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Abstract—The combination of bit-interleaved coded modula-
tion (BICM), orthogonal space-time block coding (OSTBC) and
orthogonal frequency division multiplexing (OFDM) has been
shown recently to be able to achieve maximum spatial-frequency
diversity in frequency selective multi-path fading channels, pro-
vided that perfect channel state information (CSI) is available to
the receiver. In view of the fact that perfect CSI can be obtained
only if a sufficient amount of resource is allocated for training
or pilot data, this paper investigates pilot-efficient noncoherent
decoding methods for the BICM-OSTBC-OFDM system. In
particular, we propose a noncoherent maximum-likelihood (ML)
decoder that uses only one OSTBC-OFDM block. This block-
wise decoder is suitable for relatively fast fading channels whose
coherence time may be as short as one OSTBC-OFDM block.
Our focus is mainly on noncoherent diversity analysis. We study
a class of carefully designed transmission schemes, called perfect
channel identifiability (PCI) achieving schemes, and show that
they can exhibit good diversity performance. Specifically, we
present a worst-case diversity analysis framework to show that
PCI-achieving schemes can achieve the maximum noncoherent
spatial-frequency diversity of BICM-OSTBC-OFDM. The devel-
opments are further extended to a distributed BICM-OSTBC-
OFDM scenario in cooperative relay networks. Simulation results
are presented to confirm our theoretical claims and show that
the proposed noncoherent schemes can exhibit near-coherent
performance.

Index Terms—Bit-interleaved coded modulation (BICM), or-
thogonal space-time block coding (OSTBC), orthogonal fre-
quency division multiplexing (OFDM), noncoherent decoding,
maximum-likelihood (ML) decoding, diversity.
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I. INTRODUCTION

TO approach the Shannon capacity, bit-interleaved coded
modulation (BICM) [1] has been popularly used for

channel-coded transmission, owing to its flexibility in the
tradeoff between bit error performance and decoding com-
plexity [2]. BICM has been concatenated with orthogonal
space-time block codes (OSTBCs) to harvest temporal and
spatial diversities in flat fading channels [3], [4], and has also
been used in conjunction with orthogonal frequency division
multiplexing (OFDM) to exploit frequency diversity [5], [6].
Recently, BICM is combined with OSTBC-OFDM and it
was shown in [5] that the BICM-OSTBC-OFDM system is
able to extract both the spatial and frequency diversities in
independent and identically distributed (i.i.d.) Rayleigh fading
channels. Further studies of BICM-OSTBC-OFDM can be
found in [7] for generalized channel models. The designs men-
tioned above assume that the receiver has perfect channel state
information (CSI). This can be achieved only if the receiver
has been well trained through a sufficient amount of training or
pilot data. While such (training) pilot-aided schemes generally
work well under slow time-varying channels, and are popularly
implemented in current wireless communication systems, they
may no longer be efficient under fast time-varying channels.
With shorter coherence times, which means more frequent
training, both pilot overhead and CSI estimation error could
become significant issues [8].

To improve the spectral efficiency and receiver performance,
noncoherent techniques, including noncoherent data detection
and blind/semiblind channel estimation methods, have been
proposed. The noncoherent techniques are appealing because
they use only a few number of pilots, or even no pilot, for data
detection and channel estimation, and thus have great potential
for deployment under fast time-varying channels. However,
most of the existing works focus on two separate scenarios,
namely, coded flat-fading space-time systems (no OFDM)
[9]–[11] and uncoded OSTBC-OFDM systems (no channel
coding) [12]–[16]. While it is possible to extend the works
in [9], [10] to coded OSTBC-OFDM by considering each
OFDM subcarrier as an individual flat-fading channel, such
natural extension requires the channel to remain static over a
large number of OFDM blocks. Similarly, many of the blind
channel estimation methods in [12], [13] for uncoded OSTBC-
OFDM also require the channel to remain unchanged for sev-
eral OSTBC-OFDM blocks. These approaches are therefore
suitable for slow or perhaps moderately fast fading channels.
Another noncoherent approach is to employ differential space-
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Fig. 1. Block diagram of the BICM-OSTBC-OFDM transmitter.

time coding schemes, e.g., [11]; however they suffer from a 3
dB signal-to-noise ratio (SNR) loss compared to the coherent
receiver. In our previous works in [14]–[16], a noncoherent
OSTBC-OFDM detection method based on the deterministic
blind maximum-likelihood (ML) criterion was proposed. It
was shown that this noncoherent detection method can exhibit
near-coherent performance using only one OSTBC-OFDM
block, thus appealing for fast time-varying channels. However,
channel coding was not considered in [14]–[16].

In this paper, we consider the convolutional coded BICM-
OSTBC-OFDM system, and aim to develop a noncoherent
BICM-OSTBC-OFDM decoder that also uses one OSTBC-
OFDM block. We assume that the time-domain multiple-input
multiple-output (MIMO) multi-path channel coefficients are
i.i.d. Rayleigh distributed. By exploiting the inter-subcarrier
relationship of OFDM [14], we develop a block-wise non-
coherent ML decoder and present a complexity-reduced im-
plementation method. The primary focus of this paper is on
the performance aspects, aiming to show the potential per-
formance advantages of the proposed noncoherent approach.
Firstly, like most of the noncoherent methods, the presented
noncoherent ML decoder can be subject to the data ambiguity
problem in the noise-free situation. We review some of the
transmission schemes reported in [14]–[16], which can be
directly used for the considered BICM-OSTBC-OFDM system
for unique codeword decoding; e.g., the pilot-efficient perfect
channel identifiability (PCI) achieving schemes [15], [16].
Secondly, we analyze the diversity order of the noncoherent
ML decoder. To distinguish it from the diversity achieved by
a coherent decoder, we refer to the diversity order achieved
by the noncoherent decoder as noncoherent diversity. While
the fundamental definitions of diversity are the same for both
coherent and noncoherent systems, the characterization of the
noncoherent diversity is much more difficult [17], [18]. In
addition, the involvement of channel coding in this work
further increases the challenge of the noncoherent diversity
analysis. To overcome this issue, we present a worst-case
diversity analysis framework for BICM-OSTBC-OFDM, and
use it to show that PCI-achieving schemes can fully harvest

both the maximum noncoherent spatial and frequency diver-
sities. Finally, as a meaningful scenario variation, we extend
the noncoherent ML decoder and diversity analysis framework
to a distributed BICM-OSTBC-OFDM scenario arising from
cooperative relay networks.

The remainder of this paper is organized as follows. In
Section II, the system model is introduced. In Section III, the
noncoherent ML decoder is derived and a complexity-reduced
implementation method is presented. Section IV presents the
unique data identification conditions and noncoherent diversity
analysis. Extension to the distributed scenario is presented in
Section V. Simulation results are shown in Section VI. Section
VII draws the conclusions.

