optimal 𝛼★

approaches 1 since 𝜖 can be chosen arbitrarily small. This
implies that, when the channel quantization is coarse, i.e.,
𝐵 is not large enough, one should allocate less power for
the AN simply owing to the severe AN leakage. While we
have examined the optimal power allocation strategy under
quantized CDI, this is not yet sufficient to guarantee a bounded
secrecy rate loss compared to the perfect CDI case, as we will
present in the next section.

IV. SCALING OF THE NUMBER OF FEEDBACK BITS IN THE

MISOSE CASE

In the previous section, the optimal power allocation be-
tween the message-bearing signal and the AN has been
presented to reduce the secrecy rate loss under a given trans-
mission power 𝑃 . However, as 𝑃 increases, the secrecy rate
loss compared to the perfect CDI case will become arbitrarily
large for a fixed 𝐵 since the achievable secrecy rate under
perfect CDI (c.f. (11)) increases without bound while that
under quantized CDI (cf. (9)) is bounded for any value of
𝛼. To resolve this problem, we derive in this section the value
of 𝐵 that is needed for maintaining a constant secrecy rate
loss.

Let us define the secrecy rate loss as

Δ𝑅 ≜ max
𝛼

𝑅(𝛼)−max
𝛼

𝑅̂(𝛼) ≤ 𝑅(𝛼★p)− 𝑅̂(𝛼★p) (17)

where 𝛼★p = argmax𝛼𝑅(𝛼). The bound follows since the
secrecy rate under quantized CDI is generally not maximized
with 𝛼 = 𝛼★p. Note, by Proposition 1, that 𝛼★p ≈ 0.5 when 𝑀𝑡

is large. Recalling (9) and (11), and the worst-case assumption
of 𝜎2

𝑒 = 0, we have

𝑅(𝛼★p) =

(
E
[
log(1 + ∥h𝑟∥2𝛼★p𝑃 )

]−
E

[
log

(
1+

∣h𝑒g𝐻𝑟 ∣2𝛼★p
∥h𝑒Ng𝑟∥2(1− 𝛼★p)/(𝑀𝑡 − 1)

)])+
(18)

and

𝑅̂(𝛼★p)=

(
E

⎡⎣log
⎛⎝1+ ∥hr∥2 cos2 𝜃 ⋅ 𝛼★p𝑃

∥h𝑟∥2 sin2 𝜃
(

1−𝛼★
p

𝑀𝑡−1

)
𝑃 + 1

⎞⎠⎤⎦
−E

⎡⎣log
⎛⎝1+ ∣h𝑒ĝ𝐻𝑟 ∣2𝛼★p

∥h𝑒Nĝ𝑟
∥2
(

1−𝛼★
p

𝑀𝑡−1

)
⎞⎠⎤⎦)+

. (19)

As noted in [7], for any two independent and isotropi-
cally distributed unit-norm vectors w1,w2 ∈ ℂ1×𝑀𝑡 , their
squared inner product will be Beta-distributed with parameters
(1,𝑀𝑡 − 1), i.e., ∣w1w

𝐻
2 ∣2 ∼ 𝛽(1,𝑀𝑡 − 1). Applying this

result to g𝑒 = h𝑒/∥h𝑒∥ and g𝑟, one can have ∣h𝑒g𝐻𝑟 ∣2 =
∥h𝑒∥2𝛽(1,𝑀𝑡 − 1). This implies that the second term inside
(⋅)+ in (18) can be written as

E

⎡⎣log
⎛⎝1+ ∣h𝑒g𝐻𝑟 ∣2𝛼★p

∥h𝑒Ng𝑟∥2
(

1−𝛼★
p

𝑀𝑡−1

)
⎞⎠⎤⎦

=E

⎡⎣log
⎛⎝1 + 𝛽(1,𝑀𝑡 − 1)𝛼★p

(1− 𝛽(1,𝑀𝑡 − 1))
(

1−𝛼★
p

𝑀𝑡−1

)
⎞⎠⎤⎦ ,

where we have used the fact that ∥h𝑒Ng𝑟∥2 = ∥h𝑒∥2 −
∣h𝑒g𝐻𝑟 ∣2. The same argument also applies to the second term
inside (⋅)+ in (19) since g𝑒 and ĝ𝑟 are also independent and
isotropically distributed under RVQ. Therefore, the second
terms inside (⋅)+ in both (18) and (19) yield the same value,
and thus the secrecy rate loss in (17) can be bounded as

Δ𝑅 ≤ E[log(1 + ∥h𝑟∥2 ⋅ 𝛼★p𝑃 )]

−E

⎡⎣log
⎛⎝1+ ∥h𝑟∥2 cos2 𝜃 ⋅ 𝛼★p𝑃

∥h𝑟∥2 sin2 𝜃 ⋅ (1−𝛼★
p)

(𝑀𝑡−1)𝑃 + 1

⎞⎠⎤⎦ .

(20)

By further evaluating the expectation and by applying
Jensen’s inequality [16], we show in Appendix D the
following theorem:

Theorem 1: The secrecy rate loss between perfect and
quantized CDI is upper-bounded by

Δ𝑅 < log

[
𝑀𝑡(1 − 𝛼★p)𝑃2

−𝐵
𝑀𝑡−1 + (𝑀𝑡 − 1)

(𝑀𝑡 − 1)(1− 2
𝐵

𝑀𝑡−1 )

]

+ log

[(
1 +

1

(𝑀𝑡 − 1)𝛼★p𝑃
)]

. (21)

This theorem implies that, to maintain a constant secrecy
rate loss of 𝑐, i.e., Δ𝑅 ≤ 𝑐, 𝐵 must be chosen such that

𝐵 ≥ (𝑀𝑡 − 1) log
[

𝑀𝑡

𝑀𝑡 − 1 ⋅ (1− 𝛼★p)𝑃

2𝑐−𝑐′(𝑃,𝑀𝑡) − 1

+
2𝑐−𝑐′(𝑃,𝑀𝑡)

2𝑐−𝑐′(𝑃,𝑀𝑡) − 1

]
, (22)

where

𝑐′(𝑃,𝑀𝑡) = log
(
(𝑀𝑡 − 1)𝛼★p𝑃 + 1

)− log ((𝑀𝑡 − 1)𝛼★p𝑃
)
.



906 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 10, NO. 3, MARCH 2011

Notice that 𝑐′(𝑃,𝑀𝑡) approaches to 0 as 𝑀𝑡 or 𝑃 increases.
Hence, to guarantee a constant secrecy rate loss, 𝐵 must
scale linearly with 𝑀𝑡 or logarithmically with 𝑃 , i.e., 𝐵 =
Ω(𝑀𝑡 log𝑃 ) in big-Ω notation [17].

V. DISCUSSIONS ON THE IMPACT OF CQI AND INPUT

DISTRIBUTIONS

In the previous sections, we have shown that the achievable
secrecy rate under quantized CDI is bounded under Gaussian
𝑠[𝑖] and in the absence of CQI at the transmitter. This
result has motivated our study on the scaling of 𝐵 in order
to maintain a constant secrecy rate loss. In this section,
we present a stronger result: The distribution of 𝑠[𝑖] and
knowledge of CQI in fact have limited impact on the
achievable secrecy rate, and therefore the scaling of 𝐵 in
(22) is essential to the secrecy rate loss control. Specifically,
we prove in Appendix E the following theorem:

Theorem 2: Consider the MISOSE signal model in (7) and
(8) under quantized CDI. Suppose that the message-bearing
signal 𝑠[𝑖] follows an arbitrary statistical distribution, and
that the transmitter perfectly knows the CQI ∥h𝑟∥. Then the
achievable secrecy rate 𝑅̂ is upper bounded by a constant
𝑅̂𝑈𝐵 as

𝑅̂ ≤ 𝑅̂𝑈𝐵 ≜ E

[(
log

∣g𝑟ĝ𝐻𝑟 ∣2
∥g𝑟Nĝ𝑟

∥2
∥g𝑒Nĝ𝑟

∥2
∣g𝑒ĝ𝐻𝑟 ∣2

)+]
, (23)

where g𝑒 = h𝑒/∥h𝑒∥.

