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Abstract—In blind hyperspectral unmixing (HU), the pure-pixel
assumption is well known to be powerful in enabling simple and
effective blind HU solutions. However, the pure-pixel assumption
is not always satisfied in an exact sense, especially for scenarios
where pixels are heavily mixed. In the no-pure-pixel case, a good
blind HU approach to consider is the minimum volume enclosing
simplex (MVES). Empirical experience has suggested that MVES
algorithms can perform well without pure pixels, although it was
not totally clear why this is true from a theoretical viewpoint.
This paper aims to address the latter issue. We develop an anal-
ysis framework wherein the perfect endmember identifiability of
MVES is studied under the noiseless case. We prove that MVES
is indeed robust against lack of pure pixels, as long as the pixels
do not get too heavily mixed and too asymmetrically spread. The
theoretical results are supported by numerical simulation results.

Index Terms—Convex geometry, hyperspectral unmixing (HU),
identifiability, minimum volume enclosing simplex (MVES), pixel
purity measure.

I. INTRODUCTION

S IGNAL, image, and data processing for hyperspectral
imaging has recently received enormous attention in re-

mote sensing [1], [2], having numerous applications such as
environmental monitoring, land mapping and classification, and
object detection. Such developments are made possible by
exploiting the unique features of hyperspectral images, most
notably, their high spectral resolutions. In this scope, blind
hyperspectral unmixing (HU) is one of the topics that has
aroused much interest not only from remote sensing [3], but
also from other communities recently [4]–[7]. Simply speaking,
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the problem of blind HU is to solve a problem reminiscent of
blind source separation in signal processing, and the desired
outcome is to unambiguously separate the endmember spectral
signatures and their corresponding abundance maps from the
observed hyperspectral scene, with no or little prior information
of the mixing system. Being given little information to solve
the problem, blind HU is a challenging—but also fundamen-
tally intriguing—problem with many possibilities. Readers are
referred to some recent articles for an overview of blind HU [3],
[4], and here, we shall not review the numerous possible ways
to perform blind HU. The focus, as well as the contribution,
of this paper lies in addressing a fundamental question arising
from one important blind HU approach, namely, the minimum
volume enclosing simplex (MVES) approach.

Also called simplex volume minimization or minimum vol-
ume simplex analysis [8], the MVES approach adopts a cri-
terion that exploits the convex geometry structures of the
observed hyperspectral data to blindly identify the endmember
spectral signatures. In the HU context, the MVES concepts
were first advocated by Craig back in the 1990s [9], although it
is interesting to note an earlier work in mathematical geology
[10] which also described the MVES intuitions (see also [4]
for a historical note of convex geometry and the references
therein). In particular, Craig’s work proposes the use of simplex
volume as a metric for blind HU, which is later used in some
other blind HU approaches such as simplex volume maximiza-
tion [11]–[13] and nonnegative matrix factorization [14]. The
MVES criterion is to minimize the volume of a simplex, subject
to constraints that the simplex encloses all hyperspectral data
points. This amounts to a nonconvex optimization problem,
and unlike the simplex volume maximization approach, we do
not seem to have a simple (closed-form) scheme for tackling
the MVES problem. However, recent advances in optimization
have enabled us to handle MVES implementations efficiently.
The works in [6] and [8] independently developed practical
MVES optimization algorithms based on iterative linear ap-
proximation and alternating linear programming, respectively.
The GPU-implementation of the former is also considered
very recently [15]. In addition, some recent MVES algorithm
designs deal with noise and outlier sensitivity issues by robust
formulations, such as the soft constraint formulation in SISAL
[16] and the chance-constrained formulation in [17]; the pixel
elimination method in [18] should also be noted. We should
further mention that MVES also finds application in analytical

0196-2892 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LIN et al.: IDENTIFIABILITY OF THE SIMPLEX VOLUME MINIMIZATION CRITERION FOR BLIND HU 5531

chemistry [19], and that fundamentally MVES has a strong link
to stochastic maximum-likelihood estimation [20].

What makes MVES special is that it seems to perform well
even in the absence of pure pixels, i.e., pixels that are solely
contributed by a single endmember. To be more accurate, ex-
tensive simulations found that MVES may estimate the ground-
truth endmembers quite accurately in the noiseless case and
without the pure-pixel assumption (see, e.g., [6], [20], and
[21]). At this point, we should mention that, while the pure-
pixel assumption is elegant and has been exploited by some
other approaches, such as simplex volume maximization (also
[7] for a more recent work on near-separable nonnegative
matrix factorization), to arrive at remarkably simple blind HU
algorithms, it is also an arguably restrictive assumption in gen-
eral. In the HU context, it has been suspected that MVES should
be resistant to lack of pure pixels, but it is not known to what
extent MVES can guarantee perfect endmember identifiability
under no pure pixels. Hence, we depart from existing MVES
works, wherein improved algorithm designs are usually the
theme, and ask the following questions: can the endmember
identifiability of the MVES criterion in the no-pure-pixel case
be theoretically pinned down? If yes, how bad (in terms of how
heavy the data are mixed) can MVES withstand and where is
the limit?

The contribution of this paper is theoretical. We aim to
address the aforementioned questions through analysis. Previ-
ously, identifiability analysis for MVES was done only for the
pure-pixel case in [6] and for the three endmember case in the
preliminary version of this paper [22]. This paper considers
the no-pure-pixel case for any number of endmembers. We
prove that MVES can indeed guarantee exact and unique re-
covery of the endmembers. The key condition for attaining
such exact identifiability is that some measures concerning the
pixels’ purity and geometry (to be defined in Section III-A)
have to be above a certain limit. The aforementioned condition
is equivalent to the pure-pixel assumption for the case of two
endmembers, and is much milder than the pure-pixel assump-
tion for the case of three endmembers or more. Numerical
experiments will be conducted to support the aforementioned
claims.

This paper is organized as follows. The problem statement
is described in Section II. The MVES identifiability analysis
results and the associated proofs are given in Sections III and
IV, respectively. Numerical results are provided in Section V to
support our theoretical claims, and we conclude this paper in
Section VI.

