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Multicell Coordinated Beamforming With
Rate Outage Constraint—Part II:
Efficient Approximation Algorithms

Wei-Chiang Li, Tsung-Hui Chang, Member, IEEE, and Chong-Yung Chi, Senior Member, IEEE

Abstract—This paper studies the coordinated beamforming
(CoBF) design for the multiple-input single-output interference
channel, provided that only channel distribution information is
known to the transmitters. The problem under consideration
is a probabilistically constrained optimization problem which
maximizes a predefined system utility subject to constraints on
rate outage probability and power budget of each transmitter.
Our recent analysis has shown that the outage-constrained CoBF
problem is intricately difficult, e.g., NP-hard. Therefore, the
focus of this paper is on suboptimal but computationally efficient
algorithms. Specifically, by leveraging on the block successive
upper bound minimization (BSUM) method in optimization,
we propose a Gauss-Seidel type algorithm, called distributed
BSUM algorithm, which can handle differentiable, monotone
and concave system utilities. By exploiting a weighted minimum
mean-square error (WMMSE) reformulation, we further propose
a Jocobi-type algorithm, called distributed WMMSE algorithm,
which can optimize the weighted sum rate utility in a fully parallel
manner. Both algorithms are shown to converge to the stationary
points of the original NP-hard problems. To further provide a
performance benchmark, a relaxed approximation method based
on polyblock outer approximation is also proposed. Simulation
results show that the proposed algorithms are significantly su-
perior to the existing successive convex approximation method
in both performance and computational efficiency, and can yield
promising approximation performance by comparing with the
performance benchmark.
Index Terms—Convex optimization, coordinated beamforming

(CoBF), interference channel, outage probability.

I. INTRODUCTION

C oORDINATED MULTIPOINT (CoMP) has been recog-
nized as an effective approach for interference manage-

ment in wireless cellular networks [2]. There are two main types
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of cooperation, namelyMIMO cooperation and interference co-
ordination, which offer a trade-off between the performance
gain and induced communication overhead in the backhaul net-
work [3]. Via high-capacity delay-free backhaul, the coordi-
nated base stations (BSs) for the MIMO cooperation share all
the channel state information (CSI) and users’ data, so they per-
form as a virtual multiple-antenna BS and high spectrum effi-
ciency can be achieved. For interference coordination, the BSs
only share CSI in order to jointly design, e.g., power alloca-
tion and beamforming strategies, to mitigate the inter-cell in-
terference. Compared with MIMO cooperation, the interference
coodination requires a relatively modest amount of backhaul
communication [4], and therefore is still viable when the back-
haul capacity is limited. To study the interference coordination
scheme, we consider the commonly used interference channel
(IFC) model [5], where multiple transmitters simultaneously
communicate with their respective receivers over a common fre-
quency band, and hence interfere with each other.
This paper focuses on the multiple-input single-output

(MISO) IFC, wherein the transmitters are equipped with mul-
tiple antennas while the receivers are equipped with single
antenna. Our interest lies in the coordinated beamforming
(CoBF) design where the transmitters cooperate to optimize
their beamforming vectors in order to maximize a network-wide
utility function, e.g., the sum rate, proportional fairness rate,
harmonic mean rate, or the max-min-fairness (MMF) rate.
Most of the existing works have assumed that the transmitters
have the perfect CSI. Under this assumption, the MMF CoBF
problem has been shown to be polynomial-time solvable [6]
and efficient algorithms have been proposed [6]–[9]. However,
for the sum rate, proportional fairness rate and harmonic mean
rate, the utility maximization CoBF problem is difficult and
has been shown NP-hard in general [6]. As a result, most of the
research efforts have been devoted to developing suboptimal
but efficient approximation algorithms; see, e.g., [6], [10]–[16]
and also [17]–[19] for game theoretic approaches. Global
optimization algorithms are also available in [20]–[22], but
they are efficient only when the number of users is small.
In practical wireless environments, acquiring accurate users’

CSI is difficult, especially in a mobile network. By contrast,
the channel distribution information (CDI) remains unchanged
for a relatively long period of time, and thus is easier to obtain.
Moreover, the CDI based CoBF design need not perform
beamforming optimization frequently, so the required backhaul
bandwidth for implementing the CDI based CoBF design can
be significantly smaller when compared with the CSI based
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CoBF design. However, given only CDI at the transmitters,
the data transmission would suffer from outage with a nonzero
probability, i.e., reliable data transmission cannot be guaran-
teed all the time, due to channel fading. In view of this, the
outage-aware CoBF design, which concerns the probability
of rate outage, has attracted extensive attention recently. For
example, the outage balancing CoBF problem was studied in
[23]–[25], the outage-constrained power minimization problem
was considered in [23], [26], and the outage-constrained utility
maximization problem was studied in [27]–[29]. It turns out
that the outage probability constrained CoBF problem is a
very difficult optimization problem. Specifically, it has been
shown in [30] that the outage balancing problem in [25] is in
fact NP-hard. Besides, the outage-constrained CoBF problem
[27]–[29] is NP-hard in general with not only the sum rate but
also the MMF rate (under the MISO setting) [30]. This implies
that efficient algorithms for high-quality approximate solutions
are indispensable. In [29], a successive convex approximation
(SCA) algorithm and a distributed SCA (DSCA) algorithm
were proposed to handle the outage-constrained CoBF problem.
However, the computational complexity of the two algorithms
is high, hence preventing them from being used in practical
scenarios with a moderate to large number of users.
In this paper, we propose two efficient distributed CoBF