It can be observed that this bound neither depends on
the power nor on the channel gains, but depends only on
the channel directions and 𝐵 (since both ĝ𝑟 and Nĝ𝑟

are
functions of 𝐵). More interestingly, for 𝑀𝑡 sufficiently large,
the difference between this bound and the achievable secrecy
rate in (9) can be small as 𝑃 → ∞. This is stated in the
following corollary.

Corollary 1: Given the values of 𝛼 ∈ (0, 1) and
𝜂 ≜ 𝐵/𝑀𝑡 > 0, for any 𝜀 > 0, the difference between the
upper bound in (23) and the achievable secrecy rate in (9) is
no greater than ∣ log𝛼∣ + 0.83 + 𝜀, when 𝑀𝑡 is sufficiently
large and 𝑃 is sufficiently larger than (2/(1− 𝛼))2

𝐵
𝑀𝑡−1 .

The proof of Corollary 1 is given in Appendix F. It is
worthwhile to note that, with 𝛼 fixed, the upper bound given
in (23) can increase without bound by increasing the ratio
𝐵/𝑀𝑡 since ∥g𝑟Nĝ𝑟

∥ will go to zero in this case. Therefore,
by Corollary 1, the ratio between the achievable secrecy rate
in (9) and the upper bound in (23) will approach 1, when
𝛼 is fixed and when 𝑀𝑡 and 𝑃 are sufficiently large. That
is, the secrecy rate loss will become negligible compared to
the achievable secrecy rate. Since the bound in (23) holds for
arbitrary distributions of 𝑠[𝑖] and for full CQI at the transmitter,
Corollary 1 further implies that Gaussian 𝑠[𝑖] is nearly optimal
and the CQI at the transmitter does not provide much gain for
the achievable secrecy rate in (9).

VI. EXTENSIONS TO THE MIMOME SCENARIO

In this section, we extend our studies to the MIMOME
scenario where 𝑀𝑟, 𝑀𝑒 ≥ 1, and derive the scaling of the
number of feedback bits 𝐵 under this scenario. The received
signals at the receiver and the eavesdropper can be expressed
as

y𝑟 = H𝑟x+ z𝑟 and y𝑒 = H𝑒x, (24)

where we have assumed that the eavesdropper does not suffer
from noise. As in the MISOSE case, the channel matrices
H𝑟 ∈ ℂ𝑀𝑟×𝑀𝑡 and H𝑒 ∈ ℂ𝑀𝑒×𝑀𝑡 are assumed to be ergodic
block faded, with each entry being i.i.d. complex Gaussian
with zero mean and unit variance.

Assume that 𝑀𝑡 ≥ 𝑀𝑟 +𝑀𝑒. Let H𝑟 = VΣU𝐻 be the
singular value decomposition of H𝑟, where V ∈ ℂ𝑀𝑟×𝑀𝑟

is a unitary matrix, Σ ∈ ℂ𝑀𝑟×𝑀𝑟 is a diagonal matrix
with the singular values of H𝑟 being the diagonal elements,
and U ∈ ℂ𝑀𝑡×𝑀𝑟 is a semi-unitary matrix. The transmitter
knows a quantized version of the CDI, i.e., Û ∈ ℂ𝑀𝑡×𝑀𝑟 .
Let NÛ ∈ ℂ𝑀𝑡×(𝑀𝑡−𝑀𝑟) be a matrix whose columns
form an orthonormal basis for the null space of Û𝐻 , the
transmitted signal is given by x = Ûs + NÛa, where
s ∈ ℂ𝑀𝑟 is the message-bearing signal with distribution
𝒞𝒩 (0, 𝜎2

𝑠I𝑀𝑟 ), and a ∈ ℂ𝑀𝑡−𝑀𝑟 is the imposed AN with
distribution 𝒞𝒩 (0, 𝜎2

𝑎I𝑀𝑡−𝑀𝑟 ). We let 𝜎2
𝑠 = 𝛼𝑃/𝑀𝑟 and

𝜎2
𝑎 = (1− 𝛼)𝑃/(𝑀𝑡 −𝑀𝑟) where 0 ≤ 𝛼 ≤ 1, in order

to constrain the transmission power within 𝑃 . Substituting
x = Ûs+NÛa and H𝑟 = VΣU𝐻 into (24) yields

y𝑟 = VΣU𝐻Ûs+VΣU𝐻NÛa+ z𝑟 (25)

y𝑒 = H𝑒Ûs+H𝑒NÛa. (26)

Since U𝐻NÛ ∕= 0, the legitimate receiver will experience AN
leakage, resulting in the achievable secrecy rate (27) given in
the top of the next page.

Similar to the MISOSE case, the secrecy rate due to imper-
fect CDI also converges to a constant as 𝑃 goes to infinity.
For the case where perfect CDI is available at the transmitter,
the transmit signal is given by x = Us + NUa. Since
U𝐻U = I𝑀𝑟 and U𝐻NU = 0, the achievable MIMOME
secrecy rate with perfect CDI [5] is given by

𝑅M(𝛼) =

(
E
[
log

∣∣I𝑀𝑟+Σ2𝜎2
𝑠

∣∣]
−E

[
log

∣∣∣I𝑀𝑟 + 𝜎2
𝑠U

𝐻H𝐻
𝑒

(
𝜎2
𝑎H𝑒NUN𝐻

UH𝐻
𝑒

)−1
H𝑒U

∣∣∣])+

.

(28)

The MIMOME secrecy rate in (28) can be made arbitrarily
large by increasing 𝑃 since the first term inside (⋅)+ increases
without bound while the second term inside (⋅)+ is bounded
as 𝑃 → ∞. Therefore, for a given 𝐵, the secrecy rate loss
compared to the perfect CDI case will become unbounded as
𝑃 increases.

A. Random Quantization Codebook Model

To analyze the achievable secrecy rate under quantized
CDI, let us consider the random quantization codebook
𝒞 = {C1, . . . ,C2𝐵}, where the 2𝐵 semi-unitary matrices
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𝑅̂𝑀 (𝛼) =

(
E

[
log

∣∣∣I𝑀𝑟 + 𝜎2
𝑠Û

𝐻UΣ
(
I𝑀𝑟 + 𝜎2

𝑎ΣU𝐻NÛN𝐻
Û
UΣ

)−1
ΣU𝐻Û

∣∣∣ ]
−E

[
log

∣∣∣I𝑀𝑟 + 𝜎2
𝑠Û

𝐻H𝐻
𝑒

(
𝜎2
𝑎H𝑒NÛN𝐻

Û
H𝐻

𝑒

)−1
H𝑒Û

∣∣∣ ])+

. (27)

are chosen independently and isotropically over the 𝑀𝑡×𝑀𝑟

Grassmann manifold (which is the set of all 𝑀𝑟-dimensional
subspaces in an 𝑀𝑡-dimensional space) [18]. The quantized
CDI must meet

Û = arg min
C∈𝒞

𝑑2(U,C), (29)

where 𝑑(U,C) = 𝑀𝑟 − Tr(U𝐻CC𝐻U) is the chordal
distance between U and C [18]. In this model, the average
distortion between Û and U can be upper bounded as [18]

𝐷 ≜ E[𝑑2(U, Û)] ≤ 1

𝑚
Γ(
1

𝑚
)Φ−1/𝑚 2−𝐵/𝑚, (30)

where Γ(⋅) is the Gamma function, 𝑚 = 𝑀𝑟(𝑀𝑡 − 𝑀𝑟),
and Φ = 1

Γ(𝑚+1)

∏𝑀𝑐

𝑖=1
𝑀𝑡−𝑖+1
𝑀𝑐−𝑖+1 where 𝑀𝑐 ≜

𝑀𝑟 − 2[𝑀𝑟 − 𝑀𝑡/2]
+. The following lemma describes

the relation between U and Û.