Notation: Throughout this paper, we use boldface lowercase
letters and boldface uppercase letters to represent vectors and
matrices, respectively. In, 1n and 0 denote the n×n identity
matrix, n×1 all-one vector and zero matrix or vector, respec-
tively. Cn×m denotes the set of all n by m complex matrices.
Superscripts ‘T ′ and ‘H ′ respectively denote the transpose and
conjugate transpose of a vector or a matrix. Tr(·), rank(·)
and det(·) stand for the trace, rank and determinant of a
matrix, respectively. ‖ · ‖F and ‖ · ‖2 respectively refer to
the matrix Frobenius norm and 2-norm. X � 0 indicates
that X is positive semidefinite. λi(X) denotes the ith largest
eigenvalue of X; �(X) represents the real part of X. The
operator ⊗ represents the Kronecker product. The cardinality
of a set N is denoted by |N |. Finally, E{·}, Pr(·) and p(·)
stand for the statistical expectation, probability (mass) function
and probability density function, respectively.

II. SYSTEM MODEL

We consider a point-to-point BICM-OSTBC-OFDM system
with Nt transmit antennas and Nr receive antennas. Frequency
selective multi-path channel fading between the transmitter
and the receiver is assumed. As illustrated in Fig. 1, the trans-
mitter is composed of two parts: (i) the outer convolutional
coded BICM part which consists of a convolutional encoder
and a bit interleaver [1]; (ii) the inner OSTBC-OFDM modu-
lator [14], [19]. The convolutional encoder, which has a code
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rate Rc, encodes the information bit vector b ∈ {0, 1}K̄Rc into
a length-K̄ codeword c ∈ C ⊂ {0, 1}K̄ , where C is the con-
volutional code set. The codeword c is then processed by the
interleaver, which outputs a scrambled codeword c̃ ∈ {0, 1}K̄ .
The interleaver permutates the order of the codeword bits over
the frequency domain, and, as will be shown later, can help
the receiver to harvest frequency diversity. For OSTBC-OFDM
modulation, the interleaved codeword c̃ is segmented into Nc

bit vectors, say, xn ∈ {0, 1}Kn , n = 1, . . . , Nc, where Nc is
the number of subcarriers of OFDM and Kn is the number of
bits transmitted over subcarrier n, which satisfies

∑Nc

n=1 Kn =
K̄. Let sn = 2xn− 1 ∈ {±1}Kn be the corresponding binary
bits of xn for all n = 1, . . . , Nc. For ease of presentation, let
us assume BPSK/QPSK OSTBC mappings1. For such cases,
the transmitted OSTBC code over subcarrier n is given by
Cn(sn) = 1√

Kn

∑Kn

i=1 Xn,isn,i ∈ CT×Nt , where T is the
OSTBC code length, sn,i ∈ {±1} is the ith entry of sn, and
Xn,i ∈ CT×Nt are the basis matrices of Cn(·) which are
designed such that CH

n (sn)Cn(sn) = INt , ∀ sn ∈ {±1}Kn

[20].
Assuming that the channels between the transmitter and the

receiver remain static for T OFDM symbols, i.e., one OSTBC-
OFDM block, the received signal at the receiver is given by
[14]

Yn = Cn(sn)Hn +Wn, n = 1, . . . , Nc, (1)

where Hn ∈ CNt×Nr and Wn ∈ CT×Nr are the MIMO
channel frequency response matrix and the additive white
Gaussian noise (AWGN) matrix for the nth subcarrier, re-
spectively. Each entry of Wn is assumed to have zero mean
and variance σ2

w. While the convolutional codeword c is not
explicitly shown in (1), it can be related to the data bits
sn, n = 1, . . . , Nc, through a one-to-one binary mapping
function μ(·) : {0, 1} → {±1}. Specifically, suppose that the
interleaver and OSTBC mapping function Cn(·) map the kth
bit of the codeword vector c, denoted by ck, to the data bit
sn,i in the nth subcarrier. The relation between sn,i and ck
can be expressed as

sn,i = μ(ck). (2)

Assume that the receiver has perfect knowledge of the
CSI H1, . . . ,HNc . The coherent ML decoder for the received
signal model in (1) is shown in [5] to be

ĉ = arg min
c∈C

K̄∑
k=1

⎧⎪⎨
⎪⎩ min

sn∈{±1}Kn

sn,i=μ(ck)

‖Yn −Cn(sn)Hn‖2F

⎫⎪⎬
⎪⎭ .

(3)

The above coherent ML decoding problem can be efficiently
implemented by employing the Viterbi decoder (VD) that
exploits the trellis structure of the convolutional code [21].

III. NONCOHERENT ML DECODING

Our focus in this section is on noncoherent decoding, i.e.,
decoding the information codeword c without knowing the

1We should note that fundamentally, the techniques to be developed are also
applicable to M -ary phase shift keying (PSK) constellations, or any constant
modulus constellations.

CSI a priori. We are specifically interested in a block-wise
noncoherent decoding approach that uses only Y1, . . . ,YNc

in one OSTBC-OFDM block. This approach is particularly
suitable for the mobile scenarios where the channel coherence
time may be as short as one OSTBC-OFDM block. To this
end, let us first express (1) in a more compact form. Let

H =

⎡
⎢⎣
h1,1 · · · h1,Nr

...
. . .

...
hNt,1 · · · hNt,Nr

⎤
⎥⎦ ∈ C

LNt×Nr (4)

denote the time-domain MIMO channel, where hm,i ∈
CL is the channel impulse response vector from the mth
transmit antenna to the ith receive antenna, and L is
the channel length in the time domain. Moreover, let
fn = 1√

Nc
[1, e−j 2π

Nc
(n−1), . . . , e−j 2π

Nc
(n−1)(L−1)]T be a dis-

crete Fourier transform (DFT) vector for the nth subcarrier,
where j =

√−1. By the fact that each Hn can be param-
eterized by H as Hn = (INt ⊗ fTn )H, equation (1) can be
expressed compactly as [14]

Y � [YT
1 , . . . ,Y

T
Nc

]T = G(s)H+W , (5)

where W = [WT
1 , . . . ,W

T
Nc

]T ∈ CNcT×Nr , s =

[sT1 , . . . , s
T
Nc

]T ∈ {±1}K̄ , and

G(s) =

⎡
⎢⎣

C1(s1)(INt ⊗ fT1 )
...

CNc(sNc)(INt ⊗ fTNc
)

⎤
⎥⎦ ∈ C

NcT×LNt (6)

is a supercode that satisfies GH(s)G(s) = ILNt , ∀ s ∈
{±1}K̄ .