Notations: R
n and R

m×n denote the sets of all real-valued
n-dimensional vectors and m-by-n matrices, respectively. ‖ · ‖
denotes the Euclidean norm of a vector. xT denotes the trans-
pose of x and the same applies to matrices. Given a set A ⊆ R

n,
we denote affA and convA as the affine hull and convex hull
of A, respectively (see [23]), intA and bdA as the interior and
boundary of A, respectively, and volA as the volume of A. The
dimension of a set A ⊆ R

n is defined as the affine dimension of
affA. x ≥ 0 means that x is elementwise nonnegative. I and
1 denote an identity matrix and all-one vector of appropriate
dimension, respectively. ei denotes a unit vector whose ith
element is [ei]i = 1 and jth element is [ei]j = 0 for all j �= i.

II. PROBLEM STATEMENT

In this section, we review the background of the MVES
identifiability analysis challenge.

A. Preliminaries

Before describing the problem, some basic facts about sim-
plex should be mentioned. A convex hull

conv{b1, . . . , bN} =

{
x =

N∑
i=1

θibi

∣∣∣∣∣θ ≥ 0,1Tθ = 1

}

where b1, . . . , bN ∈ R
M , M ≥ N − 1, is called an (N − 1)-

dimensional simplex if b1, . . . , bN are affinely independent.
The volume of a simplex can be determined by [24]

vol (conv{b1, . . . , bN}) = 1

(N − 1)!

√
det(B̄

T
B̄) (1)

where B̄=[b1−bN , b2 − bN , . . . , bN−1 − bN ] ∈ R
M×(N−1).

A simplex is called regular if the distances between any two
vertices are the same.

B. Blind HU Problem Setup

We adopt a standard blind HU problem formulation (readers
are referred to the literature, e.g., [3] and [4], for coverage of
the underlying modeling aspects). Concisely, consider a hyper-
spectral scene wherein the observed pixels can be modeled as
linear mixtures of endmember spectral signatures

xn = Asn, n = 1, . . . , L (2)

where xn ∈ R
M denotes the nth pixel vector of the observed

hyperspectral image, with M being the number of spectral
bands; A = [a1, . . . ,aN ] ∈ R

M×N is the endmember signa-
ture matrix, with N being the number of endmembers; sn ∈
R

M is the abundance vector of the nth pixel; and L is the
number of pixels. The problem is to identify the unknown A
from the observations x1, . . . ,xL, thereby allowing us to
unmix the abundances (also unknown) blindly. To facilitate
the subsequent problem description, the noiseless case is as-
sumed. The following assumptions are standard in the blind
HU context, and they will be assumed throughout this paper:
i) every abundance vector satisfies sn ≥ 0 and 1Tsn = 1 (i.e.,
the abundance nonnegativity and sum-to-one constraints); ii) A
has full column rank; iii) [s1, . . . sL] has full row rank; iv) N is
known.

C. MVES

This paper concentrates on the MVES approach for blind
HU. MVES was inspired by the following intuition [9]: if
we can find a simplex that circumscribes the data points
x1, . . . ,xL and yields the minimum volume, then the vertices
of such a simplex should be identical to, or close to, the
true endmember spectral signatures a1, . . . ,aN themselves.
Fig. 1 shows an illustration for the aforementioned intuition.
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Fig. 1. Geometrical illustration of MVES. The dots are the data points {xn},
the number of endmembers is N = 3, and T1, T2, and Ta are data-enclosing
simplices. In particular, Ta is actually given by Ta = conv{a1,a2,a3}.
Visually, it can be seen that Ta has a smaller volume than T1 and T2.

Mathematically, the MVES criterion can be formulated as an
optimization problem

min
b1,...,bN∈RM

vol (conv{b1, . . . , bN})

s.t. xn ∈ conv{b1, . . . , bN}, n = 1, . . . , L (3)

wherein the solution of problem (3) is used as an estimate of
A. Problem (3) is NP-hard in general [25]; this means that
the optimal MVES solution is unlikely to be computationally
tractable for any arbitrarily given {xn}Ln=1. Notwithstanding,
it was found that carefully designed algorithms for handling
problem (3), although being generally suboptimal in view of the
NP-hardness of problem (3), can practically yield satisfactory
endmember identification performance (see, e.g., [6], [8], [19],
and [20], and also [14] and [16]–[18] for the noisy case). In this
paper, we do not consider MVES algorithm design. Instead, we
study the following fundamental, and very important, question:
When will the MVES problem (3) provide an optimal solution
that is exactly and uniquely given by the true endmember matrix
A (up to a permutation)?

It is known that MVES uniquely identifies A if the pure-pixel
assumption holds [6], i.e., if, for each i ∈ {1, . . . , N}, there
exists an abundance vector sn such that sn = ei. However,
empirical evidence has suggested that, even when the pure-pixel
assumption does not hold, MVES (more precisely, approximate
MVES by the existing algorithms) may still be able to uniquely
identify A. In this paper, we aim at analyzing the endmember
identifiability of MVES in the no-pure-pixel case.

III. MAIN RESULTS

This section describes the main results of our MVES iden-
tifiability analysis. As will be seen soon, MVES identifiability
in the no-pure-pixel case depends much on the level of “pixel
purity” of the observed data set. To this end, we need to
precisely quantify what “pixel purity” is. The first section will
introduce two pixel purity measures. The second section will

then present the main results, and the third section will discuss
their practical implications.

A. Pixel Purity Measures

A natural way to quantify pixel purity is to use the following
measure

ρ = max
n=1,...,L

‖sn‖. (4)

Equation (4) will be called the best pixel purity level in the
sequel. A large value of ρ implies that there exist abundance
vectors whose purity is high, while a small value of ρ indicates
more heavily mixed data. To see it, observe that ‖s‖ ≤ 1 for
any s ≥ 0, 1Ts = 1, and equality holds if and only if s = ek
for any k, i.e., a pure pixel. Moreover, it can be shown that
1/
√
N ≤ ‖s‖ for any s ≥ 0, 1Ts = 1, and equality holds if

and only if s = (1/N)1, i.e., a heavily mixed pixel. Without
loss of generality (w.l.o.g.), we may assume that

1√
N

< ρ ≤ 1

where we rule out ρ = 1/
√
N , which implies that s1 = . . . =

sL = (1/N)1 and leads to a pathological case.
The previously defined pixel purity level reflects the best

abundance purity among all of the pixels, but says little on
how the pixels are spread geometrically with respect to (w.r.t.)
the various endmembers. We will also require another measure,
defined as follows:

γ = sup {r ≤ 1 | R(r) ⊆ conv{s1, . . . , sL}} (5)

where

R(r) = {s ∈ conv{e1, . . . , eN} | ‖s‖ ≤ r}
=
{
s ∈ R

N | ‖s‖ ≤ r
}
∩ conv{e1, . . . , eN}. (6)

We call (5) the uniform pixel purity level; the reason for this
will be illustrated soon. It can be shown that

1√
N

≤ γ ≤ ρ.