Lemma 2 ([9]): Under the random quantization codebook
model, the quantized CDI Û and the true CDI U satisfy

U = ÛXY + ŜR, (31)

where X ∈ ℂ𝑀𝑟×𝑀𝑟 is a unitary matrix and Y ∈ ℂ𝑀𝑟×𝑀𝑟 is
an upper triangular matrix which is statistically independent
of X and satisfies U𝐻ÛÛ𝐻U = Y𝐻Y and E

(
Y𝐻Y

)
=

(1−𝐷/𝑀𝑟) I𝑀𝑟 . Moreover, the columns of Ŝ ∈ ℂ𝑀𝑡×𝑁

form an orthonormal basis for an isotropically distributed
𝑁 -dimensional subspace in the range space of NÛ, where
𝑁 = min{𝑀𝑡 − 𝑀𝑟,𝑀𝑟}, and R ∈ ℂ𝑁×𝑀𝑟 satisfies
U𝐻NÛN𝐻

Û
U = R𝐻R and E

(
R𝐻R

)
= (𝐷/𝑀𝑟)I𝑀𝑟 .

B. Scaling of the Number of Feedback Bits 𝐵

Given properties of the random quantization codebook in
Lemma 2, we are ready to analyze the MIMOME secrecy rate
loss. Since the elements of H𝑟 are complex i.i.d. Gaussian,
the channel direction U is isotropically distributed in the 𝑀𝑡-
by-𝑀𝑟 Grassmann manifold, and thus NU is isotropically
distributed in the 𝑀𝑡-by-(𝑀𝑡 − 𝑀𝑟) Grassmann manifold.
In fact, the quantized CDI Û has the same distribution as
U under random quantization. Hence, by following similar
arguments as in the MISOSE case and by the fact that
NUN𝐻

U = I𝑀𝑟 − UU𝐻 and NÛN𝐻
Û
= I𝑀𝑟 − ÛÛ

𝐻
, the

second terms inside (.)+ of (28) and (27) turn out to be
identical. Hence the MIMOME secrecy rate loss Δ𝑅𝑀 ≜
max𝛼𝑅𝑀 (𝛼) −max𝛼 𝑅̂𝑀 (𝛼) can be upper bounded as

Δ𝑅𝑀 ≤E
(
log

∣∣I𝑀𝑟 +Σ2𝜎★2𝑠
∣∣)

−E
(
log

∣∣∣I𝑀𝑟 + 𝜎★2𝑠 Û𝐻UΣΩ−1ΣU𝐻Û
∣∣∣)

≤E
(
log

∣∣I𝑀𝑟 +Σ2𝜎★2𝑠
∣∣)

−E
(
log

∣∣∣𝜎★2𝑠 Û𝐻UΣΩ−1ΣU𝐻Û
∣∣∣) , (32)

where Ω ≜ I𝑀𝑟 + 𝜎★2𝑎 ΣU𝐻NÛN𝐻
Û
UΣ, and 𝜎★2𝑠 =

𝛼★p,𝑀𝑃/𝑀𝑟 , 𝜎★2𝑎 = (1− 𝛼★p,𝑀 )𝑃/(𝑀𝑡 −𝑀𝑟) in which
𝛼★p,𝑀 = argmax𝛼𝑅𝑀 (𝛼). By Lemma 2, we have that
Û𝐻U = Û𝐻ÛXY + Û𝐻 ŜR = XY. Since X and Y
are statistically independent (by Lemma 2), it follows with
probability one that Û𝐻U is full rank [19]. Hence, the secrecy
rate loss Δ𝑅𝑀 can be further bounded by

Δ𝑅𝑀 ≤ E
[
log

∣∣I𝑀𝑟 +Σ−2/𝜎★2𝑠
∣∣]+E [log ∣Ω∣]

−E
[
log

∣∣∣U𝐻ÛÛ𝐻U
∣∣∣]

≤ log
∣∣I𝑀𝑟 +E

[
Σ−2

]
/𝜎★2𝑠

∣∣
+ log

∣∣I𝑀𝑟 + 𝜎★2𝑎 E
[
Σ2
]
E
[
R𝐻R

]∣∣
−E

[
log

∣∣Y𝐻Y
∣∣] , (33)

where the second inequality follows from Jensen’s inequality,
the statistical independence between Σ and U𝐻ÛÛ𝐻U [19],
and Lemma 2.

For the first term in (33), since E
[
Tr
(
(H𝑟H

𝐻
𝑟 )

−1
)]
=

E
[
Tr(Σ−2)

]
=𝑀𝑟/(𝑀𝑡 −𝑀𝑟) [19],

log

∣∣∣∣I𝑀𝑟 +E
[
Σ−2

] 1
𝜎★2𝑠

∣∣∣∣
≤𝑀𝑟 log

(
Tr
(
I𝑀𝑟 +E

[
Σ−2

])
𝑀𝑟𝜎★2𝑠

)

=𝑀𝑟 log

(
1 +

1/𝜎★2𝑠
𝑀𝑡 −𝑀𝑟

)
,

where the first inequality is due to the fact that ∣A∣ 1
𝑀𝑟 ≤

Tr(A)/𝑀𝑟 for any 𝑀𝑟 ×𝑀𝑟 Hermitian positive semidefinite
matrix A. For the second term in (33), by Lemma 2 and the
fact that E

[
Σ2
]
=𝑀𝑡I𝑀𝑟 [19], one can show that

log
∣∣I𝑀𝑟 + 𝜎★2𝑎 E

[
Σ2
]
E
[
R𝐻R

]∣∣
=𝑀𝑟 log

(
1 + 𝜎★2𝑎 𝑀𝑡𝐷/𝑀𝑟

)
.

The third term −E
(
log

∣∣Y𝐻Y
∣∣) in (33) is, however, difficult

to evaluate. By applying Jensen’s inequality and Lemma
2, we have −E

[
log

∣∣Y𝐻Y
∣∣] ≥ − log ∣∣E [Y𝐻Y

]∣∣ =
−𝑀𝑟 log (1−𝐷/𝑀𝑟). We note that (by (30)) the right-hand
side (RHS) of this inequality approaches zero for 𝐵 suffi-
ciently large; while the term log

∣∣Y𝐻Y
∣∣ = log ∣∣∣U𝐻ÛÛ𝐻U

∣∣∣
is also close to zero with high probability for 𝐵 suf-
ficiently large due to random quantization codebook. We
therefore make the approximation −E

[
log

∣∣Y𝐻Y
∣∣] ≈

−𝑀𝑟 log (1−𝐷/𝑀𝑟) for 𝐵 sufficiently large. By substituting
these results into (33), we obtain

Δ𝑅𝑀 ⪅ 𝑀𝑟 log

(
𝑀𝑟 + 𝜎★2𝑎 𝑀𝑡𝐷

𝑀𝑟 −𝐷

)
+𝑀𝑟 log

(
1 +

1/𝜎★2𝑠
𝑀𝑡 −𝑀𝑟

)
. (34)
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Fig. 2. Simulation results of the MISOSE secrecy rates [in (9) and (11)]
versus the power allocation fraction 𝛼 for 𝑃 = 25 dB.
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Fig. 3. Simulation results of the MISOSE secrecy rates [in (9) and (11)]
versus the transmission power 𝑃 for 𝛼 = 0.5. The number of feedback bits
𝐵 is scaled with 𝑃 according to the lower bound in (22).

By (34), to maintain a constant secrecy rate loss of 𝑐, i.e.,
Δ𝑅𝑀 ≤ 𝑐, it suffices to have

𝐵 ⪆ 𝑚̃𝑀𝑟

[
log

(
1 +

𝑃 (1− 𝛼★p,𝑀 )(𝑀𝑡/𝑚̃) + 1

2𝑐/𝑀𝑟 (𝛼★p,𝑀𝑃𝑚̃)/(𝛼★p,𝑀𝑃𝑚̃+ 1)− 1
)

+ log

(
Γ( 1

𝑚̃𝑀𝑟
)Φ

−1
𝑚̃𝑀𝑟

𝑚̃𝑀2
𝑟

)]
, (35)

where 𝑚̃ = 𝑀𝑡 − 𝑀𝑟. Note that the 𝐵 in (35) scales as
Ω(log𝑃 ) for fixed 𝑀𝑡 and 𝑀𝑟.