A. Block-Wise Noncoherent ML Decoding

Our noncoherent decoding design is based on the nonco-
herent ML criterion [1], [2]:

ĉ = arg max
c∈C

K̄∑
k=1

log p (Y |ck ) , (7)

where ck’s are assumed to be uniformly distributed and
log p (Y |ck ) is the ML bit metric for ck. By applying the
law of total probability and taking into account the relation
of sn,i = μ(ck), the noncoherent ML decoder in (7) can be
further reformulated as [1]

ĉ = arg max
c∈C

K̄∑
k=1

log
∑

s∈{±1}K̄

sn,i=μ(ck)

p (Y | s) . (8)

We assume that the elements of channel H are i.i.d. complex
Gaussian distributed with zero mean and variance σ2

h. Under
this channel model, p (Y | s) can be shown to be

p (Y | s)=α exp

(
σ2
h

σ2
w(σ

2
h + σ2

w)
Tr

(
YHG(s)GH(s)Y

))
, (9)

where

α = (πσ2
w)

−NcTNr(1 +
σ2
h

σ2
w

)−LNtNr exp

(−1

σ2
w

Tr
(
YHY

))
.
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By (9) and by applying the max-log approximation
log

∑
� e

x� � max� x�, we can represent (8) (approximately)
as

ĉ = arg max
c∈C

K̄∑
k=1

max
s∈{±1}K̄

sn,i=μ(ck)

Tr
(
YHG(s)GH(s)Y

)
. (10)

The above noncoherent ML decoding problem can be han-
dled by the Viterbi decoder as in coherent ML [5]. However,
the noncoherent ML case in (10) is much more complex to
process. Specifically, in the trellis search of the noncoherent
Viterbi decoder, we have to solve the following two discrete
optimization problems in order to decide ck:

max
s∈{±1}K̄

sn,i=μ(ck)

Tr
(
YHG(s)GH(s)Y

)
(11)

s.t. ck = 1 (or ck = 0).

The above two optimization problems are in fact the noncoher-
ent ML detection problem studied in the context of uncoded
OSTBC-OFDM [14]. While it has been shown in [14] that (11)
can be recast as a Boolean quadratic program (BQP), which
can be efficiently handled by a convex approximation method,
namely, semidefinite relaxation (SDR) [22], [23], the total
complexity required for solving the noncoherent ML decoding
problem (10) is still much higher compared to the coherent ML
decoder in (3). To overcome this implementation issue, instead
we present in the next subsection a heuristic complexity-
reduced implementation method with good performance.

B. Complexity-Reduced Implementation

It is interesting to note that the inner maximization problem
in (10) can be expressed as [14]

max
s∈{±1}K̄

sn,i=μ(ck)

Tr
(
YHG(s)GH(s)Y

)

= ‖Y‖2F − min
s∈{±1}K̄

sn,i=μ(ck)

{
min

H∈CLNt×Nr
‖Y − G(s)H‖2F

}
, (12)

where the minimization problem is known as the deterministic
blind ML detector in the literature [14]. By substituting (12)
into (10), we can rewrite problem (10) as

ĉ=argmin
c∈C

K̄∑
k=1

min
s∈{±1}K̄

sn,i=μ(ck)

{
min

H∈CLNt×Nr
‖Y − G(s)H‖2F

}
.

(13)

In contrast to the coherent ML decoder in (3) where the
channel H is given, the inner minimization term of the non-
coherent decoder (13) implicitly performs joint (modulated)
data detection and channel estimation. This simple observation
motivates us to handle the noncoherent ML decoding problem
(10) in a two-step approach — first solve the deterministic
blind ML problem

{ŝ, Ĥ} = arg min
s∈{±1}K̄

{
min

H∈CLNt×Nr
‖Y − G(s)H‖2F

}
(14)

to obtain a channel estimate Ĥ, followed by coherently
decoding the codeword c by (3) using Ĥ as the true channel.
In accordance with (12), the optimal (s,H) of (14) can be
obtained by

ŝ = arg max
s∈{±1}K̄

Tr
(
YHG(s)GH(s)Y

)
, (15a)

Ĥ = arg min
H∈CLNt×Nr

‖Y − G(ŝ)H‖2F = GH(ŝ)Y . (15b)

As mentioned above, problem (15a) can be efficiently handled
by the convex SDR approximation method. As a result,
the two-step approach only involves solving a convex SDR
problem and the coherent ML decoding problem (3). This
alternative is therefore computationally much cheaper than
directly solving problem (10). While, for a large scale prob-
lem where Nc is large, (15a) is still more complex than
conventional pilot-aided channel estimation methods (e.g.,
least squares (LS) and minimum mean-squared error (MMSE)
channel estimators [24]), we should emphasize that divide-
and-conquer strategies such as subchannel grouping [14]
and low-complexity SDR solvers (e.g., [23]) can be further
employed for efficient implementation. As we will show
in the simulation section, the presented complexity-reduced
approach performs very well.

IV. UNIQUE DATA IDENTIFIABILITY AND DIVERSITY

ANALYSIS

Having considered the implementation of noncoherent ML
decoding in the last section, we now turn our attention to
the fundamental performance aspects. In the first subsection,
we review some transmission schemes reported in [14]–[16]
that can guarantee unique data identification, i.e., guarantee
the codeword c to be uniquely decoded by the noncoherent
ML decoder (10) in the noise-free situation. In the second
subsection, we present our main results on the diversity order
of the noncoherent ML decoder (10).

A. Unique Data and Channel Identification

As a common issue in noncoherent approaches, the non-
coherent ML decoder (10) is subject to data ambiguity in the
noise-free situation. In particular, one can easily verify that the
two problems in (11) have the same optimal objective value
since if s is an optimal solution of the problem with ck = 1,
then −s is optimal to the other with ck = 0, and vice versa.
This implies that the noncoherent ML decoder (10) is not
able to uniquely determine whether ck is equal to one or zero.
To ensure that c can be uniquely identified in the noise-free
situation, we need to guarantee that the unconstrained problem
(without the bit mapping constraint sn,i = μ(ck))

max
s∈{±1}K̄

Tr
(
YHG(s)GH(s)Y

)
(16)

can uniquely identify the true s in the absence of noise. Since,
by (12), problem (16) is equivalent to (14), it is sufficient to
guarantee that the following ambiguity condition

G(s)H = G(s′)H′ (17)

holds only when s = s′ and H = H′, i.e., unique data and
channel identification.
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To this end, we need to insert some pilots in s. Consider a
general pilot placement as follows:

s � Π[sTp , s
T
d ]

T ∈ {±1}K̄, (18)

where sd ∈ {±1}Kd denotes the data bit vector, and sp ∈
{±1}Kp denotes the pilot bit vector, in which Kd and Kp

(K̄ = Kd + Kp) are the numbers of data and pilot bits2,
respectively. The matrix Π in (18) is a K̄ by K̄ permutation
matrix that describes how the pilots and data are assigned.
We need to carefully design sp and Π such that unique
data and channel identifiability can be achieved. This design
problem has been studied by the authors in [14]–[16]. Here
we summarize some of the key results:

1) One-pilot-code scheme: In this scheme, only one sub-
carrier is dedicated to transmitting pilot codes, e.g., sp = s1.
While the number of pilot codes used is far less than the
channel length L, it is shown in [14] that this scheme can still
ensure unique identification of s and H with probability one
in i.i.d. Rayleigh fading channels. Although this scheme can
exhibit promising bit error performance in the uncoded system,
we will show later via both analysis and simulations that this
one-pilot-code scheme may not be able to fully harvest the
coding and diversity gains provided by the outer channel code.

2) L-pilot-code scheme: It is intuitive that inserting more
pilots will improve the data identifiability. The L-pilot-code
scheme allows L out of Nc subcarriers for pilot transmission,
e.g., sp = [sT1 , . . . , s

T
L]

T . This scheme is stronger than the
one-pilot-code scheme in the sense that, with this scheme,
any (nonzero) channel can be uniquely identified, regardless
of its statistical distribution; that is, the ambiguity condition
(17) holds only if H = H′ (�= 0). This property is called
perfect channel identifiability (PCI) [15], [16]. We will show
in the next subsection that PCI-achieving schemes can fully
harvest the spatial and frequency diversity gains provided by
the channel coded OSTBC-OFDM system.