algorithms for the outage-constrained utility maximization
problem, one referred to as the distributed block successive
upper bound minimization (DBSUM) algorithm and the other
referred to as the distributed weighted minimum mean-square
error (DWMMSE) algorithm. The DBSUM algorithm is a
Gauss-Seidel type algorithm, derived based on a judicious
reformulation of the outage-constrained problem and appli-
cation of the BSUM method in [31]. The DBSUM algorithm
can handle a general class of monotonic, differentiable con-
cave utilities. On the other hand, the DWMMSE algorithm
is custom-devised for the weighted sum rate utility, and is a
Jocobi-type algorithm so that all the transmitters can update
their respective beamformers in a fully parallel manner. A
common merit of the two algorithms is that the subproblems
to be solved at each iteration are easily implementable, with
problem dimension independent of the number of users. So,
the two algorithms are computationally efficient and scalable
with the size of the network. Moreover, the two algorithms are
guaranteed to converge to the stationary points, i.e., the points
satisfying the first-order optimality condition, of the original
NP-hard problems. To further provide a benchmark for perfor-
mance evaluation of the proposed DBSUM and DWMMSE
algorithms, we also present a constraint relaxation technique for
the outage-constrained CoBF problem. The constraint-relaxed
problem is solved by a polyblock outer approximation (POA)
algorithm [32] to obtain an upper bound for the optimal utility
value of the original outage-constrained CoBF problem, in spite
of tremendous computation time. We show by computer sim-
ulations that the proposed algorithms significantly outperform
the DSCA algorithm [29] in both performance and computa-
tional efficiency, and exhibit better scalability with respect to
(w.r.t.) the number of users. Moreover, by comparing with the
performance upper bound obtained by the POA algorithm, it
can be corroborated that the proposed algorithms achieve high
approximation accuracy in general.

Synopsis: In Section II, we present the system model
and problem formulations. The proposed DBSUM algorithm
and DWMMSE algorithm are presented in Section III and
Section IV, respectively. In Section V, we present the POA
algorithm which serves as a benchmark performance upper
bound for the two proposed algorithms. Simulation results are
then provided in Section VI to demonstrate the efficacy of the
proposed algorithms. Finally, the conclusions are drawn in
Section VII.
Notations: The set of -dimensional real vectors and com-

plex vectors are denoted by and , respectively. The set
of non-negative real vectors is denoted by . The superscripts
‘ ’ and ‘ ’ represent the matrix transpose and conjugate trans-
pose, respectively. We denote as the vector Euclidean norm.

and mean that the ma-
trix is positive semidefinite (definite) and the vector is
componentwise nonnegative (positive). We use the expression

if is circularly symmetric complex Gaussian
distributed with mean and covariance matrix . We denote

and as the natural log function and the probability
function, respectively. The principal eigenvalue of a matrix
is denoted by . denotes the set of all with
subscripts covering all the admissible integers that are de-
fined in the context, and denotes the set of all with
the first subscript equal to . The set is defined by the
set excluding .

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a -user MISO IFC where transmitter-re-
ceiver pairs share a common spectral band. Each transmitter is
equipped with antennas, and all the receivers have single
antenna. Assume that transmit beamforming is used for data
transmission. Specifically, let denote the signal
intended for user , where and are the
beamforming vector and the information signal, respectively.
The received signal at receiver is thus given by

(1)

where denotes the MISO channel from transmitter
to receiver and is the additive Gaussian noise at re-

ceiver which has zeromean and variance . The channels
are assumed to be complex Gaussian distributed with zero

mean and covariance matrix , i.e., ,
for all . Assume Gaussian signaling, e.g.,

, and assume that each receiver decodes the informa-
tion from the received signal with other users’ interference
treated as noise (i.e., single user detection). Then, the instanta-
neous achievable rate (in bits/sec/Hz) of the th user is given by

(2)

We assume that only CDI is available at the transmitters;
that is, the transmitters know only the channel covariance ma-
trices , . Under such circumstances, users
might suffer from transmission outage. Specifically, let
be the transmission rate of the th user. The outage event that
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will occur with a nonzero proba-
bility due to channel fading. Our goal is to optimize the transmit
beamformers so that a predefined system utility, which
concerns the system throughput or user fairness, or considers
a proper tradeoff between the two, is maximized under both
transmission outage probability and transmit power constraints.
Mathematically, this can be formulated as the following outage-
constrained CoBF problem:

(3a)

(3b)
(3c)

where denotes the system utility of interest,
is the power constraint of user , and is the

maximal tolerable rate outage probability for . The
outage probability constraint (3b) guarantees that the rate outage
probability is no larger than a specified threshold , which is
usually small, e.g., . According to [23], [29], under

, the outage probability in (3b) has a
closed-form expression, and constraint (3b) can be explicitly
expressed as

(4)
where for .
As seen from (4), the outage-constrained CoBF problem

(3) is in general nonconvex and appears difficult to deal
with. In fact, our recent complexity analyses in [30] have
shown that problem (3) can be computationally intractable.
In particular, it has been shown in [30] that problem (3)
is NP-hard in general for the weighted sum-rate utility

, where for
, are the priority weights of users. Moreover, for

the weighted min-rate (also known as the max-min-fairness
(MMF) rate) utility ,
problem (3) is also NP-hard in general if . Since maxi-
mizing the MMF rate is known polynomial-time solvable under
perfect CSI [6], this implies that the outage-constrained CoBF
problem (3) is indeed more challenging. In view of the compu-
tational intractability of (3), in the subsequent Section III and
Section IV, we propose two algorithms that can efficiently
achieve high-quality approximate solutions to problem (3).

III. OUTAGE-CONSTRAINED COBF BY DISTRIBUTED
BSUM ALGORITHM

Let us make the following assumptions on the system utility
. Firstly, is nondecreasing w.r.t. , respec-

tively, as users always desire to increase the transmission rate
as long as it is possible. Secondly, is jointly concave w.r.t.

, as concavity enforces user fairness [33]. These
assumptions are general enough to include some commonly
adopted system utilities such as the weighted sum-rate utility,
proportional fairness utility, harmonic mean utility, and the
min-rate (i.e., MMF rate) utility [6]. Under these assumptions,
we show in this section how the outage-constrained problem
(3) can be efficiently handled in a distributed manner by the

block successive upper bound minimization (BSUM) method
reported in [31].