VII. SIMULATION RESULTS AND DISCUSSIONS

In this section, let us present simulation results to verify
our analytical results. To be practical, we set the number of
transmit antennas, i.e., 𝑀𝑡, to 4. Analytical results based on
large 𝑀𝑡 can be viewed as an approximation to the secrecy
rate performance for practical values of 𝑀𝑡, whereas our
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Fig. 4. Simulation results of the MISOSE secrecy rates [in (9) and (11)]
versus the number of transmitter antenna 𝑀𝑡 for 𝛼 = 0.5 and 𝑃 = 25 dB.
The number of feedback bits 𝐵 is scaled with 𝑀𝑡 according to the lower
bound in (22).
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Fig. 5. Simulation results of the MISOSE secrecy rates [in (9) and (11)]
versus the transmission power 𝑃 for 𝛼 = 0.9. The MISOSE secrecy rate
upper bound in (23) is also plotted.

simulation results match the analytical predictions well. Given
a realization of h𝑟, we used the numerical method in [9]
to generate the associated quantized CDI ĝ𝑟. This numerical
method simulates the quantization procedure of random quan-
tization codebook without generating a true codebook, thus
saving a lot of computational time. Each simulation result was
obtained by averaging over 10,000 channel realizations.

Figure 2 shows the simulation results of the MISOSE se-
crecy rate versus the power allocation fraction 𝛼 for transmis-
sion power 𝑃 = 25 dB. Both the secrecy rate with quantized
CDI in (9) and that with perfect CDI in (11) are considered.
As observed from this figure, with increased feedback bits 𝐵,
the optimum 𝛼 decreases from 0.9 (for 𝐵 = 10) to 0.55 (for
𝐵 = 32) and eventually gets close to 0.5 with perfect CDI.
These results are consistent with Propositions 1 and 2. To



LIN et al.: ON THE IMPACT OF QUANTIZED CHANNEL FEEDBACK IN GUARANTEEING SECRECY WITH ARTIFICIAL NOISE . . . 909

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14
Se

cr
ec

y 
ra

te
 (b

its
/p

cu
)

 

Perfect CDI
Quantized CDI
Quantized CDI
Quantized CDI

[in (28)]

[in (27)] (𝐵 = 10)
[in (27)] (𝐵 = 20)

[in (27)] (𝐵 = 35)

𝛼

Fig. 6. Simulation results of MIMOME secrecy rates [in (27) and (28)]
versus power allocation fraction 𝛼 for 𝑃 = 25 dB and 𝑀𝑟 = 𝑀𝑒 = 2.
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Fig. 7. Simulation results of the MIMOME secrecy rates [in (27) and (28)]
versus the transmission power 𝑃 for 𝛼 = 0.9 and 𝑀𝑟 = 𝑀𝑒 = 2.

verify the bit scaling law in Theorem 1, we show in Fig. 3 the
simulation results of the MISOSE secrecy rate in (9) versus
𝑃 for 𝛼 = 0.5. The number of feedback bits 𝐵 is scaled
according to the lower bound in (22) in order to maintain a
constant secrecy rate loss 𝑐 compared to the perfect CDI case.
Note that as suggested by Fig. 2, the optimum 𝛼★p under perfect
CDI in (22) is very close to 0.5. Here we examined the two
cases of 𝑐 = 1.5 and 𝑐 = 3. One can see from this figure that,
for 𝑃 = 30 dB, the secrecy rate losses are respectively 1.463
bits/pcu and 2.408 bits/pcu, both of which are well controlled
by the derived bit scaling law. In Fig. 4, we also verify the
MISOSE secrecy rate in (9) versus 𝑀𝑡 under 𝑃 = 25 dB using
(22). Again, the results agree with theoretical developments.
In Fig. 5, we show the simulation results of the MISOSE
secrecy rate in (9) versus 𝑃 for 𝛼 = 0.9 and 𝐵 = 10 and
𝐵 = 32, respectively. The secrecy rate upper bound in (23)
[see Theorem 2] is also simulated. As expected, the secrecy
rate with quantized CDI is upper bounded, in sharp contrast
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Fig. 8. Simulation results of the MIMOME secrecy rates [in (27) and (28)]
versus the transmission power 𝑃 for 𝛼 = 0.5 and 𝑀𝑟 = 𝑀𝑒 = 2. The
number of feedback bits 𝐵 is scaled with 𝑃 according to the lower bound in
(35).

to that with perfect CDI. Also, for large 𝑃 , one can observe
that the secrecy rate with quantized CDI in (9) approaches
the upper bound in (23) (for both cases of 𝐵 = 10 and
𝐵 = 32), which coincides with our discussions in Section V
and demonstrates that additional CQI at the transmitter only
provides little gain on the achievable secrecy rate as 𝑃 is large.

We show in Fig. 6 and Fig. 7 the MIMOME secrecy rate in
(27) versus 𝛼 and 𝑃 , respectively. The numbers of antennas of
the receiver and the eavesdropper are set as 2 (𝑀𝑟 =𝑀𝑒 = 2).
Similar observations as in the MISOSE case can be seen from
the two figures, that is, the optimum 𝛼 decreases to around
0.5 when 𝐵 increases, and the secrecy rate is upper bounded
for finite 𝐵. The MIMOME bit scaling law in (35) is also
examined, and the results are shown in Fig. 8. Although the
lower bound in (35) is derived through some approximations,
one can see from Fig. 8 that constant secrecy rate loss can
still be maintained using this bit scaling law.

VIII. CONCLUSIONS

We have examined the impact of quantized CDI on the
secrecy rate achievable with AN-assisted beamforming. In
view of the AN leakage problem, we have analyzed the
optimal power allocation strategy to maximize the achievable
secrecy rate under quantized CDI. Moreover, to maintain a
constant secrecy rate loss compared to the perfect CDI case,
we have shown that the number of feedback bits 𝐵 must
be scaled logarithmically with the transmission power 𝑃 for
both the MISOSE and the MIMOME cases. The presented
simulation results have confirmed our analytical results.
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APPENDIX

A. Proof of Lemma 1

Since h𝑒 ∼ 𝒞𝒩 (0, I𝑀𝑡), from [20, Chapter 5] we know that
∣h𝑒ĝ𝑟∣2 and ∥h𝑒Nĝ𝑟

∥2 are independent and distributed as 𝑣2
and 𝑣2𝑀𝑡−2, respectively, where 𝑣𝑘 is chi-square distributed
with degree of freedom 𝑘. Hence, it follows that

lim
𝑀𝑡→∞

E

[
log

(
1+

∣h𝑒ĝ𝐻𝑟 ∣2
∥h𝑒Nĝ𝑟

∥2
𝛼

(1−𝛼)/(𝑀𝑡−1)
)]

= lim
𝑀𝑡→∞

E

[
log

(
1+

𝑣2
𝑣2𝑀𝑡−2/(𝑀𝑡 − 1)

𝛼

1− 𝛼

)]
=E

[
log

(
1 +

𝑣2
2

𝛼

1− 𝛼

)]
(36)

where the last equality follows by 𝑣2𝑀𝑡−2/(2(𝑀𝑡− 1)) 𝑎.𝑠.→ 1
as 𝑀𝑡 → ∞ from the law of large numbers (LLN). Then,
equation (12) follows by evaluating the expectation over 𝑣2.
■

B. Proof of Proposition 1

Let 𝑑(𝛼★) and 𝛼𝑤 be defined as in the Proposition state-
ment, i.e., 𝑑(𝛼★) is the RHS of (15) and 𝛼𝑤 satisfies

1− 𝛼𝑤
𝛼𝑤

= 𝑑(𝛼𝑤).

Then, for 𝛼★ ∈ (0, 1) and 𝜖 such that 1−𝛼𝑤

𝛼𝑤
> 𝜖 > 0, we have

Fact 1: 𝑑(𝛼★) < 1.

Fact 2: For 𝛼★ < 𝛼𝑤, function

1− 𝛼★

𝛼★
1

1 + 𝜖
− 𝑑(𝛼★)

is strictly decreasing with respect to 𝛼★.