3) xL-pilot-bit scheme: The xL-pilot-bit scheme proposed
in [15] is a scheme that can also achieve PCI, but consumes
a smaller number of pilot bits than the L-pilot-code scheme.
One of the key ingredients that makes the xL-pilot-bit scheme
PCI achieving is the so called non-intersecting subspace (NIS)
OSTBCs. Readers may refer to [25] for the detailed properties
and construction method of NIS-OSTBCs3. Here we only
emphasize how the xL-pilot-bit scheme can be constructed.
Let CNIS(·) denote the NIS-OSTBC and let CO(·) denote an
arbitrary OSTBC with the same dimension as CNIS(·). The
xL-pilot-bit scheme can be built as follows [15]:
xL-pilot-bit scheme: Let N ⊂ {1, . . . , Nc}, |N | = L, be

the subcarrier subset for which NIS-OSTBCs are allocated.
Set

Cn(sn) = CNIS(sn) ∀n ∈ N , (19)

Cn(sn) = CO(sn) ∀n ∈ {1, . . . , Nc} \ N . (20)

Moreover, for each n ∈ N , assign x pilot bits to
sn,1, . . . , sn,x, where 1 ≤ x ≤ Kn.

2When Kp pilot bits are transmitted, the total number of data bits reduced
to Kd, and thus the information bits transmitted in one OSTBC-OFDM block
reduces to KdRc.

3For NIS-OSTBC with M-ary PSK modulation, readers may refer to [26].

As will be shown in the simulation section, x = 3 is
sufficient to achieve good decoding performance in general.

B. Noncoherent Diversity Analysis

Diversity order is an important performance measure for
space-time-frequency coded systems. For the coherent BICM-
OSTBC-OFDM system, the coherent diversity order has been
analyzed in [5]. However, the analysis techniques used there
is not applicable to the noncoherent diversity analysis. In fact,
transmission schemes that achieve the full coherent diversity
order do not necessarily achieve the full noncoherent diversity
order. For the considered noncoherent BICM-OSTBC-OFDM,
as will be seen below, the associated diversity order is difficult
to characterize due to the involvement of outer channel coding.
We will derive a worst-case noncoherent diversity order that
can capture the worst diversity characteristic of the noncoher-
ent ML decoder (10).

We simply assume that the receiver has only one antenna,
i.e., Nr = 1. For Nr > 1, the diversity order is Nr times
larger. In this case, the signal model in (5) reduces to

y = G(s)h +w, (21)

where h ∈ CLNt and w ∈ CNcT are respectively the channel
vector and noise vector for Nr = 1. The noncoherent ML
decoder in (10) (taking into account the pilot placement in
(18)) reduces to

ĉ = arg max
c∈C

Kd∑
k=1

max
sd∈{±1}Kd

sn,i=μ(ck)

yHG(s)GH(s)y. (22)

We first analyze the pair-wise error probability (PEP) of the
noncoherent ML decoder (22), that is, the probability that
the noncoherent ML decoder mistakes the true transmitted
codeword c̄ ∈ C for a distinct codeword ĉ ∈ C. Let dfree
be the free Hamming distance (i.e., the minimum Hamming
distance) of the convolutional code C. Let k1, . . . , kd be the
bit indices for which c̄k�

�= ĉk�
for all � = 1, . . . , d, where

d ≥ dfree. Moreover, let s̄n�,i� , the i�th entry of s̄n�
in

subcarrier n� ∈ {1, . . . , Nc}, be the binary bit mapped from
the codeword bit c̄k�

, i.e., s̄n�,i� = μ(c̄k�
), for all � = 1, . . . , d.

We prove in Appendix A the following proposition:

Proposition 1 The PEP of the noncoherent ML decoder (22)
is upper bounded as

Pr(c̄ → ĉ|c̄) ≤ β1

∑
ŝ∈S(ĉ)

det−1

(
ILNt +

σ2
hβ2

σ2
w

Ω(s̄, ŝ)

)
,

(23)

where β1 > 1
2 , 0 < β2 ≤ 1

16 are constants, s̄ = Π[sTp , s̄
T
d ]

T ,

ŝ = [(ŝ(1))T , . . . , (ŝ(d))T ]T , ŝ(�) = Π[sTp , (ŝ
(�)
d )T ]T ,

S(ĉ)={ŝ|ŝ(�)d ∈{±1}Kd, ŝ
(�)
n�,i�

=μ(ĉk�
), �=1, . . . , d}, (24)

Ω(s̄, ŝ) � ILNt −
1

d

d∑
�=1

GH(s̄)G(ŝ(�))GH(ŝ(�))G(s̄). (25)

The PEP upper bound in (23) is considerably different
from those for coherent BICM-OSTBC-OFDM systems [5]
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and uncoded space-time systems [20]. The only resem-
blance one may roughly see is that each constituent term
det−1

(
ILNt +

σ2
hβ2

σ2
w

Ω(s̄, ŝ)
)

of (23) is somehow similar to
the PEP upper bound for uncoded space-time systems [20];
the precise expression is nevertheless different upon close
inspection, and we have to deal with a sum of such terms
in (23).

Proposition 1 gives an important insight into analysis on
the noncoherent BICM-OSTBC-OFDM diversity. As in the
coherent scenario, the noncoherent diversity is defined as the
high-SNR slope of the PEP in a log-log scale over all possible
pairs of c̄ and ĉ [27]:

DNC = min
c̄ �=ĉ

{
lim

σ2
h/σ

2
w→∞

− log Pr(c̄ → ĉ|c̄)
log(σ2

h/σ
2
w)

}
. (26)

Substituting (23) into (26), we show in Appendix B that
the noncoherent diversity order of the BICM-OSTBC-OFDM
system is lower bounded as

DNC ≥ D�
NC � min

c̄ �=ĉ

{
min

ŝ∈S(ĉ)
rank(Ω(s̄, ŝ))

}
. (27)

The intuition behind (27) is that the PEP upper bound in
(23) is asymptotically dominated by the constituent term
det−1

(
ILNt +

σ2
hβ2

σ2
w

Ω(s̄, ŝ)
)

that is least diminishing with
the SNR, and D�

NC in (27) captures the worst diversity order
of that term among all possible pairs of c̄ and ĉ. We will
henceforth call D�

NC the worst-case noncoherent diversity
order.

Next we analyze the worst-case noncoherent diversity or-
ders of the three transmission schemes presented in the pre-
vious subsection. We will need the following assumption on
the bit interleaver:

A1) For any codeword pair c̄ and ĉ, there exists a subindex set
{k′1, . . . , k′dfree

} ⊆ {k1, . . . , kd} such that {c̄k′
1
, . . . , c̄k′

dfree
}

are mapped by the bit interleaver onto different subcarriers,
say, {n′

1, . . . , n
′
dfree

} ⊆ {n1, . . . , nd} where n′
i �= n′

k for all
i �= k.