A. Equivalent Reformulation
The key ingredient of the proposed method lies in the fol-

lowing equivalent reformulation of (3):

Proposition 1: Problem (3) is equivalent to the following
problem

(5a)

(5b)

where

(6)

and is a continuously differentiable function
of and is a unique solution to the equation

(7)

for .

Proposition 1 can be proved by exploiting the fact that the
left-hand side function in (4) is monotonic1 in . The
idea is the same as the one reported in [30, Lemma 1] and in-
terested readers may refer to [30, Appendix A] for the detailed
proof.
By comparing problem (5) with problem (3), one can ob-

serve that the rate outage constraints in (3) [and (4)] have been
judiciously incorporated with the objective function and it is the
function that implicitly characterizes the impact
of cross-link interference plus noise on receiver . Indeed, as
seen from (6), is analogous to the achievable rate of
a channel with channel matrix and interference-plus-noise
power . The key advantage of formulation
(5) is that the constraint set is separable w.r.t. the beam-
forming vectors , though the objective function

is involved with all coupled
together. Nevertheless, this type of problems can be conve-
niently handled by the BSUM method [31] in a distributed and
low-complexity manner, yielding an efficient algorithm for
solving the outage-constrained CoBF problem (5).

B. Brief Reiview of BSUM
In this subsection, using problem (5) as an example, we

briefly review the BSUM method in [31]. For ease of exposi-
tion, let us define

The BSUM method [31] is a block-coordinate-decent (BCD)
type method [34] where the block variables are updated in a

1Note that is strictly increasing w.r.t. . Moreover,
since and

, the solution of
must be positive, i.e., , ,

and can be efficiently obtained by bisection search.
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round-robin fashion, i.e., following the Gauss-Seidel update
rule. For problem (5), are the block variables. In
the th iteration, variable , where ,
is updated by solving the problem

(8a)

(8b)

and for all , where denote
the beamforming vectors obtained in the th iteration,
and is a surrogate function of
given . The introduction of the surrogate function

provides extra flexibility in the algorithm
design. In particular, rather than using the original function

, one may choose an advisable
that can either make problem (8) easily solvable or further
lead to a closed-form solution. Hence, the BSUM method is
particularly useful when the original objective function is intri-
cate and difficult to optimize, which is the case in problem (5)
since are implicit functions without closed-form
expression. It has been shown in [31] that the BSUM method
performs very well in several practical signal processing and
communication applications.
Theoretically, the BSUM method has the following conver-

gence property.

Theorem 1 [31, Proposition 2, Theorem 2(b)]: The iterates
converge to the set of stationary points of

problem (5) as long as

(9a)
(9b)
(9c)
(9d)
(9e)

for all , , .

Condition (9a) requires that the system utility function
is differentiable, e.g., the weighted sum-rate

utility, the proportional fairness utility and the harmonic mean
utility.2 Conditions (9b) and (9c) imply that is a
universal lower bound of and it is tight locally
when .

If all the beamforming vectors are treated as one block
variable , then the BSUM method reduces to the
successive upper bound minimization (SUM) method [31]. In
Section IV, we will use this SUM method to devise another
algorithm for problem (5) with the weighted sum rate utility.

C. DBSUM for Problem (5)
As seen, to apply the BSUM method to our problem (5),

one of the key steps is to construct appropriate surrogate func-
tions , , that satisfy conditions in
(9b)–(9e). It turns out that this is not a trivial task since there
is no explicit expression for . To overcome this,
we notice that, in (6), has some nice monotonicity
and concavity (respectively convexity) w.r.t. (respec-
tively ), as stated in the following lemma.

Lemma 1: For each , the function
in (6) is strictly increasing and strictly concave w.r.t. ,
while it is nonincreasing and convex w.r.t. each
where .

The proof is given in Appendix A. Based on Lemma 1, we
propose the following surrogate function for updating .

(10)

where is a penalty parameter and

(11)

where denotes the real part of . A closed-form
expression of the partial derivative in (11) is given

by (12), shown at bottom of the page, where
for all , and the second equality therein is obtained by the
implicit function theorem [35] (for computing ).

2We should mention that the BSUM method [31] can also handle non-differ-
entiable problems, but it requires additional regularity assumption on the ob-
jective function. The non-differentiable MMF rate utility

unfortunately does not satisfy the regularity assumption.
Alternative approach to handling theMMF rate utility problemwill be discussed
in Section III-D.

(12)
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Using (10) as the surrogate function, the BSUM method in
(8) has the following convergence property:

Proposition 2: Suppose that the system utility
is differentiable, jointly concave, and

is nondecreasing w.r.t. each . Then, the sequence
generated by the BSUM method

in (8) and (10) converges monotonically, and every limit point
of the sequence is a stationary point
of problem (5).

Proof: Let . Then we have

(13)

where the first inequality comes from (9b), the second inequality
comes from the optimality of to problem (8), and the last
equality results from (9c). Equation (13) implies that the system
utility is nondecreasing from one iteration to another. On the
other hand, due to the transmit power constraints (5b), the se-
quence is bounded. Hence, the system utility
convergesmonotonically. Next we show that the surrogate func-
tion (10) satisfies (9b)–(9e). Therefore, by Theorem 1, every
limit point of the sequence is a stationary
point of problem (5).
By the first-order condition of the convex function ,

we have

(14)

for all , , and the equality holds when . The mono-
tonicity of the function together with (14) implies that

in (11) satisfies

(15a)
(15b)

Moreover, it is clear that is concave in .
For , since is convex w.r.t.

according to Lemma 1, the first-order approxima-
tion of w.r.t. , i.e.,

in (11) for , satisfies

(16a)
(16b)