Fact 3: For 𝛼★ ≥ 𝛼𝑤 + 𝜖𝑢,

1− 𝛼★

𝛼★
(1 + 𝜖)− 𝑑(𝛼★) ≤ 0,

where 1−𝛼★

𝛼★ (1 + 𝜖) = 𝑑(𝛼★)∣𝛼★=𝛼𝑤+𝜖𝑢 since
1−𝛼★

𝛼★ (1 + 𝜖) − 𝑑(𝛼★) is strictly decreasing with respect
to 𝛼★.

Fact 1 can be easily shown by applying the following
inequality [15]

E1(𝑥) exp(𝑥) >
1

𝑥+ 1
, ∀𝑥 > 0. (37)

in the definition of 𝑑(𝛼★). For Fact 2, we want to show that

1− 𝛼★

𝛼★
1

1 + 𝜖
− 𝑑(𝛼★)

=
1

𝛼∗

( −𝜖

1 + 𝜖
+
1−𝛼★

𝛼★
E1

(
1−𝛼★

𝛼★

)
exp

(
1−𝛼★

𝛼★

))
− 1

1 + 𝜖
(38)

is strictly decreasing with respect to 𝛼★ for 𝛼★ < 𝛼𝑤. Note that
when 𝑥 > 0, 𝑥E1(𝑥) exp(𝑥) is strictly increasing with respect

to 𝑥, since from (37) its derivative−1+E1(𝑥) exp(𝑥)(1+𝑥) >
0. Therefore, the function

−𝜖

1 + 𝜖
+
1− 𝛼★

𝛼★
E1

(
1− 𝛼★

𝛼★

)
exp

(
1− 𝛼★

𝛼★

)
is strictly decreasing with respect to 𝛼★, for 𝛼★ ∈ (0, 1), and
is larger than zero if 𝛼★ < 1− 𝜖

1+𝜖 which follows from (37).
Moreover, since 𝛼★ ∈ (0, 1), the term 1

𝛼★ is also greater than
0 and is strictly decreasing with respect to 𝛼★. Therefore, for
1−𝛼𝑤

𝛼𝑤
> 𝜖 (or, equivalently, 1 − 𝜖

1+𝜖 > 𝛼𝑤), it follows that
(38) strictly decreases with respect to 𝛼★ for 𝛼∗ < 𝛼𝑤. Fact 3
can be proven following similar procedures. Note that, since

1− 𝛼★

𝛼★
(1+ 𝜖)−𝑑(𝛼★)∣𝛼★=𝛼𝑤 >

1− 𝛼★

𝛼★
−𝑑(𝛼★)∣𝛼★=𝛼𝑤 = 0,

it follows that 𝜖𝑢 must be greater than 0 since (38) is strictly
decreasing.

Given the facts above, let us first prove that 𝛼★ > 𝛼𝑤 − 𝜖𝑙.
Define the event

𝐴𝜖 ≜ {𝛾ĝ⊥
𝑟
𝑃 < 𝜖}

for any 𝜖 > 0. From (15) and the definition of 𝑑(𝛼★) in the
statement of Proposition, we have (39) in the top of the next
page. As for equation (39), (a) follows from the fact that 0 ≤
𝛾ĝ⊥

𝑟
𝑃 < 𝜖 under event 𝐴𝜖 and that 1 − 𝛼★ < 1, (b) follows

by the definition of 𝛾ĝ𝑟
in (14), and (c) is due to the fact that

𝐵
𝑀𝑡−1 > log(𝑃/𝜖) and that

∣g𝑟ĝ𝐻𝑟 ∣2 = cos2 𝜃 ≥ 1− 𝛿 = 1− 2− 𝐵
𝑀𝑡−1

which follows from the QCA model in (4). Moreover, with
the fact that ∥h𝑟∥2/𝑀𝑡

𝑎.𝑠.−→ 1 as 𝑀𝑡 → ∞ (which follows by
the LLN), we also have from (14) that

𝛾ĝ⊥
𝑟
=

∥h𝑟∥2
𝑀𝑡 − 1 sin

2 𝜃 < 2−
𝐵

𝑀𝑡−1

and, thus, Pr (𝐴𝜖) → 1 as 𝑀𝑡 → ∞, for 𝐵 > (𝑀𝑡 −
1) log(𝑃/𝜖) (or equivalently 𝑃2−

𝐵
𝑀𝑡−1 < 𝜖). Basically, the

RHS in (39) will then approach 1−𝛼★

𝛼★

(
1

1+𝜖

)
for 𝑀𝑡 suffi-

ciently large since ∥h𝑟∥2/𝑀𝑡 approaches 1 from the LLN and
1/𝑀𝑡 approaches 0. Then (39) becomes

𝑑(𝛼★) >
1− 𝛼★

𝛼★

(
1

1 + 𝜖

)
. (40)

Note that there must exist 𝛼★ sufficiently small such that
1−𝛼★

𝛼★
1

1+𝜖 − 𝑑(𝛼★) > 0 (which follows by Fact 1) and that

1− 𝛼★

𝛼★
1

1 + 𝜖
− 𝑑(𝛼★)∣𝛼★=𝛼𝑤 <

1− 𝛼★

𝛼★
− 𝑑(𝛼★)∣𝛼★=𝛼𝑤 = 0.

Then, by the strictly decreasing property given in Fact 2, there
must exist 𝜖𝑙 > 0 such that

1− 𝛼★

𝛼★
1

1 + 𝜖
= 𝑑(𝛼★)

for 𝛼★ = 𝛼𝑤 − 𝜖𝑙 and, thus, (40) holds for 𝛼★ > 𝛼𝑤 − 𝜖𝑙.
Now, let us prove that 𝛼★ < 𝛼𝑤 + 𝜖𝑢. Similarly, by (15),

we can write
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𝑑(𝛼★) > E

[
𝛾ĝ𝑟

𝑃 (𝛾ĝ⊥
𝑟
𝑃 + 1)(1− 𝛼★)

(𝛾ĝ⊥
𝑟
𝑃 (1− 𝛼★) + 1)(𝛾ĝ⊥

𝑟
𝑃 (1 − 𝛼★) + 𝛾ĝ𝑟

𝑃𝛼★ + 1)
1{𝐴𝜖}

]
(𝑎)
> E

[
𝛾ĝ𝑟

𝑃 (1− 𝛼★)

(1 + 𝜖)(𝛾ĝ𝑟
𝑃𝛼★ + 𝜖+ 1)

1{𝐴𝜖}

]
(𝑏)
=E

[
(1− 𝛼★)

𝛼★ + 𝜖+1
∥h𝑟∥2 cos2 𝜃⋅𝑃

(
1

1 + 𝜖

)
1{𝐴𝜖}

]

(𝑐)
> E

⎡⎢⎣ (1− 𝛼★)

𝛼★ + (𝜖+1)/𝑀𝑡

∥h𝑟∥2
𝑀𝑡

(𝑃−𝜖)

(
1

1 + 𝜖

)
1{𝐴𝜖}

⎤⎥⎦ (39)

𝑑(𝛼★) = (41)

E

[
𝛾ĝ𝑟𝑃 (𝛾ĝ⊥

𝑟
𝑃 + 1)(1− 𝛼★)

(𝛾ĝ⊥
𝑟
𝑃 (1− 𝛼★) + 1)(𝛾ĝ⊥

𝑟
𝑃 (1− 𝛼★) + 𝛾ĝ𝑟𝑃𝛼★ + 1)

1{𝐴𝜖}

]

+E

[
𝛾ĝ𝑟𝑃 (𝛾ĝ⊥

𝑟
𝑃 + 1)(1− 𝛼★)

(𝛾ĝ⊥
𝑟
𝑃 (1− 𝛼★) + 1)(𝛾ĝ⊥

𝑟
𝑃 (1− 𝛼★) + 𝛾ĝ𝑟𝑃𝛼★ + 1)

1{𝐴𝑐
𝜖}

]
.