Assumption A1) basically says that the bit interleaver has to
be ‘random’ enough. Under A1), we prove in Appendix C the
following theorem on the noncoherent diversity:

Theorem 1 Assume that A1) holds. If the PCI-achieving
schemes, e.g., the L-pilot-code scheme and the xL-pilot-bit
scheme, are employed, then D�

NC = Ntmin(dfree, L).

Since Nt min(dfree, L) is also the maximum diversity that
can be achieved by the coherent ML decoder in (3) [5],
Theorem 1 indicates that the L-pilot-code scheme and the xL-
pilot-bit scheme can achieve the maximum spatial-frequency
diversity offered by the system in a noncoherent manner.
Interestingly, the one-pilot-code scheme, which is not PCI-
achieving, may not benefit from the use of BICM to harvest
the frequency diversity:

Corollary 1 When the one-pilot-code scheme is employed, the
worst-case diversity is no larger than Nt, i.e., D�

NC ≤ Nt.

Source Destination

cooperating relay non-cooperating relay

DF Relays

Fig. 2. Block diagram of the relay-based distributed BICM-OSTBC-
OFDM system.

The proof is presented in Appendix D. Theorem 1 and
Corollary 1 will be further corroborated by simulations in
Section VI.

V. EXTENSION TO DISTRIBUTED BICM-OSTBC-OFDM

In this section, we extend the noncoherent ML decoder
in (10) to a relay-based distributed BICM-OSTBC-OFDM
system. In this system, as illustrated in Fig. 2, a set of single-
antenna relays collaborate to transmit the information bits
sent from the source to a destination receiver. The direct
link between the source and the destination is not considered.
We assume that the relays employ the decode-and-forward
(DF) strategy. Moreover, we assume that there is no central
control and the relays may choose to join the cooperation or
not, depending on whether they can successfully decode the
information bits from the source. Suppose that there are Ns

cooperating relays, and that the relays employ the distributed
OSTBC scheme in [28]. Specifically, given the information
bits b ∈ {0, 1}K̄Rc , the mth relay transmits the block sequence
Cn(sn)qm ∈ CT over subcarrier n, for n = 1, . . . , Nc, where
Cn(sn) is the OSTBC mapping function defined in Section
II, and qm ∈ CNt is a preassigned signature sequence for
the mth relay. The signature sequences q1, . . . ,qNs may be
designed to enhance the receiver performance [28]; here we
assume that qm are given and fixed. Let H ∈ C

LNs×Nr be
the channels from all the cooperating relays to the destination.
Then the received signal for subcarrier n is given by

Yn = Cn(sn)Q(INs ⊗ fTn )H+Wn

= Cn(sn)(INt ⊗ fTn )Hv +Wn, (28)

where Q = [q1, . . . ,qNs ] ∈ CNt×Ns , Hv � (Q ⊗ IL)H ∈
CLNt×Nr is the virtual channel, and the second equality
is obtained by using the Kronecker product property (A ⊗
B)(C⊗D) = (AC⊗BD) [29]. The received OSTBC-OFDM
block signal is thus given by

Y = G(s)Hv +W , (29)

where Y , G(s) and W are as defined in (5) and (6). For
the signal model in (29), the corresponding noncoherent ML
decoder can be shown to be

ĉ=argmax
c∈C

K̄∑
k=1

max
sd∈{±1}Kd

sn,i=μ(ck)

Tr
(
YHG(s)R−1GH(s)Y

)
.

(30)
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where R = 1
σ2
h

(QQH⊗IL)
−1+ 1

σ2
w
ILNt . As one can observe

from (30), the receiver requires to know exactly which relays
join the cooperation since the signature matrix Q is required
to be known. Owing to the analogy between (29) and (5),
the noncoherent decoder in (10) can be applied to (29). The
noncoherent decoder in (10) is able to decode c without the
need of knowing Q, which is hence particularly attractive
for the relay-based decentralized scenario because the number
of cooperative relays may vary over time and this can cause
unknown changes of the signature matrix Q. Interestingly, (10)
can still achieve the maximum cooperative (spatial)-frequency
diversity:

Theorem 2 Assume that A1) holds, and that the matrix Q
is of full rank. Suppose that Nr = 1. Then the worst-case
diversity order achieved by the PCI-achieving schemes is given
by

D�
DNC � min

c̄�=ĉ

{
min

ŝ∈S(ĉ)
rank((Q⊗ IL)

HΩ(s̄, ŝ)(Q⊗ IL))

}
= min(Ns, Nt)min(dfree, L).

Proof: The worst-case diversity order D�
DNC can be proved

following similar ideas as in Proposition 1 and in (26) and
(27). To quickly see how the second equality can hold, let us
consider the case of dfree ≥ L. Since, by Theorem 1, Ω(s̄, ŝ)
has the full rank for dfree ≥ L, rank((Q⊗ IL)

HΩ(s̄, ŝ)(Q⊗
IL)) = rank(Q⊗IL) = min(Ns, Nt)L. The case of dfree < L
can be proved following similar steps in Theorem 1; the details
are omitted here. �

Since min(Ns, Nt) is the maximum cooperative diver-
sity order achieved by the distributed OSTBC [28] and
min(dfree, L) is the maximum frequency diversity order [5],
Theorem 2 implies that the noncoherent BICM-OSTBC-
OFDM decoder (10), using PCI-achieving schemes, achieves
the maximum cooperative-frequency diversity order offered by
the relay system.

VI. SIMULATION RESULTS

In this section, we present some simulation results to exam-
ine the bit error performance of the noncoherent ML decoder
(10) by considering the three transmission schemes in Section
IV-A. We consider a BICM-OSTBC-OFDM system with 256
subcarriers (Nc = 256), and employ 1/2-rate convolutional
codes (Rc = 1/2), QPSK modulation, and the Alamouti-
concatenated code in [15, Eqn. (15)] (Nt = 2, T = 4 and
8 bits per code). If the xL-pilot-bit scheme in Section IV-A
is employed, the NIS-OSTBC in [15, Eqn. (12)] is used as
CNIS(·) while the code in [15, Eqn. (15)] is adopted as
CO(·). The bit interleaver specified by the IEEE 802.11a
standard [30] is employed [5]. In the simulations, we adopt
packet transmissions where each packet contains 8 OSTBC-
OFDM blocks. A total 8KdRc information bits are encoded by
the convolutional encoder and transmitted across 8 OSTBC-
OFDM blocks, where the number Kd depends on which
transmission scheme is employed. Unless specifically stated
otherwise, the elements of H are i.i.d. complex Gaussian
distributed with zero mean and unit variance, and they re-
main invariant within one OSTBC-OFDM block but change
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Fig. 3. BER performance comparison of point-to-point BICM-
OSTBC-OFDM, using (7, 5)8 convolutional code with dfree = 5,
for Nc = 256, L = 4, T = 4, Nt = 2 and Nr = 4.
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Fig. 4. BER performance of the xL-pilot-bit scheme and LS channel
estimator in point-to-point BICM-OSTBC-OFDM, using (7, 5)8 con-
volutional code with dfree = 5, for Nc = 256, L = 2, 5, 8, T = 4,
Nt = 2 and Nr = 3.