Since is non-positive (see (12)),
in (11) for is concave in . Besides, by the fact that

is a continuously differentiable function (see Proposi-
tion 1), is continuous in , for all

.
The surrogate function in (10) thereby has

the following properties. First, from (15), (16), continuity of
, and the monotonicity of ,

we conclude that in (10) satisfies the conditions
(9b)–9(d). Second, the composition of and

, , i.e., ,
is concave in due to that is concave for

and that is concave and nonde-
creasing [36, Section 3.2.4]. Moreover, the quadratic penalty

is strongly concave. Hence,

(17)

implying that (9e) holds true. Therefore, we obtain
from Theorem 1 that every limit point of the sequence

is a stationary point of problem (5).
As indicated in (17), the surrogate function given in (10) is

(strongly) concave. Hence, problem (8) is a convex problem
which is efficiently solvable. In particular, there is only a simple
2-norm constraint in problem (8), which makes it easily imple-
mentable by using, e.g., the gradient projectionmethod [34, Sec-
tion 2.3.1]. More importantly, the BSUM method can be imple-
mented in a distributed manner, as only one user is involved at
each iteration. Information required for solving (8) can be ob-
tained through message exchange between users. This leads to
the proposed DBSUM algorithm as detailed in Algorithm 1.

Algorithm 1: DBSUM algorithm for handling problem (5)

1: Given a set of beamformers satisfying (5b), and set
; Transmitter sends the quantity

to transmitter , , .
2: repeat
3: ;
4: ;
5: For all , transmitter computes and

by (6) and (12), respectively, and sends
them to transmitter ;

6: Transmitter solves (8) using (10) and (11) to obtain
, and sends the quantity to

transmitter , ;
7: , ;
8: until the predefined stopping criterion is met.
9: Output as an approximate solution of problem (5).

D. MMF Rate Utility Maximization
Unfortunately, the MMF rate utility

is not differentiable, and thus the DBSUM
algorithm (Algorithm 1) cannot directly be applied. To resolve
this issue, we consider the log-sum-exp approximation of the

function [36]; specifically, it is known that, for arbitrary
,

(18)
where can be any positive real value. The inequalities in (18)
show that can be used as an approxi-
mation of , and the approximation error is no
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larger than . By (18), we approximate theMMF rate utility
as

It is readily to see that is differentiable, jointly
concave in , and is strictly increasing w.r.t. each
, . Therefore, the DBSUM algorithm can be

applied.

IV. DISTRIBUTED WMMSE ALGORITHM FOR WEIGHTED SUM
RATE MAXIMIZATION

In the previous section, the DBSUM algorithm for problem
(5) updates the beamforming vectors in the Gauss-Seidel
manner, though it can handle a general utility function. In
this section, we focus on the weighted sum rate (WSR) utility

and further propose a Ja-
cobi-type distributed algorithm where the beamforming vectors
are updated in parallel at each iteration. The idea behind is a
judicious combination of the SUM method (i.e., the BSUM
method with only one block) [31] and the WMMSE reformu-
lation [13]. To proceed, let us rewrite (5) with the WSR utility
here

(19a)

(19b)
where

Note that the WMMSE method in [13] is not directly appli-
cable to problem (19) as the objective function of (19) does not
have an explicit expression. Therefore, we will first design a
surrogate objective function for (19), followed by applying the
WMMSE method to further obtain another surrogate function
that is amendable to parallel implementation.
Let us recall the function in (7). Given any

feasible point satisfying (19b), has an
upper bound as follows

(20)

where , and the inequality is due to the
first-order approximation of the concave logarithm func-
tion, i.e., . Note that

is a locally tight upper bound
of ; moreover, similar to ,

is continuously differentiable w.r.t.
, and is strictly increasing w.r.t. . As a result,

there exists a unique continuously differentiable function,
denoted by , such that

for all . In particular, it follows from (20) that
has a closed-form expression as

(21)

where

(22)

By (21) and (22), one can see that
for all feasible and . Moreover, from (20) and
(21), is a locally tight lower bound of

, i.e.,

(23a)
(23b)

for all , , . Therefore, the fol-
lowing function

(24)

serves as a locally tight lower bound of the WSR utility
in (19a). By defining

(25a)

(25b)

for , , and by (21), one can further express
as

(26)
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where are denoted by for all
, for notational simplicity. It is interesting to

note that in (26) virtually corresponds to
the WSR of an IFC, and the ratio in is the associated
signal-to-interference-plus-noise-ratio (SINR). We can hence
adopt an idea similar to the iterative WMMSE method in [13],
which exploits the relation between the SINR and the minimum
mean-square error (MMSE) of the estimated symbols for de-
veloping efficient precoder optimization algorithm, to further
obtain a lower bound of that is separable
over .
Different from [13] wherein the objective function is exactly

the WSR of a MIMO IFC, the function
actually corresponds to the WSR of independent MIMO
channels with channel matrices , where

for . The interference
terms are incorporated into the AWGN of the
th MIMO channel, i.e., the additive noise of the th MIMO
channel is given by
where is the identity matrix.
Suppose that the th transmitter sends the information signal
to the th receiver via transmit beamforming , and the re-

ceiver estimates by linear decoder . Then, the MMSE of the
estimation is given by

(27)

3For the SUMmethod, convergence is guaranteed without the need of unique
solution to problem (32); see [31, Theorem 1].