Also, if γ = 1, then the pure-pixel assumption is shown to hold.
To understand the differences between the pixel purity mea-

sures in (4) and (5), we first illustrate how R(r) looks like in
Fig. 2. As can be seen (and as will be shown), R(r) is a ball on
the affine hull aff{e1, . . . , eN} if r ≤ 1/

√
N − 1. Otherwise,

R(r) takes a shape like a vertices-cropped version of the unit
simplex conv{e1, . . . , eN}. In addition, it can be shown that
(4) is equal to

ρ = inf {r | conv{s1, . . . , sL} ⊆ R(r)} .

In Fig. 3, we give several examples with the abundances. From
the figures, an interesting observation is that R(ρ) serves as
a smallest R(r) that circumscribes the abundance convex hull
conv{s1, . . . , sL}, while R(γ) serves as a largest R(r) that is
inscribed in conv{s1, . . . , sL}. Moreover, we see that, if the
abundances are spread in a relatively symmetric manner w.r.t.
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Fig. 2. Geometrical illustration of R(r) in (6) for N = 3. We view R(r) by
adjusting the viewpoint to be perpendicular to the affine hull of {e1, e2, e3}.

all of the endmembers, then ρ and γ are similar; this is the
case with Fig. 3(a)–(c). However, ρ and γ can be quite different
if the abundances are asymmetrically spread; this is the case
with Fig. 3(d), where some endmembers have pixels of high
purity but some do not. Hence, the uniform pixel purity level γ
quantifies a pixel purity level that applies uniformly to all of the
endmembers, not just to the best.

B. Provable MVES Identifiability

Our provable MVES identifiability results are described
as follows. To facilitate our analysis, consider the following
definition.

Definition 1 (MVES): Given an m-dimensional set U ⊆
R

n, the notation MVES(U) denotes the set that collects all
m-dimensional minimum volume simplices that enclose U and
lie in affU .

Now, let

Te =conv{e1, . . . , eN} ⊆ R
N ,

Ta =conv{a1, . . . ,aN} ⊆ R
M

denote the (N − 1)-dimensional unit simplex and the endmem-
bers’ simplex, respectively. Also, for convenience, let

XL = {x1, . . .xL}, SL = {s1, . . . sL}

denote the sets of all of the observed hyperspectral pixels
and abundance vectors, respectively, and note their dependence
xn = Asn as described in (2). Under Definition 1, the exact

and unique identifiability problem of the MVES criterion in (3)
can be posed as a problem of finding conditions under which

MVES(XL) = {Ta}.
Our first result reveals that the MVES perfect identifiability

does not depend on A (as far as A has full column rank).

Proposition 1: MVES(XL) = {Ta} if and only if
MVES(SL) = {Te}.

The proof of Proposition 1, as well as those of the theorems to
be presented, will be provided in the next section. Proposition 1
suggests that, to analyze the perfect MVES identifiability w.r.t.
the observed pixel vectors, it is equivalent to analyze the perfect
MVES identifiability w.r.t. the abundance vectors. One may
expect that perfect identifiability cannot be achieved for too
heavily mixed pixels. We prove that this is indeed true.

Theorem 1: Assume that N ≥ 3. If MVES(SL) = {Te}, then
the best pixel purity level must satisfy ρ > 1/

√
N − 1.

To get some idea, consider the example in Fig. 3(a). Since
Fig. 3(a) does not satisfy the condition in Theorem 1, it fails
to provide exact recovery of the true endmembers. Theorem 1
is only a necessary perfect identifiability condition. We also
prove a sufficient perfect identifiability condition, described as
follows.

Theorem 2: Assume that N ≥ 3. If the uniform pixel purity
level satisfies γ > 1/

√
N − 1, then MVES(SL) = {Te}.

Among the four examples in Fig. 3, Fig. 3(b) and 3(c) show
cases that satisfy the condition in Theorem 2 and achieve exact
and unique recovery of the true endmembers.

It is worthwhile to emphasize that the sufficient identifia-
bility condition in Theorem 2 is much milder than the pure-
pixel assumption (which is equivalent to γ = 1) for N ≥ 3.
In fact, the pixel purity requirement 1/

√
N − 1 diminishes

as N increases—which seems to suggest that MVES can
handle more heavily mixed cases as the number of endmem-
bers increases. Thus, Theorem 2 provides a theoretical jus-
tification on the robustness of MVES against lack of pure
pixels.

One may be curious about how Theorem 2 is proven. Essen-
tially, the idea lies in finding a connection between the MVES
identifiability conditions of SL and R(γ) [cf., (5) and (6)].
In particular, it is shown that, if MVES(R(γ)) = {Te}, then
MVES(SL) = {Te}. Subsequently, the problem is to pin down
the MVES identifiability condition of R(r). This turns out to
be the core part of our analysis, and the result is as follows.

Theorem 3: For any 1/
√
N − 1 < r ≤ 1, we have

MVES(R(r)) = {Te}, i.e., there is only one MVES of
R(r) for 1/

√
N − 1 < r ≤ 1 and that MVES is always given

by the unit simplex.

As an example, Fig. 2(b) is an instance where Theorem 3
holds; by visual observation of Fig. 2(b), we may argue that the
MVES of R(r) for N = 3 and r > 1/

√
2 should be the unit

simplex. Also, we should note that the geometric problem in
Theorem 3 is interesting in its own right, and the result could
be of independent interest in other fields.
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Fig. 3. Examples with the abundance distributions and the corresponding best and uniform pixel purity levels. (a) γ < 1/
√
2, ρ < 1/

√
2. (b) γ > 1/

√
2, ρ >

1/
√
2. (c) γ = ρ = 1. (d) γ < 1/

√
2, ρ > 1/

√
2.

Before we finish this section, we should mention the case of
N = 2. While the number of endmembers in practical scenarios
is often a lot more than two, it is still interesting to know the
identifiability for N = 2.

Proposition 2: Assume that N = 2. We have MVES(SL) =
{Te} if and only if the pure-pixel assumption holds.

We should recall that the pure-pixel assumption corresponds
to γ = 1.