independently from block to block. Note that the interleaver
used in the IEEE 802.11a standard [30] is designed such that
the code bits in one OSTBC-OFDM block are interleaved
within the same block. Hence the noncoherent ML decoder
(10) can still be implemented in a block-by-block manner.
The complexity-reduced method in Section III-B is used for
pragmatic implementation. We should emphasize here that,
although the convolutional encoder described above encodes
the information bits across multiple OSTBC-OFDM blocks,
the diversity results presented in Section IV-B still hold true
as long as assumption A1) is true. The Eb/N0 per receive
antenna is defined as

Eb

N0
=

E
{‖G(s)H‖2F

}
NrKdRcσ2

w

=
LNt

KdRcσ2
w

. (31)

All the simulation results to be presented are obtained by
averaging over 10,000 packets.
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Fig. 5. BER performance comparison of point-to-point BICM-
OSTBC-OFDM, using (171, 133)8 convolutional code with dfree =
10, for Nc = 256, L = 8, T = 4, Nt = 2 and Nr = 4.

Example 1: Performance of point-to-point BICM-
OSTBC-OFDM: Fig. 3 presents the bit error performance of
the three schemes in Section IV-A for L = 4 and Nr = 4. The
1/2-rate convolutional code with generator polynomials (7, 5)8
and dfree = 5 is used. In this figure, we also present the bit
error rates (BERs) of the ideal coherent Viterbi decoder (VD)
in (3) which has perfect CSI [5], the ideal uncoded coherent
ML detector, and the pilot-aided LS and MMSE channel esti-
mators [24]. The LS and MMSE channel estimators employ L
equispaced pilot-code subcarriers for channel estimation and
use the channel estimate for coherent ML decoding. There are
two points to note from Fig. 3. Firstly, one can observe that
the coherent VD, the LS and MMSE channel estimators, the
L-pilot-code scheme, and the xL-pilot-bit scheme (with either
x = 1 or x = 3) all exhibit the same diversity performance.
Since the coherent VD can harvest all the diversity advantages
offered by the system [5], this result implies that the L-
pilot-code scheme and the xL-pilot-bit scheme also enjoy
the same diversity advantages4. By contrast, we observe that
the one-pilot-code scheme only achieves a similar diversity
performance as the uncoded coherent ML detector. Since the
uncoded coherent detector is known to be able to achieve
the spatial diversity only, this result implies that the one-
pilot-code scheme harvests at most the spatial diversity. All
these results are consistent with our analyses in Theorem 1
and Corollary 1. Secondly, we observe that the xL-pilot-bit
scheme with x = 1 has a slightly higher BER than the LS
and MMSE channel estimators; whereas, when x increases
to 3, the xL-pilot-bit scheme performs almost on a par with
the L-pilot-code scheme and outperforms the LS and MMSE
channel estimators. Specifically, as one can see, the xL-pilot-
bit scheme with x = 3 has around 2.8 dB Eb/N0 advantage
over the LS and MMSE channel estimators at BER= 10−5.
We should note that with x = 3 the xL-pilot-bit scheme
consumes 4L bits per OSTBC-OFDM block due to pilots and

4While the corresponding log-log BER slopes are not as high as the
theoretic value (which is 32), they will increase to the theoretic value as
Eb/N0 increases.
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fdTs = 0 0843 (v = 525 km/h)

fdTs = 0 0422 (v = 263 km/h)

Fig. 6. BER performance comparison of point-to-point BICM-
OSTBC-OFDM in mobile time-varying channels, using (7, 5)8 con-
volutional code with dfree = 5, for Nc = 256, L = 4, T = 4,
Nt = 2 and Nr = 4.

NIS-OSTBCs5; while all the L-pilot-code scheme, the LS and
MMSE channel estimators have an 8L-bit loss per OSTBC-
OFDM block. Fig. 4 displays the performance comparison
results between the xL-pilot-bit scheme (with x = 3) and
the LS channel estimator, for Nr = 3 and for L = 2, 5
and 8. We can observe from the figure that both schemes
have improved diversity performance as L increases from 2
to 5, but the diversity order remains the same as L increases
from 5 to 8. The reason is that, according to Theorem 1, the
maximum frequency diversity is dfree = 5 when L ≥ dfree.
One can also see from Fig. 4 that the xL-pilot-bit scheme
outperforms the LS channel estimator for all L. In Fig. 5, we
show the BER performance for L = 8 and Nr = 4 by using
the 1/2-rate convolutional code with generator polynomials
(171, 133)8 and dfree = 10 (this code is popularly used in
real systems). Similar comparison results as in Fig. 3 can be
observed.

Example 2: Performance under mobile time-varying
channels: Throughout this paper, we have used the block
fading assumption to model fast fading channels. The block
fading assumption is considered reasonable when the channel
coherence time is no smaller than one OSTBC-OFDM block,
although it is interesting to examine how our methods actually
perform under a more realistic mobile time-varying fading
channel. This example aims to do so. We assume that the
elements of H vary with time following Jakes’ model [31].
The carrier frequency is set to 2.6 GHz and the sampling
frequency is set to 1/Ts = 3.84 MHz (e.g., LTE). We try
two settings with the normalized Doppler frequency, namely,
NcfdTs = 0.0843 (corresponding to a moving speed 525
km/h) and NcfdTs = 0.0422 (corresponding to a moving
speed 263 km/h), where fd is the maximum Doppler shift.
One can see from Fig. 6 that the xL-pilot-bit scheme still
yields consistent bit error performance and outperforms the

5The NIS-OSTBC in [15, Eqn. (15)] has one bit loss for achieving the NIS
property; please see [25] for the details.
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Fig. 7. BER performance comparison of distributed BICM-OSTBC-
OFDM, using (7, 5)8 convolutional code with dfree = 5, for Nc =
256, L = 4, Ns = 2, T = 4, Nt = 2 and Nr = 4.
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Fig. 8. BER performance of the xL-pilot-bit scheme (x = 3) and
LS channel estimator in distributed BICM-OSTBC-OFDM, where
(171, 133)8 convolutional code with dfree = 10 is used, Nc = 256,
T = 4, Nt = 2 and Nr = 3.