The optimal to (27) can be shown to be

(28)

Then, we can further obtain a lower bound of
as presented in (29), shown at the bottom

of the page, where

(30)

and the second inequality in (29) is obtained by the fact that
. Moreover, by (27), (28)

and (30), one can show that the lower bound
is actually locally tight to when

i.e., .
Combining this result with the fact that is a
locally tight lower bound of the original WSR (cf.
(23)), we conclude that is also a locally tight
lower bound of , satisfying

(31a)
(31b)
(31c)

for all , , .
Therefore, we can apply the SUM method [31] (i.e., BSUM

with one block variable ) to problem (19), by
using in (29) as the surrogate function.
Specifically, according to SUM, the beamforming vectors are
iteratively updated as

(32)

By (31) and by [31, Theorem 1], the sequence generated by (32)
is guaranteed to converge:3:

(29)
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Proposition 3: Every limit point of
generated by (32) is a stationary point of problem (19).

Unlike the DBSUM algorithm (Algorithm 1), implementa-
tion of (32) can be completely parallel with only a small amount
of messages exchanged among the transmitters. Specifically,
because both the surrogate function and
the constraint set are separable over the beamforming vectors

, problem (32) can be decomposed into parallel
subproblems as (see (29))

(33)

for , where

for . In addition, problem (33) can be solved very
efficiently, e.g., using the gradient projection method [34, Sec-
tion 2.3.1] or the Lagrange dual method [36]. Finally, we sum-
marize the proposed DWMMSE algorithm for problem (19) in
Algorithm 2.

Algorithm 2: DWMMSE algorithm for problem (19)

1: Input a set of beamformers satisfying (19b);

2: Set ;

3: repeat

4: ;

5: Each transmitter obtains by solving (33), and sends
to transmitter for all ;

6: After receiving the quantities ,
each transmitter sends

to transmitter for all , where , ,
and (cf. (25b)), , ;

7: until the predefined stopping criterion is met.

8: Output as an approximate solution of (19).

Remark 1: It is worth mentioning that the proposed
DBSUM algorithm and DWMMSE algorithm are computation-
ally much more efficient than the DSCA algorithm proposed
in [29]. Specifically, we solve the subproblem (8) in DBSUM
algorithm and the subproblem (33) in DWMMSE algorithm by
the gradient projection method and the Lagrange dual method,
respectively, while the subproblems in DSCA needs to be
implemented by the interior-point method due to the involved

structure. It is known that the gradient projection method con-
verges linearly if the objective function is Lipschitz continuous
and strongly convex (concave) [37]. We have shown that the
surrogate function is strongly concave (cf.
(17)). Hence, if is also Lipschitz continuous,
e.g., when is the weighted sum rate utility, the
computational complexity for solving problem (8) by gradient
projection method is , where is the
complexity order of computing the gradient of
and is the solution accuracy of the gradient projection
method. Therefore, the overall complexity of the DBSUM
algorithm is

(34)

where is the number of round-robin iterations run by the
DBSUM algorithm. On the other hand, the computational com-
plexity for solving problem (33) by Lagrange dual method is

, where is due to the com-
putation of matrix inversion, and are due to
matrix-vector multiplication, and is the solution accu-
racy of the Lagrange dual method. Therefore, the overall com-
plexity of the DWMMSE algorithm is

(35)

where is the number of iterations run by the DWMMSE algo-
rithm. The overall complexity of the DSCA algorithm is given
by [1]

(36)

where is the number of iterations run by theDSCA algorithm,
and is the solution accuracy of the interior-point method
for solving the subproblems therein.
To compare (34), (35) and (36), as can be seen from

Section VI and [29], the iteration numbers , and of the
three algorithms are similar in practice and of the same order.
So their practical computational complexity highly depends
on the per (round-robin) iteration complexity. It is seen from
(34)–(36) that the per iteration complexity of the DBSUM algo-
rithm and the DWMMSE algorithm is much lower than that of
the DSCA algorithm. In particular, the per iteration complexity
of the DBSUM algorithm and the DWMMSE algorithm only
increases linearly with the number of users, , while the per
iteration complexity of the DSCA algorithm increases in the
rate of , implying that the DBSUM algorithm and the
DWMMSE algorithm have much better scalability w.r.t. the
cardinality of coordinated cluster. We will further justify the
above complexity analysis by simulations in Section VI.
Remark 2: The communication overhead induced by infor-

mation exchange between the transmitters is an important issue
in the implementation of distributed algorithms. To address this,
we compare the communication overhead of the two proposed
algorithms with the scheme where full CDI is exchanged be-
tween the transmitters so that the CoBF problem (3) can be han-
dled independently by each transmitter. Assuming that the trans-
mitters are connected by backhaul links, e.g., optical fibers, and
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that the transmitters exchange information in a point-to-point
fashion, the communication overhead induced by exchanging
full CDI between the transmitters is real values
[29]. For the DBSUM algorithm, each transmitter needs to
acquire two real scalars, i.e., and ,
from transmitter for all in order to update its beamformer
. After updating by solving problem (8), transmitter

needs to inform transmitter of the scalar for
all . Therefore, the communication overhead associated
with updating once is real values, and hence the
total communication overhead of the DBSUM algorithm is

real values. In one iteration (one
parallel update of all beamformers of the DWMMSE al-
gorithm, each transmitter needs to inform transmitter of and
acquire from transmitter the two real scalars
and (cf. step 6 of Algorithm 2), respectively. Hence, the
total communication overhead of the DWMMSE algorithm is

real values. One can
see that, if , then the DBSUM algorithm has a
smaller amount of communication overhead than exchanging
full CDI between transmitters. Analogously, the communica-
tion overhead of DWMMSE is smaller than exchanging full
CDI if . As we show in Section VI, the DBSUM
algorithm and the DWMMSE algorithm can converge within

and iterations, respectively.