C. Further Discussion

We have seen that the uniform pixel purity level γ provides a
key quantification on when MVES achieves perfect endmem-
ber identifiability. Nevertheless, one may have these further
questions: How is γ related to the abundance pixel set SL

exactly? Can the relationship be characterized in an explicit
and practically interpretable manner? For example, as can be
observed in the three-endmember illustrations in Fig. 3, satis-
fying the sufficient identifiability condition γ > 1/

√
N − 1 in

Theorem 2 seems to require some abundance pixels to lie on
the boundary of Te. However, from the definition of γ in (5),
it is not immediately clear how such a result can be deduced
(e.g., how many pixels on the boundary, and which parts of
the boundary?). Unfortunately, explicit characterization of γ
w.r.t. SL appears to be a difficult analysis problem. In fact,
even computing the value of γ for a given SL is generally a
computationally hard problem1 [26].

1More accurately, verifying whether a convex body (R(r) here) belongs to
a V-polytope (convSL here) has been shown to be coNP-complete [26].

Fig. 4. Illustration of Assumption 1. N = 3 and αij = 2/3 for all i, j.

Despite the aforementioned analysis bottleneck, our empir-
ical experience suggests that, if every sn follows a continu-
ous distribution that has a support covering R(r) for r > 1/√
N − 1 (e.g., Dirichlet distributions), and the number of pixels

L is large, there is a large probability for MVES to achieve
perfect identifiability. The numerical results in Section V will
support this. Moreover, we can study special, but still mean-
ingful, cases. Herein, we show one that uses the following
assumption.

Assumption 1: For every i, j ∈ {1, . . . , N}, i �= j, there
exists a pixel, whose index is denoted by n(i, j), such that its
abundance vector takes the form

sn(i,j) = αijei + (1− αij)ej (7)

for some coefficient αij that satisfies 1/2 < αij ≤ 1.
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Assumption 1 means that we can find pixels that are con-
stituted by two endmembers, with one dominating another as
determined by the coefficient αij > 1/2. Also, the pixels in (7)
lie on the edges of Te. Fig. 4 gives an illustration for N = 3.
Note that Assumption 1 reduces to the pure-pixel assumption
if αij = 1 for all i, j. Hence, Assumption 1 may be seen as
a more general assumption than the pure-pixel assumption. In
the example of N = 3 in Fig. 4, we see that γ should increase
as αij’s increase. In fact, this can be proven to be true for any
N ≥ 2.

Theorem 4: Under Assumption 1 and for N ≥ 2, the uni-
form pixel purity level satisfies

γ ≥
√

1

N

[
(Nα− 1)2

N − 1
+ 1

]

where

α = min
i,j∈{1,...,N}

i�=j

αij

is the smallest value of αij’s.

The proof of Theorem 4 is given in Section IV-F. Theorem 4
is useful in the following way. If we compare Theorems 2 and
4, we see that the condition√

1

N

[
(Nα− 1)2

N − 1
+ 1

]
>

1√
N − 1

implies exact unique identifiability of MVES. It is shown that
the aforementioned equation is equivalent to

α >
2

N

for N ≥ 3. By also noting 1/2 < α ≤ 1 in Assumption 1 and
the fact that 1/2 ≥ 2/N for N ≥ 4, we have the following
conclusion.

Corollary 1: Suppose that Assumption 1 holds. For N = 3,
the exact unique identifiability condition MVES(SL) = {Te}
is achieved if αij > 2/3 for all i, j. For N ≥ 4, the condi-
tion MVES(SL) = {Te} is always achieved (subject to 1/2 <
αij ≤ 1 in Assumption 1).

The implication of Corollary 1 is particularly interesting for
N ≥ 4—MVES for N ≥ 4 always provides perfect identifia-
bility under Assumption 1. However, we should also note that
this result is under the premise of Assumption 1. In particular,
it is seen that, to satisfy Assumption 1 for general αij’s, the
number of pixels L should be no less than N(N − 1). This
implies that we would need more pixels to achieve perfect
MVES identifiability as N increases.

We finish with mentioning some arising open problems.
From the aforementioned discussion, it is natural to further
question whether (7) in Assumption 1 can be relaxed to combi-
nations of three endmembers or more. Also, the whole work
has so far assumed the noiseless case, and sensitivity in the
noisy case has not been touched. These challenges are left as
future work.

IV. PROOF OF THE MAIN RESULTS

This section provides the proof of the main results described
in the previous section. Readers who are more interested in
numerical experiments may jump to Section V.

A. Proof of Proposition 1

The following lemma will be used to prove Proposition 1.

Lemma 1: Let f(x) = Ax, where A ∈ R
M×N , M ≥ N ,

and suppose that A has full column rank.

a) Let TG ⊂ R
N be an (N − 1)-dimensional simplex, and

suppose that TG ⊂ aff{e1, . . . , eN}. We have

vol (f(TG)) = α · vol(TG) (8)

where α =

√
det(Ā

T
Ā)/N and Ā = [a1 − aN , a2 −

aN , . . . ,aN−1 − aN ]. Also, it holds true that f(TG) ⊂
aff{a1, . . . ,aN}.

b) Let TH ⊂ R
M be an (N − 1)-dimensional simplex, and

suppose that TH ⊂ aff{a1, . . . ,aN}. We have

vol
(
f−1(TH)

)
=

1

α
· vol(TH) (9)

and f−1(TH) ⊂ aff{e1, . . . , eN}.

The proof of Lemma 1 is relegated to Appendix A. Now,
suppose that MVES(SL) = {Te}, but MVES(XL) �= {Ta}.
Let TH be an MVES of XL. By the MVES definition (see
Definition 1), we have

XL ⊆ TH , TH ⊆ aff{x1, . . . ,xL}
vol(TH) ≤ vol(Ta). (10)

Recall that [s1, . . . , sL] is assumed to have full row rank and
satisfy 1Tsn=1 for all n. From these assumptions, one can
prove that aff{s1, . . . , sL}=aff{e1, . . . , eN} and aff{x1,
. . . ,xL} = aff{a1, . . . ,aN} (see [27, Lemma 1] for example).
Then, by applying Lemma 1(b) to (10), we obtain

SL ⊆ f−1(TH), f−1(TH) ⊆ aff{e1, . . . , eN}

vol
(
f−1(TH)

)
≤ vol

(
f−1(Ta)

)
= vol(Te).

The aforementioned equation implies that Te is not the only
MVES of SL, which is a contradiction.