Note that the second term above can be written as (42) in the
top of the next page, where the last inequality comes from the
fact that 𝛼★ > 𝛼𝑤 − 𝜖𝑙 proven previously. Since Pr (𝐴𝜖)→ 1
as 𝑀𝑡 → ∞, the second term in (41) can be made arbitrarily
small for 𝑀𝑡 sufficiently large. Hence, it follows that, for 𝑀𝑡

sufficiently large,

𝑑(𝛼) <E

[
𝛾ĝ𝑟

𝑃 (1 − 𝛼★)(1 + 𝜖)

𝛾ĝ𝑟
𝑃𝛼★ + 1

1{𝐴𝜖}

]

= (1 + 𝜖) E

[
(1− 𝛼★)

𝛼★ + 1
∥h𝑟∥2 cos2 𝜃⋅𝑃

1{𝐴𝜖}

]
. (43)

Moreover, by following similar arguments in obtaining (40),
(43) becomes

𝑑(𝛼★) <
1− 𝛼★

𝛼★
(1 + 𝜖)

for 𝑀𝑡 sufficiently large. It then follows, from Fact 3, that
𝛼★ < 𝛼𝑤 + 𝜖𝑢. We also plot functions 𝑑(𝛼) and (1−𝛼)/𝛼 in
Fig. 9. ■

C. Proof of Proposition 2

To prove this proposition, it suffices to show that, for any
𝜖 > 0, if

𝛼★ < 1− 1

𝜖(𝛿/2)𝑃
,

then 𝛼★ > 1/(1 + 𝜖) for 𝑀𝑡 sufficiently large. By the QCA
model in (4) (where cos2 𝜃 ≥ 1− 𝛿) and by the definitions of
𝛾ĝ𝑟

and 𝛾ĝ⊥
𝑟

in (14), we have that

𝛾ĝ𝑟
/𝛾ĝ⊥

𝑟
= (cot2 𝜃)(𝑀𝑡 − 1) ≥ (2

𝐵
𝑀𝑡−1 − 1)(𝑀𝑡 − 1). (44)

Consider the event

𝐴𝜖 ≜ {1/(𝛾ĝ⊥
𝑟
(1 − 𝛼★)𝑃 ) < 𝜖}.

One can rearrange (15) to obtain (45) in the top of the next
page, where the last inequality follows from (44) and the fact
that 𝛼★ ∈ (0, 1). For 𝛼★ < 1− 1

𝜖(𝛿/2)𝑃 (or, equivalently, when

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.8

0.9

1

1.1

1.2

1.3

α
 

 

(1−α)/α in Appendix B
1/α in Appendix C
d(α)

Fig. 9. Plots of functions related to the proofs of Proposition 1 and 2.

𝜖 > 1
(𝛿/2)(1−𝛼★)𝑃 ), the event 𝐴𝜖 holds true whenever 𝛾ĝ⊥

𝑟
>

𝛿/2. Therefore we have

Pr(𝛾ĝ⊥
𝑟
> 𝛿/2) ≤ Pr (𝐴𝜖) .

By the LLN and (5), one can show that

Pr(𝛾ĝ⊥
𝑟
> 𝛿/2)→ Pr(𝛿/2 ≤ sin2 𝜃) = 1− (1/2)𝑀𝑡−1.

Then (45) becomes

𝑑(𝛼) >

1

(1 + 𝜖)

(
𝛼★ +

1 + 𝜖

(2
𝐵

𝑀𝑡−1 − 1)(𝑀𝑡 − 1)

)−1(
1− 1

2𝑀𝑡−1

)
.

(46)

Note that the RHS of (46) will approach 1
𝛼★(1+𝜖) with 𝜂 ≜

𝐵/𝑀𝑡 > 0 fixed and 𝑀𝑡 sufficiently large. In order to have
𝑑(𝛼★) > 1

𝛼★(1+𝜖) , the value of 𝛼★ must at least be larger than
1/(1+ 𝜖) since 𝑑(𝛼★) < 1 by Fact 1 of Appendix B. We also
plot functions 𝑑(𝛼) and 1/𝛼 in Fig. 9. ■

D. Proof of Theorem 1

It can be inferred that theΔ𝑅 in (20) can be further bounded
as follows

Δ𝑅 ≤E

[
log

∥h𝑟∥2 sin2 𝜃
(

1−𝛼★
p

𝑀𝑡−1

)
𝑃 + 1

cos2 𝜃

]
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E
[𝛾ĝ⊥

𝑟
𝑃 (1− 𝛼★) + (1− 𝛼★)

𝛾ĝ⊥
𝑟
𝑃 (1− 𝛼★) + 1

𝛾ĝ𝑟
𝑃

𝛾ĝ𝑟
𝑃𝛼★ + (𝛾ĝ⊥

𝑟
𝑃 (1− 𝛼★) + 1)

1{𝐴𝑐
𝜖}
]
< E

[
𝛾ĝ𝑟

𝑃

𝛾ĝ𝑟
𝑃𝛼★

1{𝐴𝑐
𝜖}

]
=
1− Pr (𝐴𝜖)

𝛼★
<
1− Pr (𝐴𝜖)

𝛼𝑤 − 𝜖𝑙
(42)

𝑑(𝛼★) > E

[
𝛾ĝ𝑟

/𝛾ĝ⊥
𝑟

(𝛾ĝ𝑟
/𝛾ĝ⊥

𝑟
)𝛼★ +

(
1 + 1

𝛾
ĝ⊥
𝑟
(1−𝛼★)𝑃

)
(1− 𝛼★)

(
𝛾ĝ⊥

𝑟
(1 − 𝛼★)𝑃 + 1− 𝛼★

𝛾ĝ⊥
𝑟
(1− 𝛼★)𝑃 + 1

)
1{𝐴𝜖}

]

> E

[
𝛾ĝ𝑟

/𝛾ĝ⊥
𝑟

(𝛾ĝ𝑟
/𝛾ĝ⊥

𝑟
)𝛼★ + (1 + 𝜖)(1 − 𝛼★)

(
1 + 𝜖(1− 𝛼★)

1 + 𝜖

)
1{𝐴𝜖}

]
≥
(
𝛼★ +

1 + 𝜖

(2
𝐵

𝑀𝑡−1 − 1)(𝑀𝑡 − 1)

)−1
1

(1 + 𝜖)
Pr(𝐴𝜖),

(45)

+E

[
log
1 + ∥h𝑟∥2𝛼★p𝑃
∥h𝑟∥2𝛼★p𝑃

]
(𝑎)

≤ logE
⎡⎣ ∥h𝑟∥2(1−𝛼★

p)

𝑀𝑡−1 𝑃 + 1

cos2 𝜃
− ∥h𝑟∥2(1− 𝛼★p)

𝑀𝑡 − 1 𝑃

⎤⎦
+ log

(
1 +

E
[
1/∥h𝑟∥2

]
𝛼★p𝑃

)
(𝑏)
= log

((
𝑀𝑡(1− 𝛼★p)

𝑀𝑡 − 1 𝑃 + 1

)
E
[
sec2 𝜃

]− 𝑀𝑡(1 − 𝛼★p)

𝑀𝑡 − 1 𝑃

)
+log

(
1 +

1

(𝑀𝑡 − 1)𝛼★p𝑃
)

(47)

where (𝑎) follows from Jensen’s inequality [16], and (𝑏) fol-

lows from the facts that E[∥h𝑟∥2] =𝑀𝑡, E
(

1
∥h𝑟∥2

)
= 1

𝑀𝑡−1

[19], and that ∥h𝑟∥ and sin2 𝜃 are statistically independent
[8]. By the QCA model where sin2 𝜃 < 2−

𝐵
𝑀𝑡−1 , we have

E
[
sec2 𝜃

] ≤ 1/
(
1− 2 −𝐵

𝑀𝑡−1

)
. Substituting this inequality

into (47) gives rise to (1). Theorem 1 is then proved. ■

E. Proof of Theorem 2

Basically, we modify [2, Appendix B] to reach (50)
and derive new results based on (50). First, let us define
𝑦𝑛𝑟 ={𝑦𝑟[𝑖]}𝑛𝑖=1, 𝑦

𝑛
𝑒 ={𝑦𝑒[𝑖]}𝑛𝑖=1 and 𝑠𝑛={𝑠[𝑖]}𝑛𝑖=1. By Defini-

tion 1, for any 𝜀′ > 0 and 𝑛 > 𝑛0, the achievable secrecy rate
𝑅̂ can be upper bounded as