V. OUTER APPROXIMATION BY POLYBLOCK OPTIMIZATION

The DBSUM algorithm and the DWMMSE algorithm (that
are based on BSUM and SUM methods [31], respectively) pre-
sented in the previous two sections are so called “inner” ap-
proximation methods [38] since, at each iteration, the approxi-
mate beamforming solutions are restrictively feasible and pro-
vide lower bounds to problem (3). In this section, we consider an
“outer” approximation method that instead solves a constraint-
relaxed version of problem (3), thus providing upper bounds to
the optimal value of problem (3). The motive is that the pro-
posed DBSUM and WMMSE algorithms can be benchmarked
against such a method, as the approximation errors of the pro-
posed algorithms are no larger than the gap between the outer
and inner approximation methods. Compared with the exhaus-
tive search method which is not feasible when the number of
users is large, the outer approximation method is computation-
ally more efficient.
Our approach is based on the polyblock outer approximation

(POA) algorithm, which is used for solving the monotonic op-
timization problems [32]. To be self-contained, a review of the
POA algorithm is given in Appendix B. Roughly speaking, the
POA algorithm systematically constructs a sequence of opti-
mization problems which has a structured feasible set (called
polyblock; see Definition 1 in Appendix B) that contains the
feasible set of the original problem. The structured feasible set
shrinks at every iteration and converges to the true feasible set of
the original problem. Thereby, the objective values of the con-
structed problems converge to the true optimal value from above
asymptotically.
The POA algorithm has been used as an outer approximation

method for the utility maximization problem in IFC under dif-
ferent assumptions about the CSI at the transmitters [20]–[22],

[39]. While the POA algorithm can also be applied to our
problem (3), it will involve solving a sequence of NP-hard
subproblems and thus is not computationally feasible. To see
this, let us define the achievable rate region of (3) as (cf. (4),
(7))

(37)

and write problem (3) compactly as

(38a)

(38b)

By the fact that is increasing w.r.t.
, one can easily verify that is a normal set; thus

, which is the union of normal sets, is also a normal set
[32, Proposition 3]. As a result, problem (38) is a monotonic
optimization problem. However, different from [20]–[22],
[39], directly applying the POA algorithm (Algorithm 4 in
Appendix B) to problem (38) results in prohibitively high
computational complexity. In particular, both step 3 and step
7 of Algorithm 4 for problem (38) corresponds to solving a
problem in the form

(39)

where is a given point, and the equality
is due to the fact that the utility is nondecreasing. As seen,
problem (39) is equivalent to problem (3) with the MMF rate
utility, which, however, is NP-hard in general (when )
as proved in [30, Theorem 3]. Hence, it is inefficient to use the
POA algorithm to solve problem (38).
To overcome this issue, we instead consider a relaxed convex

approximation problem. Let us consider a lower bound of
(cf. (7)) as follows

(40)



2772 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 11, JUNE 1, 2015

for , where the inequality is owing to
. Moreover, since the terms

and are non-negative, we can further
obtain

(41)

for , where represents the trace of a matrix.
By using the lower bound in (41), we obtain the following
problem which has a relaxed constraint set comparing to
problem (3)

(42a)

(42b)

(42c)

Furthermore, we consider the semidefinite relaxation (SDR)
technique [40], by which we relax the rank-one to a PSD
matrix , for all . The resultant problem
can be expressed as

(43a)

(43b)

where

(44)

Note that , i,e., problem (43) is a relaxed problem
of problem (38). Problem (43) is a monotonic optimization
problem as can be verified to be normal. Moreover, compared
to (38), problem (43) can be handled by the POA algorithm
in a more efficient manner. Specifically, step 3 and step 7 of
Algorithm 4, which is in Appendix B, for problem (43) now
correspond to solving

(45)

which can be shown efficiently solvable by a bisection method
[36]. In Algorithm 4, we summarize the POA algorithm for

solving problem (43) to obtain an upper bound of the optimal
utility value of problem (3).

VI. SIMULATION RESULTS
In this section, we evaluate the performance of Algorithm 1

and Algorithm 2 by simulations. The noise powers at all re-
ceivers are assumed to be the same, i.e.,
, and all the power constraints are set to one, i.e.,

. The channel covariance matrices are
randomly generated with full column rank (i.e.,

), and with the maximal eigenvalues of normalized to
, for all , .

The parameter , thereby, represents the relative cross-
link interference level. The tolerable outage probabilities are set
to 10% for all receivers, i.e., . The stop-
ping conditions of Algorithm 1 and Algorithm 2 are

(46a)

(46b)

respectively. Note that the DSCA and SCA algorithms in [29]
are also subject to the same stopping conditions as in (46), re-
spectively. The four algorithms (DBSUM, DWMMSE, DSCA
and SCA) are all initialized by randomly generated unit-norm
complex vectors, i.e., , for all . Besides,
we also run the POA algorithm (Algorithm 3) as it can yield an
upper bound to problem (3). The subproblem involved in step 3
and the one in step 7 are handled by the convex solver CVX [41],
and Algorithm 3 is stopped if it either has spent 200 iterations or
has reached the solution accuracy of . All simulation
results are averaged over 500 realizations of CDI .

Algorithm 3: POA algorithm for solving problem (43)

1: Initialization: Set the solution accuracy as , and
set .

2: Set , where
, is the

maximal achievable rate of user , for ;
3: Solve problem (45) with by bisection to obtain

, and set ;
4: while
5: ;
6: Set

, where is the th column
of the identity matrix;

7: Find followed by

solving problem (45) with by bisection to
obtain ;

8: end while
9: Output as the approximation of the

optimal value of (43).