On the other hand, suppose that MVES(XL) = {Ta}, but
MVES(SL) �= {Te}. This statement can be shown to be a
contradiction, by the same proof as the previous discussion
[particularly the incorporation of Lemma 1(a)]. The proof of
Proposition 1 is therefore complete.

B. Proof of Theorem 1

The proof is done by contradiction. Suppose thatMVES(SL)=
{Te}, but ρ ≤ 1/

√
N − 1. Recall

R(r) = Te ∩
{
s ∈ R

N | ‖s‖ ≤ r
}
. (11)
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The proof is divided into four steps.
Step 1: We show that any V ∈ MVES(R(ρ)) is also an

MVES of SL. To prove it, note that

SL ⊆ R(ρ). (12)

Equation (12) implies that

vol(U)≤vol(V), for all U ∈MVES(SL), V ∈MVES (R(ρ)) .
(13)

Also, since Te encloses R(ρ), we have

vol(V) ≤ vol(Te), for all V ∈ MVES (R(ρ)) . (14)

Since we assume that MVES(SL) = {Te} in the beginning, we
observe from (13) and (14) that vol(U) = vol(V) for all U ∈
MVES(SL), V ∈ MVES(R(ρ)). The aforementioned equality,
together with (12), implies that any V ∈ MVES(R(ρ)) is an
MVES of SL (or satisfies V ∈ MVES(SL)).

Step 2: We give an alternative representation of (N −
1)-dimensional simplices on aff{e1, . . . , eN}, which will
facilitate the proof. The affine hull aff{e1, . . . , eN} can be
equivalently expressed as

aff{e1, . . . , eN} = {s = Cθ + d | θ ∈ R
N−1} (15)

where

d =
1

N

N∑
i=1

ei =
1

N
1

and C ∈ R
N×(N−1) is the first N − 1 principal left singular

vectors of R = [e1 − d, . . . , eN − d] (see [6] and [27]). We
note that

R = I − 1

N
11T

in which, as a standard matrix result, its first N − 1 principal
left singular vector can be shown to be any C such that

U =

[
C,

1√
N

1

]
(16)

is a unitary matrix, or equivalently, C is any semi-unitarity
matrix such that CTd = 0.

Recall that an (N − 1)-dimensional simplex V ⊆ aff{e1,
. . . , eN} can be written as

V = conv{v1, . . . ,vN}

where vi ∈ aff{e1, . . . , eN} for all i. By (15), each vi ∈
aff{e1, . . . , eN} can be represented by vi = Cwi + d for
some wi ∈ R

N−1. Applying this result to conv{v1, . . . ,vN},
we obtain the following equivalent representation of V:

V = {s = Cθ + d | θ ∈ W} (17)

where

W = conv{w1, . . . ,wN}. (18)

Also, by the simplex volume formula (1) and the semi-unitarity
of C, the following relation is shown:

vol(V) = vol(W). (19)

Step 3: We show that there are infinitely many MVES of
R(ρ) for 1/

√
N < ρ ≤ 1/

√
N − 1. Consider the following

lemma.

Lemma 2: Let

C(r) = aff{e1, . . . , eN} ∩
{
s ∈ R

N | ‖s‖ ≤ r
}

(20)

denote a two-norm ball on aff{e1, . . . , eN}. If 1/
√
N < r ≤

1/
√
N − 1, then R(r) in (11) is equal to C(r).
Proof of Lemma 2: Note that R(r) ⊆ C(r). Hence, to

prove Lemma 2, it suffices to show that C(r) ⊆ R(r). By
the equivalent affine hull representation in (15), we can write
C(r) = {s = Cθ + d | ‖s‖ ≤ r}. By substituting s = Cθ + d
into ‖s‖ ≤ r, we get, for any s ∈ C(r)

‖s‖2 ≤ r2 ⇐⇒‖θ‖2 + ‖d‖2 ≤ r2 (21a)

⇐⇒‖θ‖2 ≤ r2 − 1

N
(21b)

where (21a) is obtained by using the orthogonality in (16);
and (21b) is obtained by ‖d‖2 = 1/N . Hence, C(r) can be re-
written as

C(r) =
{
s = Cθ + d | ‖θ‖2 ≤ r2 − 1

N

}
. (22)

Moreover, by letting ci and ui denote the ith rows of C and U
respectively, we have

si = [ci]
T
θ + di (23a)

≥ − ‖ci‖‖θ‖+ 1

N
(23b)

≥ −
√

N − 1

N
·
√

1

(N − 1) ·N +
1

N
= 0 (23c)

where (23b) is due to the Cauchy–Schwartz inequality; (23c)
is due to (21b), r ≤ 1/

√
N − 1, and the fact that 1 =

‖ui‖2 = (1/N) + ‖ci‖2 (see (16) and note its orthogonality).
Equation (23) suggests that any s ∈ C(r) automatically satis-
fies s ≥ 0, and hence, s ∈ R(r). We therefore conclude that
C(r) = R(r). �

By Lemma 2, we can replace R(ρ) by C(ρ) and consider
the MVES of the latter. Suppose that V ∈ MVES(C(ρ)). Our
argument is that a suitably rotated version of V is also an MVES
of C(ρ). To be precise, use the representation in (17) and (18) to
describe V . Comparing (17), (18), and (22), we see that C(ρ) ⊆
V is equivalent to{

θ | ‖θ‖2 ≤ ρ2 − 1/N
}
⊆ W. (24)

From W , let us construct another simplex

V′ = {s = CQθ + d | θ ∈ W} (25)
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where Q ∈ R
(N−1)×(N−1) is a unitary matrix. Due to (24), V′

can be verified to satisfy C(ρ) ⊆ V′. Also, by observing the
semi-unitarity of CQ, the volume of V′ is shown to equal

vol(V′) = vol(W) = vol(V).

In other words, V′ is also an MVES of C(ρ). In fact, the
aforementioned argument holds for any unitary Q. Since
there are infinitely many unitary Q’s for N ≥ 3 (note that
Q ∈ R

(N−1)×(N−1)), we also have infinitely many MVESs of
C(ρ) for N ≥ 3.

Step 4: We combine the results in the aforementioned steps
to draw conclusion. Step 1 shows that any V ∈ MVES(R(ρ))
is also an MVES of SL, while step 3 shows that R(ρ) has
infinitely many MVESs for ρ ≤ 1/

√
N − 1, N ≥ 3. This con-

tradicts the assumption that there is only one MVES of SL. The
proof of Theorem 1 is therefore complete.