𝑛𝑅̂− 𝑛𝜀′ < 𝐻(𝑤∣𝑦𝑛𝑒 ,h𝑛𝑟 ,h𝑛𝑒 )
(𝑎)

≤ 𝐼(𝑤; 𝑦𝑛𝑟 ∣𝑦𝑛𝑒 ,h𝑛𝑟 ,h𝑛𝑒 ) + 𝑛𝜀1
(𝑏)

≤ 𝐼(𝑠𝑛; 𝑦𝑛𝑟 ∣𝑦𝑛𝑒 ,h𝑛𝑟 ,h𝑛𝑒 ) + 𝑛𝜀1, (48)

where (𝑎) follows from Fano’s inequality for any 𝜀1 > 0
and sufficiently large 𝑛 [2], and (𝑏) follows from the Markov
relation 𝑤 ↔ 𝑠𝑛 ↔ (𝑦𝑛𝑟 , 𝑦

𝑛
𝑒 ). According to the channel model

in (7) and (8), it can be shown [2] that

𝐼(𝑠; 𝑦𝑟∣𝑦𝑒,h𝑟 = h̃𝑟,h𝑒 = h̃𝑒) =

[𝐼(𝑠; 𝑦𝑟∣h𝑟 = h̃𝑟,h𝑒 = h̃𝑒)− 𝐼(𝑠; 𝑦𝑒∣h𝑟 = h̃𝑟,h𝑒 = h̃𝑒)]
+

(49)

for a certain fading state (h̃𝑟, h̃𝑒). With (48) and (49), and by
following [2] we have (50) in the top of the next page, where

𝜀2 = 𝜀1 + 𝜀′ and 𝑁(h̃𝑟, h̃𝑒) denotes the number of times for
which the channel (h𝑟 ,h𝑒) is in fading state (h̃𝑟 , h̃𝑒) over the
𝑛 channel uses.

Notice that, for a given channel state (h̃𝑟, h̃𝑒), (7) and (8) is
equivalent to a scalar Gaussian wiretap channel, and therefore
[𝐼(𝑠; 𝑦𝑟∣h𝑟 = h̃𝑟,h𝑒 = h̃𝑒)− 𝐼(𝑠; 𝑦𝑒∣h𝑟 = h̃𝑟,h𝑒 = h̃𝑒)]

+ in
(50) is maximum with Gaussian 𝑠 (see [21]). Then, as [2], we
denote the average power of 𝑠[𝑖] and a[𝑖] over the channels
(h𝑟[𝑖],h𝑒[𝑖]) = (h̃𝑟, h̃𝑒) in 𝑛 channel uses as 𝑃𝑛

𝑠 and 𝑃𝑛
𝑎 ,

respectively. It is easy to see that

[𝐼(𝑠; 𝑦𝑟∣h𝑟 = h̃𝑟,h𝑒 = h̃𝑒)− 𝐼(𝑠; 𝑦𝑒∣h𝑟 = h̃𝑟,h𝑒 = h̃𝑒)]
+

≤
[
log

(
1+

∣h̃𝑟ĝ𝐻𝑟 ∣2𝑃𝑛
𝑠

∥h̃𝑟Nĝ𝑟
∥2𝑃𝑛

𝑎 + 1

)
−log

(
1+

∣h̃𝑒ĝ𝐻𝑟 ∣2𝑃𝑛
𝑠

∥h̃𝑒Nĝ𝑟
∥2𝑃𝑛

𝑎

)]+

≤
⎛⎝log𝑃𝑛

𝑎 +
∣h̃𝑟ĝ

𝐻
𝑟 ∣2

∥h̃𝑟Nĝ𝑟 ∥2
𝑃𝑛
𝑠

𝑃𝑛
𝑎 +

∣h̃𝑒ĝ𝐻
𝑟 ∣2

∥h̃𝑒Nĝ𝑟∥2
𝑃𝑛
𝑠

⎞⎠+

.

By substituting this inequality into (50) and by following steps
in [2], we have

𝑅̂− 𝜀2≤
∫ ∫ ⎛⎝log𝑃𝑛

𝑎 +
∣h̃𝑟ĝ

𝐻
𝑟 ∣2

∥h̃𝑟Nĝ𝑟∥2
𝑃𝑛
𝑠

𝑃𝑛
𝑎 +

∣h̃𝑒ĝ𝐻
𝑟 ∣2

∥h̃𝑒Nĝ𝑟 ∥2
𝑃𝑛
𝑠

⎞⎠+𝑁(h̃𝑟, h̃𝑒)
𝑛

𝑑h̃𝑟𝑑h̃𝑒

= E

⎡⎢⎣
⎛⎝log𝑃𝑎+ ∣h𝑟ĝ

𝐻
𝑟 ∣2

∥h𝑟Nĝ𝑟 ∥2𝑃𝑠

𝑃𝑎+
∣h𝑒ĝ𝐻

𝑟 ∣2
∥h𝑒Nĝ𝑟∥2𝑃𝑠

⎞⎠+
⎤⎥⎦ , (51)

where 𝑃𝑠 and 𝑃𝑎 denote the limits of 𝑃𝑛
𝑠 and 𝑃𝑛

𝑎 for 𝑛 → ∞,
respectively, and the last equality follows from the ergodicity
of the channel [2]. Notice that, for ∣h𝑟ĝ

𝐻
𝑟 ∣2

∥h𝑟Nĝ𝑟∥2 ≥ ∣h𝑒ĝ
𝐻
𝑟 ∣2

∥h𝑒Nĝ𝑟∥2 ,

log

(
𝑃𝑎+ 𝑃𝑠 ∣h𝑟ĝ𝐻𝑟 ∣2/∥h𝑟Nĝ𝑟

∥2
𝑃𝑎+ 𝑃𝑠 ∣h𝑒ĝ𝐻𝑟 ∣2/∥h𝑒Nĝ𝑟

∥2

)

≤
[
log

∣h𝑟ĝ𝐻𝑟 ∣2 ∥h𝑒Nĝ𝑟
∥2

∥h𝑟Nĝ𝑟
∥2 ∣h𝑒ĝ𝐻𝑟 ∣2

]+
, (52)

since (𝑎 + 𝑏)/(𝑎 + 𝑑) ≤ 𝑏/𝑑 for 𝑎 ≥ 0 and 𝑏 ≥ 𝑑 ≥ 0.

The bound also holds true for ∣h𝑟ĝ
𝐻
𝑟 ∣2

∥h𝑟Nĝ𝑟∥2 <
∣h𝑒ĝ

𝐻
𝑟 ∣2

∥h𝑒Nĝ𝑟∥2 since
the left-hand-side (LHS) of the above inequality is negative
in this case. This leads to the result in (23). By following
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𝑅̂ ≤
∫ ∫

[𝐼(𝑠; 𝑦𝑟∣h𝑟 = h̃𝑟,h𝑒 = h̃𝑒)− 𝐼(𝑠; 𝑦𝑒∣h𝑟 = h̃𝑟,h𝑒 = h̃𝑒)]
+𝑁(h̃𝑟, h̃𝑒)

𝑛
𝑑h̃𝑟𝑑h̃𝑒 + 𝜀2, (50)

the arguments in [2], one can show that the bound also holds
true for finite 𝑛. Note that the bound holds regardless of the
power allocation under any channel state. Thus the bound is
valid not only for the no CQI case with fixed power allocation
for all channel states, but also valid even if the transmitter has
perfect knowledge of the CQI and is able to perform power
allocation across time-varying channel states. ■

F. Proof of Corollary 1

Following arguments as those in the proof of Lemma 1, the
upper bound in (23) equals to

E

[(
log

∣g𝑟ĝ𝐻𝑟 ∣2
∥g𝑟Nĝ𝑟

∥2
𝑣2𝑀𝑡−2

𝑣2

)+
]

=E

[(
log cot2 𝜃

𝑣2𝑀𝑡−2

𝑣2

)+]

=E

[
log

(
cot2 𝜃

𝑣2𝑀𝑡−2

𝑣2

)]
−E

[
log

(
cot2 𝜃

𝑣2𝑀𝑡−2

𝑣2

)
1{cot2 𝜃 𝑣2𝑀𝑡−2<𝑣2}

]
. (53)

With 𝑀𝑡 sufficiently large and define 𝐹 (2, 2𝑀𝑡 − 2) ≜
𝑣2/2

𝑣2𝑀𝑡−2/(2𝑀𝑡−2) , by the QCA model in (4), we have (54) in
the top of next page where 𝜀1 > 0 goes to zero as 𝑀𝑡 goes to
infinity. We now prove inequality (a) in (54). By the LLN, the
distribution of 𝐹 (2, 2𝑀𝑡 − 2) will approach that of 𝑣2 as 𝑀𝑡

goes to infinity. Then the LHS of (a) in (54) equals to (55)
in the top of the next page, where last inequality holds by
choosing 𝑀𝑡 sufficiently large since E1(𝑥) is a non-negative
and strictly decreasing function with lim𝑥→∞ E1 (𝑥) = 0.