Example 1: We demonstrate the efficacy of Algorithm 1, i.e.,
the DBSUM algorithm, by comparing it with the DSCA algo-
rithm in [29] and the benchmark POA algorithm. We first con-
sider the cases of and , and the number of



LI et al.: MULTICELL COBF WITH RATE OUTAGE CONSTRAINT 2773

Fig. 1. Performance comparison for the proposed DBSUM algorithm (Algo-
rithm 1) and the DSCA algorithm, for , , ,
and for , , ; (a) average proportional
fairness utility and (b) average harmonic mean utility versus .

transmit antennas is set to . The priority weights are set
as and for the

and cases, respectively. Fig. 1(a) shows some sim-
ulation results for the weighted proportional fairness rate utility.
One can observe from Fig. 1(a) that the DBSUM algorithm and
the DSCA algorithm almost yield the same proportional fair-
ness rate for both and , and for both (the
weak interference scenario) and (the strong interference
scenario). It can also be observed that, for the case of ,
the DBSUM algorithm and the DSCA algorithm almost achieve
the performance upper bound obtained by the POA algorithm,
implying that both of them can achieve near optimal perfor-
mance. For the case of , a non-negligible performance
gap between the POA upper bound and the DBSUM and DSCA
algorithms can be observed.4 Nevertheless, both the DBSUM
and the DSCA algorithms can achieve at least 80% of the upper
bound, indicating that the performance loss must be within 20%
compared with the global optimum to problem (3).
Fig. 1(b) displays some simulation results for the weighted

harmonic mean rate utility. One can observe that, for the case

4We found in simulations that under this setting the POA algorithm in general
cannot reach the preset solution accuracy within 200 iterations. So the perfor-
mance gap might be reduced if one allows more iterations for the POA algo-
rithm.

of , the DBSUM and the DSCA almost achieve the op-
timal performance; while for the case of , the DSCA
algorithm performs slightly better than the DBSUM algorithm,
though both algorithms achieve at least 85% of the optimal har-
monic mean rate.
Example 2: In Fig. 2, we demonstrate the efficacy of the

DBSUM algorithm for handling the MMF rate utility. Since
the log-sum-exp approximation is used, we denote it by
DBSUM-LSE in Fig. 2. We consider a 4-user MISO IFC under
a medium interference level [Fig. 2(a)] and a strong
interference level [Fig. 2(b)], respectively. The user
priority weights are set to be , and is
used in the log-sum-exp approximation (see (18)). Note that the
DSCA algorithm is not able to handle the MMF rate function,
so we instead compare DBSUM-LSE with the centralized SCA
algorithm [29]. It is also worthwhile to note that, for the MMF
formulation, the POA algorithm reduces to solving problem
(45) only once, with . From
both Fig. 2(a) and Fig. 2(b), one can see that the SCA algorithm
performs slightly better than the DBSUM-LSE algorithm at
low SNR, whereas the two algorithms perform comparably
at high SNR. By comparing with the POA algorithm, both
DBSUM-LSE and SCA algorithms achieve at least 80% of the
optimal MMF rate. It can also be observed that the achievable
MMF rate saturates at high SNR due to the strict user fairness
requirement; however, it can be improved as the number of
transmit antennas increases.
Example 3: In this example, we consider the sum rate utility,

and compare the performance and complexity of the DBSUM
algorithm, the DWMMSE algorithm (Algorithm 2) and the
DSCA algorithm. To demonstrate the scalability of the DBSUM
algorithm and the DWMMSE algorithm, we consider scenarios
for multiple users ( ) and multiple transmit
antennas ( ). The SNR and relative cross-link
interference level are respectively fixed to and

.
In Fig. 3, it can be observed that the DBSUM algorithm

and the DWMMSE algorithm yield nearly the same system
throughput, which increases with the number of users and the
number of transmit antennas. However, the performance of the
DSCA algorithm drastically degrades when . The reason
for this might be that the DSCA algorithm is relatively easier
to get trapped in some local maximum when . In Fig. 3,
the curve denoted by TDMA represents the achieved system
throughput by time-division multiple access. One can see from
this figure that allowing all the users to access the spectrum
simultaneously attains higher spectral efficiency than TDMA
even when only CDI is available at the transmitters. As also
observed, the performance gain of the spectrum sharing policy
over the TDMA policy increases with the number of users.
We illustrate in Fig. 4(a) and Fig. 4(b) the evolution of the

normalized sum rate (the sum rate achieved after certain number
of iterations normalized by the convergent sum rate) for the
DBSUM algorithm and the DWMMSE algorithm, respectively.
It is observed that the DBSUM algorithm and the DWMMSE
algorithm converge in less than and iterations,
respectively, implying that the distributed implementations
indeed save the backhaul communication resources compared
with exchanging full CDI between the transmitters as discussed
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Fig. 2. Simulation results of average achievable weighted min-rate
utility versus , for (a) , (b) , where ,

, .

Fig. 3. Performance comparison for DWMMSE, DBSUM, and DSCA algo-
rithms, where , , ,

for all .

in Remark 2. Furthermore, the DBSUM algorithm and the
DWMMSE algorithm achieve more than 95% of the conver-
gent sum rate within much less than iterations and

iterations, respectively, which suggests that these two
distributed algorithms can achieve a good tradeoff between the
performance and the induced backhaul burden.
In Fig. 5, we compare the computation load of the DBSUM

algorithm, the DWMMSE algorithm and the DSCA algorithm

Fig. 4. Convergence curves for (a) DBSUM algorithm and (b) DWMMSE
algorithm, where , , ,

for all .

Fig. 5. Complexity comparison for DWMMSE, DBSUM, and DSCA algo-
rithms, where dB, , ,

for all .

in terms of the average computation time per realization (in sec-
onds). In our simulations, the convex subproblems involved in
the DSCA algorithm (i.e., [29, Eqn. (36)]) and the DBSUM
algorithm (i.e., (8)) are handled by CVX and the gradient pro-
jection method, respectively; while the subproblem (33) in the
DWMMSE algorithm is solved by the Lagrange dual method
[36] (see [13, Problem (14)] for the details). It can be observed
that the average computation time of the DBSUM algorithm and
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the DWMMSE algorithm increases at a slower rate than that of
the DSCA algorithm w.r.t. the number of users, demonstrating
that the DBSUM and DWMMSE algorithms have better scala-
bility. Apart from that, we see from Fig. 5 that the DBSUM al-
gorithm is faster than the DSCA algorithm, and the
DWMMSE algorithm is about ten times faster than the DBSUM
algorithm.5 These results are consistent with the analysis about
the complexity orders of the three algorithms given in Remark
1.