C. Proof of Theorem 2

To facilitate our proof, let us introduce the following fact.

Fact 1: Let C,D ⊆ R
n be two sets of identical dimension,

with C ⊆ D. If D ⊆ T for some T ∈ MVES(C), then T ∈
MVES(D), and MVES(D) ⊆ MVES(C).

Proof of Fact 1: Note that C ⊆ D implies that any T ′ ∈
MVES(D) is a simplex enclosing C. Since T is a minimum
volume simplex among all of the C-enclosing simplices, we
have

vol(T ) ≤ vol(T ′) for all T ′ ∈ MVES(D). (26)

Moreover, the condition D ⊆ T implies that T is also a
D-enclosing simplex, and as a result, the equality in (26)
holds. It also follows that any T ′ ∈ MVES(D) is also an
MVES of C. �

Now, we proceed with the main proof.
Step 1: We show that

Te ∈ MVES (R(r)) , for any r ≥ 1√
N − 1

. (27)

Note from the definition of R(r) in (6) that

C
(

1√
N−1

)
= R

(
1√
N−1

)
⊆ R(r) ⊆ Te (28)

for any r ∈ [1/
√
N − 1, 1], where the first equality is by

Lemma 2. We prove that.

Lemma 3: The unit simplex Te is an MVES of C(1/√
N − 1).

The proof of Lemma 3 is relegated to Appendix B. By apply-
ing Fact 1 and Lemma 3 to (28), we obtain Te ∈ MVES(R(r))
for r ∈ [1/

√
N − 1, 1].

Step 2: We prove that

MVES(SL) ⊆ MVES (R(γ)) , for γ ≥ 1√
N − 1

. (29)

By the definition of γ in (5), we have

R(γ) ⊆ convSL ⊆ Te. (30)

Also, in step 1, it has been identified that Te ∈ MVES(R(r)) for
r ∈ [1/

√
N − 1, 1]. Hence, for γ ≥ 1/

√
N − 1, we can apply

Fact 1 to (30) to obtain

MVES(convSL) ⊆ MVES (R(γ)) . (31)

Next, we use a straightforward fact in convex analysis: for a
convex set T , the condition C ⊂ T is the same as convC ⊂ T
and vice versa. In the context here, this implies that any MVES
of convSL also encloses SL, and the converse is also true.
Hence, we have

MVES(convSL) = MVES(SL). (32)

By combining (31) and (32), (29) is obtained.
Step 3: We prove that

MVES (R(γ)) = {Te}, for γ >
1√

N − 1
. (33)

It has been shown in step 1 that Te ∈ MVES(R(γ)). The ques-
tion is whether there exists another MVES T ′ ∈ MVES(R(γ)),
with T ′ �= Te. By Theorem 3, such T ′ does not exist. Thus, (33)
is obtained.

Step 4: We combine the results in steps 2 and 3. Specifically,
by (29) and (33), we get MVES(SL) ⊆ {Te}. As SL is enclosed
by Te, we further deduce MVES(SL) = {Te}. Theorem 2 is
therefore proven.

D. Proof of Theorem 3

Let T ′ ∈ MVES(R(r)) be an arbitrary MVES of R(r) for
1/
√
N − 1 < r ≤ 1. We prove Theorem 3 by showing that

T ′ = Te is always true. The proof is divided into three steps.
Step 1: We show that

T ′ ∈ MVES

(
R
(

1√
N − 1

))
.

To prove this, note that R(1/
√
N − 1) ⊆ R(r) for all

1/
√
N − 1 ≤ r ≤ 1. Also, it has been shown in (27) that Te ∈

MVES(R(r)) for all 1/
√
N − 1 ≤ r ≤ 1. Applying Fact 1 to

the aforementioned two results yields

MVES (R(r)) ⊆ MVES

(
R
(

1√
N − 1

))

for all 1/
√
N − 1 ≤ r ≤ 1. Since T ′ ∈ MVES(R(r)) for 1/√

N − 1 < r ≤ 1, it follows that T ′ ∈ MVES(R(1/
√
N − 1))

is also true.
Step 2: To proceed further, we apply the equivalent represen-

tation in (17) and (18) to rewrite Te as

Te = {s = Cθ + d | θ ∈ We} (34)

for some (N − 1)-dimensional simplex We ⊆ R
N−1. Simi-

larly, we can characterize T ′ by

T ′ = {s = Cθ + d | θ ∈ W′} (35)

for some (N − 1)-dimensional simplex W′ ⊆ R
N−1. Also, by

noting R(r) = Te ∩ C(r), the expression of C(r) in (22), and
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R(r) = C(r) for r = 1/
√
N − 1 (see Lemma 2), R(r) can be

expressed as

R(r)

=

⎧⎨
⎩
{
s=Cθ+d | θ∈B(

√
r2−1/N)

}
, r = 1√

N−1{
s=Cθ+d | θ∈We∩B(

√
r2−1/N)

}
, r > 1√

N−1

(36)

where

B(r) =
{
θ ∈ R

N−1 | ‖θ‖ ≤ r
}
. (37)

Now, by comparing (35) and (36), the following result can be
proven:

T ′ ∈ MVES (R(r))

⇐⇒ W′∈

⎧⎨
⎩
MVES

(
B(
√

r2−1/N)
)
, r= 1√

N−1

MVES
(
We ∩ B(

√
r2−1/N)

)
, r> 1√

N−1
.

(38)

The proof of (38) is analogous to that of Proposition 1, and it
will not be repeated here.

Step 3: From the equivalent representation (38),
we further deduce the following results: i) We,W′ ∈
MVES(B(

√
r2 − 1/N)) for r = 1/

√
N − 1, which is due to

step 1 and (27), and ii) We ∩ B(
√

r2 − 1/N) ⊆ W′ for all
r > 1/

√
N − 1, which is due to the underlying assumption

that T ′ ∈ MVES(R(r)) for 1/
√
N − 1 < r ≤ 1. Consider the

following lemma.

Lemma 4: Suppose that W,W′ ∈ MVES(B(r)), where B(r)
is defined in (37). Also, suppose that R = W ∩ B(r̄) ⊆ W′ for
some r̄ > r > 0. Then, we have W = W′.

The proof of Lemma 4 is relegated to Appendix C. By
Lemma 4, we obtain We = W′, and consequently, Te = T ′.