LS channel estimator.
Example 3: Performance of Distributed BICM-OSTBC-

OFDM: In this example, we examine the performance of
the noncoherent ML decoder (10) for the distributed BICM-
OSTBC-OFDM system in Section V. Eb/N0 is defined as
in (31) except that G(s) is replaced by G(s)(Q ⊗ IL). The
elements of the signature matrix Q are randomly generated
with unit modulus and fixed throughout the simulations. Fig.
7 shows the performance comparison results of different
transmission schemes, for Ns = 2 and Nr = 4. It can be
seen from this figure that the xL-pilot-bit scheme (x = 3)
exhibits the same cooperative-frequency diversity order as the
coherent VD and improves upon the LS and MMSE channel
estimators. Fig. 8 shows the simulation results for various
values of L and Ns. From this figure, one can see that the
diversity order of both the xL-pilot-bit scheme and LS channel
estimator improves as Ns increases from one to two or as
L increases from two to eight. For L = 2, we see that the
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Fig. 9. BER performance comparison of distributed BICM-OSTBC-
OFDM, where (171, 133)8 convolutional code with dfree = 10 is
used, Nc = 256, L = 4, T = 4, Ns = 8, Nt = 2 and Nr = 3.
There are ΔNs (between zero and four) relays disconnecting from
the network for the second half of the packet transmission.

diversity performance does not improve as Ns increases from
two to three because, by Theorem 2, the maximum cooperative
diversity is given by min{Nt, Ns}. In Fig. 9, we consider a
scenario where the physical channel H remains unchanged
during the whole packet transmission. The coherent VD is
assumed to perfectly know the virtual channel Hv through
a dedicated training process before the packet transmission.
However, we assume that there are ΔNs relays out of the
total Ns relays unexpectedly disconnecting from the network
after the 4th OSTBC-OFDM block, and the number ΔNs

randomly changes (between 0 to 4) from block 5 to block 8.
This simulates the scenario where there are ΔNs relays failing
to correctly decode the information bits from the source and
thus fouling out the cooperation in that block. As a result, the
virtual channel Hv actually varies from block 5 to block 8,
making the coherent VD (that uses Hv known at the beginning
for every block) have mismatched virtual channel information
from block 5 to block 8. Fig. 9 presents the simulation results
for Ns = 8 and Nr = 3. One can observe that the xL-pilot-
bit scheme is more robust than the coherent VD and can still
yield consistent BER performance even though Hv changes
from block to block in the second half transmission of the
packet.

VII. CONCLUSIONS

In this paper, we have presented a block-wise noncoherent
ML decoder in (10) for the BICM-OSTBC-OFDM system,
and a complexity-reduced implementation method. In addition,
we have analyzed the diversity order of the noncoherent ML
decoder. We have presented a worst-case diversity analysis
framework and have shown that the PCI-achieving schemes,
such as the L-pilot-code scheme and the xL-pilot-bit scheme,
can achieve the maximum spatial-frequency diversity of the
BICM-OSTBC-OFDM system. The developed noncoherent
ML decoder and diversity analysis are further extended to the
relay-assisted distributed BICM-OSTBC-OFDM system. All
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our theoretical claims have been corroborated by the presented
simulation results.

APPENDIX A
PROOF OF PROPOSITION 1

By (22) and the fact that c̄k�
�= ĉk�

for all � = 1, . . . , d, the
PEP Pr(c̄ → ĉ|c̄) can be upper bounded in (32) as shown on
the top of the next page, where sy = [(s

(1)
y )T , . . . , (s

(d)
y )T ]T ,

s
(�)
y = Π[sTp , (s

(�)
d,y)

T ]T ,

s
(�)
d,y = arg max

sd∈{±1}Kd

sn�,i�
=μ(ĉk� )

yHG(s)GH(s)y, (33)

and Δ(sy) �
∑d

�=1

(
G(s̄)GH(s̄)− G(s(�)y )GH(s

(�)
y )

)
. By

substituting (21) into (32) and by applying the fact that
Pr(α1 + α2 ≥ t) ≤ Pr(α1 ≥ t/2 or α2 ≥ t/2) ≤ Pr(α1 ≥
t/2) + Pr(α2 ≥ t/2) for any two random variables α1 and
α2, we further obtain (34) on the next page.

To compute P1 and P2 in (34), let us define S(ĉ) shown
in (35). Also, for each ŝ ∈ S(ĉ), define a set R(ŝ) in (36),
i.e., sy = ŝ for all w ∈ R(ŝ). According to the law of
total probability, we can compute P1 in (37) as shown on
the next page. To compute right-hand side (RHS) of (37),
noting that by the fact that GH(s̄)G(s̄) = ILNt , GH(s̄)Δ(ŝ)
can be expressed in (38) shown on the next page, where
Ψ⊥

� � INcT − G(ŝ(�))GH(ŝ(�)) is a projection matrix, i.e.,
(Ψ⊥

� )
2 = Ψ⊥

� . By (38), we can obtain hHGH(s̄)Δ(ŝ)w =

hHGH(s̄)
(∑d

�=1 Ψ
⊥
�

)
w. Then �{hHGH(s̄)Δ(ŝ)w} in

(37) is real Gaussian distributed with zero mean and vari-

ance (σ2
w/2)h

HGH(s̄)
(∑d

�=1 Ψ
⊥
�

)2

G(s̄)h. Hence, P1 can
be upper bounded in (39) as shown on the next page,
where Q(x) = 1√

2π

∫ ∞
x

exp(−u2

2 )du. By the fact that

λi((
1
d

∑d
�=1Ψ

⊥
� )

2) ≤ λi(
1
d

∑d
�=1 Ψ

⊥
� ) for all i and the

inequality Q(x) ≤ 1
2 exp(−x2

2 ), one can further upper bound
P1 as

P1 ≤
∑

ŝ∈S(ĉ)

1

2
exp

(
− 1

16σ2
w

hHΩ(s̄, ŝ)h

)
, (40)

where Ω(s̄, ŝ) is defined in (25). On the other hand, using the
similar idea as in (37) for handling P1 and by applying [32,
Lemma 2], one can show that P2 can be upper bounded as

P2 ≤
∑

ŝ∈S(ĉ)

ξ1 exp

(
− ξ2d

2σ2
w

hHΩ(s̄, ŝ)h

)
, (41)

where ξ1 > 0 and ξ2 > 0 are constants. By substituting (40),
(41) into (34), we then obtain

Pr(c̄ → ĉ|c̄)≤
∑

ŝ∈S(ĉ)

Eh

{
β1 exp

(
− β2

σ2
w

hHΩ(s̄, ŝ)h

)}
, (42)

where β1 = ξ1 + 1
2 > 1

2 , 0 < β2 = min{ 1
16 ,

ξ2d
2 } ≤ 1

16 .
Finally, the end result in (23) is obtained by deriving the
expectation in (42) with respect to the i.i.d. complex Gaussian
h [20]. �

APPENDIX B
DERIVATION OF (27)

The RHS of (23) can be bounded as

Pr(c̄ → ĉ|c̄) ≤ β1

∑
ŝ∈S(ĉ)

det−1

(
ILNt +

σ2
hβ2

σ2
w

Ω(s̄, ŝ)

)

≤ β1β3

∑
ŝ∈S(ĉ)

(
β2σ

2
h

σ2
w

)−r(s̄,ŝ)

, (43)

where β3 = maxŝ∈S(ĉ)

∏rank(Ω(s̄,ŝ))
i=1

1
λi(Ω(s̄,ŝ)) , and

r(s̄, ŝ) = rank(Ω(s̄, ŝ)). From the RHS of the above in-
equality, we further obtain, for β2σ

2
h/σ

2
w > 1, that

Pr(c̄ → ĉ|c̄) ≤ β1β3|S(ĉ)| max
ŝ∈S(ĉ)

(
β2σ

2
h

σ2
w

)−r(s̄,ŝ)

= β1β3|S(ĉ)|
(
β2σ

2
h

σ2
w

)− min
ŝ∈S(ĉ)

r(s̄, ŝ)
. (44)