VII. CONCLUSIONS

We have presented two efficient distributed algorithms for
handling the NP-hard rate outage constrained CoBF design
problem in (3), namely, the DBSUM algorithm (Algorithm 1)
and the DWMMSE algorithm (Algorithm 2). The former is a
Gauss-Seidel type algorithm, which can handle problem (3)
with general utility functions, while the latter is a Jocobi-type
algorithm specifically designed for the weighted sum rate
maximization. For the performance evaluation of the proposed
two algorithms, we have also presented a POA algorithm
(Algorithm 3) to obtain an upper bound to the optimal utility
value of problem (3). The presented simulation results have
shown that the proposed DBSUM and DWMMSE algorithms
significantly outperform the existing DSCA algorithm in both
efficacy and computational efficiency, and yield promising
approximation performance as the performance gap below the
benchmark POA algorithm is small (less than 20%).

APPENDIX A
PROOF OF LEMMA 1

For ease of exposition, let us define for
, and set

for all . Hence, our goal is to show that
is strictly increasing and strictly concave w.r.t.

while is nonincreasing and convex w.r.t. , , for each
.

Since for any , it
can be directly inferred from the strict monotoninicity and strict
concavity of that is strictly increasing and
strictly concave w.r.t. . To prove the monotonicity and con-
vexity of w.r.t. , , we need the following
lemma:

Lemma 2: For all , , is strictly
decreasing while is strictly increasing w.r.t.
, for .

Proof: By definition, we know that

5Since the DWMMSE algorithm can only be implemented sequentially in the
computer, the actual computation time of the DWMMSE algorithm in a parallel
system would be even shorter.

for all , . Suppose that . Then,

where we denote and by
and for notational simplicity. Since is a
strictly increasing function of , we have by the first
line and third line of the above inequality. Hence,
is strictly decreasing w.r.t. for all . Furthermore, by the
fact that , we can obtain

which implies and completes the proof.
By Lemma 2 and the monotonicity of the logarithmic func-

tion, it can be seen that is nonincreasing w.r.t.
for all . We prove the convexity of w.r.t.
, by showing that is nondecreasing

w.r.t. for all , i.e., for
all . Let . By (12),
we can explicitly express as (A.1), shown
at the bottom of the next page. By Lemma 2, we can see that

is nonincreasing
w.r.t. while is nondecreasing and

is strictly increasing w.r.t. . There-
fore, is nondecreasing w.r.t. , and hence

is convex w.r.t. , .

APPENDIX B
MONOTONIC OPTIMIZATION BY POLYBLOCK OUTER

APPROXIMATION ALGORITHM

Monotonic optimization refers to maximizing a nonde-
creasing function over an intersection of so called normal sets
[32]. By definition, a nonnegative set is called normal
if for any two points , implies .
Let be a -nondecreasing function and
be a compact normal set. Then, the monotonic optimization
problem can be formulated as

(A.2)

According to [32], this class of problems can be optimally
solved by a POA algorithm which is briefly reviewed in this
section. Before presenting the POA algorithm, some essential
definitions are given as follows.

Definition 1: A set is called a polyblock if it is the union of
a finite number of boxes, where a box associated with a vertex
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is referred to the hyperrectangle
.

Definition 2: A vertex is called a proper vertex of the
polyblock if there is no vertex such that and

.

The main effort of the POA algorithm lies in constructing a
sequence of polyblocks such that

(A.3a)
(A.3b)

In general, the initial polyblock can simply be a single box as-
sociated with a vertex , i.e., , such that

. Given the polyblock at the th
iteration, the polyblock for iteration can be constructed
as follows. Let denote the set of proper vertices of

. Firstly, we find a point that
maximizes over , and hence maximizes over

according to the monotonicity of . Specifically,
we find such that

(A.4)

Problem (A.4) can be solved by enumerating all the vertexes in
. Secondly, we search for the intersection of the right-

upper boundary of and the ray from the origin to ,
i.e.,

(A.5)

Problem (A.5) can be solved by bisecting over , which entails
checking the feasibility of iteratively. Thirdly,
using and , we generate new vertices by

(A.6)

where and are the th elements of
and , respectively, and is the th column of the
identity matrix. Then, a new vertex set is obtained as

(A.7)

Algorithm 4: POA algorithm for solving problem (A.2)

1: Initialization: Set the solution accuracy as , and
set .

2: Set , where can be any vector such
that ;

3: Compute by (A.5), and set ;
4: while
5: ;
6: Set ,

where , , are given by (A.6);
7: Compute and by (A.4) and (A.5), respectively;
8: Set ;

9: end while
10: Output as the approximation of the optimal

value of (A.2).

which leads to a new polyblock for the th iteration

(A.8)

Notice that since for all
. Besides, by (A.5) and by the fact that is normal,

one can infer that the intersection of and
must be empty,6 implying that . As a result, the poly-
blocks generated in this manner in-
deed satisfy (A.3a). In addition, it has been shown in [32, The-
orem 1] that (A.3b) also holds true. Thus, by (A.4), the sequence

monotonically converges to the optimal value
of problem (A.2) from above. On the other hand, let

, where for all . Then the

sequence will also monotonically converge to the
optimal value of problem (A.2) from below [32, Theorem 1].
Therefore, the gap between and can be used as
an estimate of the difference between and the optimal

6A brief proof is as follows. From (A.7), we see that
. If the intersection of and

is not empty, then there must exist a point such that and
. This implies that there exists such that

and (since is normal), which however contradicts
with the optimality of to problem (A.5).

(A.1)
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value of (A.2), serving as a stopping criterion for the POA al-
gorithm. Finally, the POA algorithm for problem (A.2) is sum-
marized in Algorithm 4.
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