E. Proof of Proposition 2

Assume that N = 2, and let conv{b1, b2} be an MVES of
SL, where b1, b2 ∈ aff{e1, e2} ⊆ R

2. Using the simple fact
aff{e1, e2} = {s ∈ R

2 | s1 + s2 = 1}, we can write

b1 =

[
β1

1− β1

]
, b2 =

[
β2

1− β2

]
,

for some coefficients β1, β2 ∈ R. By the same spirit, every
abundance vector sn (for N = 2) can be written as

sn =

[
αn

1− αn

]
, n = 1, . . . , L

where 0 ≤ αn ≤ 1. From the aforementioned expressions, it
is easy to show that the MVES enclosing property sn ∈
conv{b1, b2} is equivalent to

β2 ≤ αn ≤ β1, n = 1, . . . , L (39)

where we assume that β1 ≥ β2 w.l.o.g. Moreover, from the
simplex volume formula in (1), the volume of conv{b1, b2} is

vol (conv{b1, b2}) = β1 − β2. (40)

From (39) and (40), it is immediate that conv{b1, b2} is a
minimum volume simplex enclosing SL if and only if

β2 = min
n=1,...,L

αn, β1 = max
n=1,...,L

αn. (41)

Now, consider perfect identifiability {b1, b2}={e1, e2}, which
is equivalent to β1 = 1 and β2 = 0. Putting the aforemen-
tioned conditions into (41), we see that perfect identifiability
is achieved if and only if the pure-pixel assumption holds, i.e.,
there exist two pixels, indexed by n1 and n2, such that sn1

= e1
and sn2

= e2 (or αn1
= 1 and αn2

= 0), respectively.

F. Proof of Theorem 4

Let

pij = αei + (1− α)ej (42)

for i, j ∈ {1, . . . , N}, i �= j, and recall that α = mini�=j αij . It
can be verified that each pij is a convex combination of sn(i,j)
and sn(j,i) in (7). Thus, every pij satisfies pij ∈ convSL. For
notational convenience, let

P = {pij}i,j∈{1,...,N}, i�=j

denote the set that collects all of the pij’s. By the result pij ∈
convSL, we have convP ⊆ convSL, and consequently

R(r) ⊆ convSL ⇐= R(r) ⊆ convP.

Applying the aforementioned implication to γ in (5) yields

γ ≥ sup {r≤ 1 | R(r) ⊆ convP} . (43)

Equation (43) has an explicit expression. To show it, let us
first consider the following lemma.

Lemma 5: For any α ∈ (0.5, 1], convP is equivalent to

convP = {s ∈ Te | si ≤ α, i = 1, . . . , N}. (44)

The proof of Lemma 5 is relegated to Appendix E. By using
Lemma 5 and observing the expressions of R(r) in (5) and
convP in (44), we see the following equivalence

R(r) ⊆ convP ⇐⇒ max
i=1,...,N

si ≤ α for all s ∈ R(r)

⇐⇒ sup
s∈R(r)

max
i=1,...,N

si ≤ α (45)

for 1/
√
N ≤ r ≤ 1 (note that R(r) = ∅ for r < 1/

√
N ). Next,

we solve the maximization problem in (45). The result is
summarized in the following lemma.



LIN et al.: IDENTIFIABILITY OF THE SIMPLEX VOLUME MINIMIZATION CRITERION FOR BLIND HU 5539

Lemma 6: Let

α�(r) = sup
s∈R(r)

max
i=1,...,N

si

where N ≥ 2 and 1/
√
N ≤ r ≤ 1. The optimal value α�(r)

has a closed-form expression

α�(r) =
1 +

√
(N − 1)(Nr2 − 1)

N
.

The proof of Lemma 6 is shown in Appendix F. Now, by
applying Lemma 6 and (45) to (43), we get

γ ≥ sup

{
r ∈

[
1√
N

, 1

]
| α�(r) ≤ α

}
. (46)

By noting that α�(r) is an increasing function of r ∈ [1/√
N, 1], we see that, if there exists an r ∈ [1/

√
N, 1] such that

α�(r) = α, then that r attains the supremum in (46). It can be
verified that the solution to α�(r) = α is

r =

√
1

N

[
(Nα− 1)2

N − 1
+ 1

]

and the aforementioned r satisfies r ∈ [1/
√
N, 1] for 0.5 <

α ≤ 1, N ≥ 2. Putting the aforementioned solution into (46),
we obtain the desired result in Theorem 4.

V. NUMERICAL EXPERIMENTS

In this section, we provide numerical simulation results that
aim to support the theoretical MVES identifiability results
proven in the previous section. The signals are generated by
the following way. The observed data set {x1, . . . ,xL} fol-
lows the basic model in (2). The endmember signature vec-
tors a1, . . . ,aN are selected from the U.S. Geological Survey
library [28], and the number of spectral bands is M = 224.
The generation of the abundance vectors is similar to that in
[6]. Specifically, we generate a large pool of random vectors
following a Dirichlet distribution with parameter μ = (1/N)1
and then select a number of L such random vectors as the
abundance set {s1, . . . , sL}. During the selection, we do not
choose vectors whose two-norm exceeds a given parameter r;
the reason of doing so is to allow us to control the pixel purity
level of {s1, . . . , sL} at or below r in the simulations. Note
that, if the number of pixels L is large, then one should expect
that r is close to the best pixel purity level ρ and uniform pixel
purity level γ. In the simulations, we set L = 1000.

The simulation settings are as follows. MVES is imple-
mented by the alternating linear programming method in [6].
We measure its identification performance by using the root-
mean-square (rms) angle error

φ = min
π∈ΠN

√√√√ 1

N

N∑
i=1

[
arccos

(
aT
i âπi

‖ai‖ · ‖âπi
‖

)]2

where {â1, . . . , âN} denotes the MVES estimate of the end-
members, and ΠN denotes the set of all permutations of

{1, . . . , N}. A number of 50 randomly generated realizations
were run to evaluate the means and standard deviations of φ.