For 𝑀𝑡 and 𝑃 sufficiently large and by applying the
inequality E1(𝑥)𝑒

𝑥 < ln(1+𝑥𝑥 ) [15] along with (12), the
achievable secrecy rate in (9) can be lower-bounded by

𝑅̂(𝛼)>E

⎡⎣log
⎛⎝1 + ∥h𝑟∥2 cos2 𝜃 ⋅ 𝛼

1−𝛼

∥h𝑟∥2

𝑀𝑡−1 sin
2 𝜃 + 1

(1−𝛼)𝑃

⎞⎠⎤⎦
− log

(
1

1− 𝛼

)
− 𝜀2, (56)

where ∣𝜀2∣ can be arbitrarily small. Let us define the event

𝐴𝜖 ≜
{
1

𝜖
<

∥h𝑟∥2
𝑀𝑡 − 1 sin

2 𝜃(1 − 𝛼)𝑃

}
,

where 𝜖 > 0. Then the first term of the RHS of (56) can be

further lower-bounded as

E

⎡⎣log
⎛⎝1 + ∥h𝑟∥2 cos2 𝜃 ⋅ 𝛼

1−𝛼

∥h𝑟∥2

𝑀𝑡−1 sin
2 𝜃 + 1

(1−𝛼)𝑃

⎞⎠⎤⎦
>E

⎡⎣⎛⎝log
⎛⎝1 + ∥h𝑟∥2 cos2 𝜃 ⋅ 𝛼

1−𝛼

∥h𝑟∥2

𝑀𝑡−1 sin
2 𝜃 + 1

(1−𝛼)𝑃

⎞⎠⎞⎠1{𝐴𝜖}

⎤⎦
>E

[
log

(
(𝑀𝑡 − 1) cot2 𝜃 ⋅ 𝛼

1−𝛼

1 + 1
∥h𝑟∥2
𝑀𝑡−1 sin2 𝜃(1−𝛼)𝑃

)
1{𝐴𝜖}

]

>E

[
log

(
(𝑀𝑡 − 1) cot2 𝜃 ⋅ 𝛼

1−𝛼

1 + 𝜖

)
1{𝐴𝜖}

]
=E

[
log

(
cot2 𝜃

)]−E
[
log

(
cot2 𝜃

)
1{𝐴𝑐

𝜖}
]

+E

[
log

(
(𝑀𝑡 − 1) 𝛼

1−𝛼

1 + 𝜖

)
1{𝐴𝜖}

]

>E

[
log

(
(𝑀𝑡 − 1) cot2 𝜃 ⋅ 𝛼

1− 𝛼

)]
− 𝜀′2, (57)

where 𝜀′2 > 0 goes to zero when 𝑀𝑡 goes to infinity. The last
inequality of (57) come as follows. Apply the LLN on ∣h𝑟∥2

𝑀𝑡−1 ,
we know that event 𝐴𝜖 happens when {cot2 𝜃 < 𝜖(1−𝛼)𝑃−1}
for 𝑀𝑡 large enough. If we choose 𝑃 satisfying 𝜖(1−𝛼)𝑃 >
2/𝛿, from the probability density function (PDF) of cot2 𝜃 [7]

E

[
log

(
cot2 𝜃

)
1{𝐴𝑐

𝜖}

]

=

∫ ∞

𝜖(1−𝛼)𝑃−1

log 𝑥
2𝐵(𝑀𝑡 − 1)
(𝑥+ 1)𝑀𝑡

𝑑𝑥

<

∫ ∞

2
𝛿−1

log 𝑥
2𝐵(𝑀𝑡 − 1)
(𝑥+ 1)𝑀𝑡

𝑑𝑥 (58)

where 𝛿 = 2−𝐵/(𝑀𝑡−1). The RHS of the last inequality of
(58) is upper-bounded by∫ ∞

2
𝛿−1

log(𝑥+ 1)
2𝐵(𝑀𝑡 − 1)
(𝑥+ 1)𝑀𝑡

𝑑𝑥 =
1

2𝑀𝑡−1

[
𝐵 + log 𝑒

𝑀𝑡 − 1 + 1

]
.

With large 𝑀𝑡 and fixed 𝜂 ≜ 𝐵/𝑀𝑡, the RHS of the above
inequality can be made arbitrary small. Moreover, using the
methods under (45), Pr(A𝜖) ≥ 1− (1/2)𝑀𝑡−1, then

E

[
log

(
(𝑀𝑡 − 1) 𝛼

1−𝛼

1 + 𝜖

)
1{𝐴𝜖}

]

≥ log
(
(𝑀𝑡 − 1) 𝛼

1−𝛼

1 + 𝜖

)
−
log

(
(𝑀𝑡−1) 𝛼

1−𝛼

1+𝜖

)
2𝑀𝑡−1

, (59)

With large 𝑀𝑡, the second term in the RHS of (59) approaches
to zero. Then from (58) and (59), we can prove the final
inequality of (57).

Finally, from (53), (54), (56), (57) and by applying the LLN
on 𝑣2𝑀𝑡−2

2𝑀𝑡−2 , the difference between the upper bound in (23) and
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−E

[
log

(
cot2 𝜃

𝑣2𝑀𝑡−2

𝑣2

)
1{cot2 𝜃 𝑣2𝑀𝑡−2<𝑣2}

]
< E

[
log

(
𝑣2

𝑣2𝑀𝑡−2(2
𝐵

𝑀𝑡−1 − 1)

)
1
{(2

𝐵
𝑀𝑡−1 −1) 𝑣2𝑀𝑡−2<𝑣2}

]

= E

[
log

(
𝐹 (2,𝑀𝑡 − 2)

(𝑀𝑡 − 1)(2
𝐵

𝑀𝑡−1 − 1)

)
1
{(𝑀𝑡−1)(2

𝐵
𝑀𝑡−1 −1)<𝐹 (2,𝑀𝑡−2)}

]
(𝑎)
< 𝜀1, (54)

∫ ∞

(𝑀𝑡−1)(2
𝐵

𝑀𝑡−1 −1)

log

(
𝑥

(𝑀𝑡 − 1)(2
𝐵

𝑀𝑡−1 − 1)

)
1

2
exp(−𝑥/2)𝑑𝑥

=− (log 𝑒) E1

(𝑥
2

)
− log

(
𝑥

(𝑀𝑡 − 1)(2
𝐵

𝑀𝑡−1 − 1)

)
exp(−𝑥/2)

∣∣∣∞
(𝑀𝑡−1)(2

𝐵
𝑀𝑡−1 −1)

=− log 𝑒
(
lim
𝑥→∞E1

(𝑥
2

)
−E1

(
(𝑀𝑡 − 1)(2

𝐵
𝑀𝑡−1 − 1)
2

))
< 𝜀1, (55)

the achievable secrecy rate in (9) is no greater than ∣ log𝛼∣ −
E[log(𝑣2/2)] + 𝜀 for 𝑀𝑡 and 𝑃 large enough, where 𝜀 =
∣𝜀1 + 𝜀2 + 𝜀′2∣. Since E[log(𝑣2/2)] can be numerically found
as −0.832, it then concludes the proof. ■
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