Plugging the upper bound in (44) into (26), we obtain the
diversity lower bound in (27). �

APPENDIX C
PROOF OF THEOREM 1

By (25), Ω(s̄, ŝ) can be expressed as

Ω(s̄, ŝ) = ILNt − ZHWWHZ � 0, (45)

where W = blkdiag
(G(ŝ(1)),G(ŝ(2)), . . . ,G(ŝ(d))) ∈

CdNcT×dLNt (which is a block diagonal matrix) and Z =
1√
d
(1d ⊗ G(s̄)) ∈ CdNcT×LNt . Since WHW = IdLNt and

ZHZ = ILNt , we have ‖WHZ‖2 ≤ ‖W‖2‖Z‖2 = 1, which
implies that all the singular values of WHZ are no larger than
one. Hence determining the rank of Ω(s̄, ŝ) is equivalent to
identifying the number of the singular values of WHZ equal
to one. Let η be the number of singular values of WHZ equal
to one. Then rank(Ω(s̄, ŝ)) = LNt − η. To proceed, we will
need the following lemma which is proved in [16]:

Lemma 1 [16] The matrix WHZ ∈ CdLNt×LNt has η ≥
1 singular values equal to one if and only if there exist
two linearly independent sets {x1, . . . ,xη} ∈ CdLNt and
{y1, . . . ,yη} ∈ CLNt such that Wxm = Zym, m =
1, . . . , η.

According to the above lemma, we obtain that

G(ŝ(�))x(�)
m = G(s̄)

(
ym/

√
d
)
, (46)

� = 1, . . . , d, m = 1, . . . , η,

where xm = [(x
(1)
m )T , . . . , (x

(d)
m )T ]T . Firstly, as mentioned

in Section IV-A, for PCI-achieving schemes such as the L-
pilot-code and xL-pilot-bit schemes, (46) holds only if x(�)

m =
1√
d
ym, � = 1, . . . , d, m = 1, . . . , η. Secondly, since c̄k′

�
�=

ĉk′
�

for � = 1, . . . , dfree, it holds that ŝ
(�)
n′
�

�= s̄n′
�

for � =

1, . . . , dfree; moreover, under A1), we have n′
i �= n′

k for all
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Pr(c̄ → ĉ|c̄) = Pr

⎛
⎜⎝ d∑

�=1

max
sd∈{±1}Kd

sn�,i�
=μ(c̄k� )

yHG(s)GH(s)y ≤
d∑

�=1

max
sd∈{±1}Kd

sn�,i�
=μ(ĉk� )

yHG(s)GH(s)y

∣∣∣∣c̄
⎞
⎟⎠

≤ Pr

(
d∑

�=1

(
yHG(s̄)GH(s̄)y − yHG(s(�)y )GH(s(�)y )y

)
≤ 0

∣∣∣∣c̄
)

= Pr
(
yHΔ(sy)y ≤ 0|c̄) (32)

Pr
(
yHΔ(sy)y ≤ 0|c̄)

= Eh

{
Pr

(
−2�{hHGH(s̄)Δ(sy)w} −wHΔ(sy)w ≥ hHGH(s̄)Δ(sy)G(s̄)h|c̄,h

)}
≤ Eh {P1 + P2} (34)

where

P1 � Pr
(
−2�{hHGH(s̄)Δ(sy)w} ≥ (1/2)hHGH(s̄)Δ(sy)G(s̄)h|c̄,h

)
P2 � Pr

(
|wHΔ(sy)w| ≥ (1/2)hHGH(s̄)Δ(sy)G(s̄)h|c̄,h

)

S(ĉ) = {ŝ = [(ŝ(1))T , . . . , (ŝ(d))T ]T | ŝ(�) = Π[sTp , (ŝ
(�)
d )T ]T , ŝ

(�)
d ∈ {±1}Kd, ŝ

(�)
n�,i�

= μ(ĉk�
)} (35)

R(ŝ) =

{
w | ŝ

(�)
d = arg max

sd∈{±1}Kd

sn�,i�
=μ(ĉk� )

yHG(s)GH(s)y, � = 1, . . . , d

}
(36)

P1 =
∑

ŝ∈S(ĉ)

Pr
(
−2�{hHGH(s̄)Δ(sy)w} ≥ (1/2)hHGH(s̄)Δ(sy)G(s̄)h,w ∈ R(ŝ)|c̄,h

)

=
∑

ŝ∈S(ĉ)

Pr
(
−2�{hHGH(s̄)Δ(ŝ)w} ≥ (1/2)hHGH(s̄)Δ(ŝ)G(s̄)h,w ∈ R(ŝ)|c̄,h

)

≤
∑

ŝ∈S(ĉ)

Pr
(
−2�{hHGH(s̄)Δ(ŝ)w} ≥ (1/2)hHGH(s̄)Δ(ŝ)G(s̄)h|c̄,h

)
(37)

GH(s̄)Δ(ŝ) =
d∑

�=1

(
GH(s̄)G(s̄)GH(s̄)− GH(s̄)G(ŝ(�))GH(ŝ(�))

)
= GH(s̄)

(
d∑

�=1

Ψ⊥
�

)
(38)

P1 ≤
∑

ŝ∈S(ĉ)

Q

⎛
⎜⎝1

4
hHGH(s̄)

(
1

d

d∑
�=1

Ψ⊥
�

)
G(s̄)h

/√√√√(
σ2
w

2
)hHGH(s̄)

(
1

d

d∑
�=1

Ψ⊥
�

)2

G(s̄)h

⎞
⎟⎠ (39)

i �= k. Since Cn′
�
(ŝ

(�)
n′
�
)−Cn′

�
(s̄n′

�
) is of full column rank [20],

it follows from (46), (6) and the above two facts that

Υym � [(INt ⊗ fTn′
1
)T , . . . , (INt ⊗ fTn′

dfree

)T ]Tym = 0, (47)

m = 1, . . . , η.

Note that Υ ∈ CdfreeNt×LNt has full rank, a property implied
by the Fourier structure of fn. If dfree ≥ L, then Υ is
tall and (47) holds only if η = 0. On the other hand, if
dfree < L, then the nullity of Υ is LNt−dfreeNt implying that

η = LNt − dfreeNt. Therefore, we obtain rank(Ω(s̄, ŝ)) =
Nt min(dfree, L). �

APPENDIX D
PROOF OF COROLLARY 1

Suppose that sp = s1 for the one-pilot-code scheme.
Consider a special case of Cn(ŝ

(�)
n ) = ϕ�Cn(s̄n), n =

2, . . . , Nc, � = 1, . . . , d, where ϕ� ∈ C, |ϕ�| = 1, for all
�. Then (46) holds for x

(�)
m = ϕ∗

�ym/
√
d, � = 1, . . . , d, and
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(INt⊗fT1 )ym = 0, m = 1, . . . , η. Since the nullity of INt⊗fT1
is LNt −Nt, WHZ can have η = LNt −Nt singular values
equal to one, implying that rank(Ω(s̄, ŝ)) = Nt for this
special case. Hence, we have D�

NC ≤ Nt. �
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