The obtained rms angle error results are shown in Fig. 5. We
see that zero rms angle error, or equivalently, perfect identifia-
bility, is attained when r > 1/

√
N − 1—which is a good match

with the sufficient MVES identifiability result in Theorem 2.
Also, we observe nonzero errors for r ≤ 1/

√
N − 1, which

matches the necessary MVES identifiability result in Theorem 1.
Before closing this experimental section, we should mention

that previous papers, such as [6], [15], and [17]–[21], have
together provided a nice and rather complete coverage on
MVES’s performance under both synthetic and real-data ex-
periments. Hence, readers are referred to such papers for more
experimental results. The results reported therein also indicate
that MVES-based algorithms are robust against lack of pure
pixels. The aforementioned numerical (and also theoretical)
results further show the limit of robustness—1/

√
N − 1 with

the uniform pixel purity level.

VI. CONCLUSION

In this paper, a theoretical analysis for the identifiability of
MVES in blind HU has been performed. The results suggest
that, under some mild assumptions which are considerably
more relaxed than those for the pure-pixel case, MVES exhibits
robustness against lack of pure pixels. Hence, our study pro-
vides a theoretical explanation on why numerical studies usu-
ally found that MVES can recover the endmembers accurately
in the no-pure-pixel case.

APPENDIX

A. Proof of Lemma 1

Let us first prove Lemma 1(a). The set TG can be explicitly
represented by

TG = conv{g1, . . . , gN}

where gi ∈ R
N for all i. Also, by letting hi = Agi for all i,

one can easily show that

f(TG) = conv{h1, . . . ,hN}.

Since TG ⊂ aff{e1, . . . , eN}, we have gi ∈ aff{e1, . . . , eN}
for all i. This means that each gi satisfies 1Tgi = 1, or equiv-
alently, gi,N = 1−

∑N−1
j=1 gi,j . Using the aforementioned fact,

we can write

gi = Cθi + eN

where θi = [gi]1:(N−1), and

C =

[
I

−1T

]
∈ R

N×(N−1).

Let Ḡ = [g1 − gN , . . . , gN−1 − gN ]. We get

Ḡ = CΘ̄

where Θ̄ = [θ1 − θN , . . . ,θN−1 − θN ] ∈ R
(N−1)×(N−1). We
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Fig. 5. MVES performance with respect to the numerically control pixel purity
level r. (a) N = 3. (b) N = 4. (c) N = 5. (d) N = 6.

therefore obtain

det(Ḡ
T
Ḡ) = det(Θ̄

T
CTCΘ̄) (47a)

= det(Θ̄) det(CTC) det(Θ̄) (47b)

=N ·
∣∣det(Θ̄)

∣∣2 (47c)

where (47b) is due to det(AB) = det(A) det(B) for square
A, B, and (47c) is due to the following result:

det(CTC) = det(I + 11T ) = N

(note that the matrix result det(I + qqT ) = ‖q‖2 + 1 has been
used). Likewise, by letting H̄ = [h1 − hN , . . . ,hN−1 − hN ],
we have

H̄ = AḠ = ACΘ̄ = ĀΘ̄

and

det(H̄
T
H̄) = det(Ā

T
Ā) ·

∣∣det(Θ̄)
∣∣2 . (48)

Now, by (1), (47), and (48), (8) is obtained. Also, the property
f(TG) ⊂ aff{a1, . . . ,aN} can be easily proven by the fact that
H = AG and 1Tgi = 1 for all i.

Next, we prove Lemma 1(b). The set TH can be written as

TH = conv{h1, . . . ,hN}

where hi ∈ R
M for all i. Since TH ⊂ aff{a1, . . . ,aN}, we

have hi ∈ aff{a1, . . . ,aN} for all i. Hence, each hi can be ex-
pressed as hi = Agi, where gi ∈ R

N , 1Tgi = 1. This leads to

f−1(TH) = {x | Ax ∈ conv{h1, . . . ,hN}} (49a)

= {x | Ax = Hθ, θ ≥ 0,1Tθ = 1} (49b)

= {x | Ax = AGθ, θ ≥ 0,1Tθ = 1} (49c)

= {x | x = Gθ, θ ≥ 0,1Tθ = 1} (49d)

=conv{g1, . . . , gN} (49e)

⊂ aff{e1, . . . , eN} (49f)

where (49d) is due to the full column rank condition of A and
(49f) uses the structure 1Tgi = 1. The rest of the proof is the
same as that of Lemma 1(a).

B. Proof of Lemma 3

Fix r = 1/
√
N − 1. From (22), C(r) can be reexpressed as

C(r) = {s = Cθ + d | θ ∈ B(μ)} (50)

where μ =
√
r2 − 1/N = 1/

√
(N − 1)N and

B(r′) =
{
θ ∈ R

N−1 | ‖θ‖ ≤ r′
}

(51)

is a ball on R
N−1. Also, recall from (17) and (18) that an MVES

V ∈ MVES(C(r)) can be written as

V = {s = Cθ + d | θ ∈ W} (52)
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where W = conv{w1, . . . ,wN} ⊆ R
N−1 and that vol(V) =

vol(W) [see (19)]. From the aforementioned expressions, we
can deduce the following result: W must be an MVES of B(μ)
if V is an MVES of C(r), and the converse is also true.

Next, we will use the following fact.

Fact 2 [29, Theorem 3.2]: The volume of an (N − 1)-
dimensional simplex W enclosing B(r′) in (51) satisfies

vol(W) ≥ 1

(N − 1)!
N

N
2 (N − 1)

1
2 (N−1)(r′)

N−1 (53)

with equality only for the regular simplex.

Using Fact 2 and the result vol(V) = vol(W), we obtain

vol(V) = 1

(N − 1)!

√
N

where we should note that the right-hand side of the aforemen-
tioned equation is obtained by putting r′=μ = 1/

√
(N − 1)N

into (53). On the other hand, consider Te = conv{e1, . . . , eN},
which encloses C(r) (for r = 1/

√
N − 1). From the simplex

volume formula (1), one can show that

vol(Te) =
1

(N − 1)!

√
N.

Since Te attains the same volume as V , Te is an MVES of C(r).

C. Proof of Lemma 4

The following lemma will be required.

Lemma 7: Let B(r) = {θ ∈ R
N−1 | ‖θ‖ ≤ r}, where

r > 0. For any W ∈ MVES(B(r)), the boundaries of B(r)
and W have exactly N intersecting points. Also, by letting
{t1, . . . , tN} = bdB(r) ∩ bdW be the set of those intersecting
points, we have the following properties.

a) The points t1, . . . , tN are affinely independent.
b) The simplex W can be constructed from t1, . . . , tN via

W =

N⋂
i=1

{
θ ∈ R

N−1 | r2 ≥ tTi θ
}
.

The proof of Lemma 7 is given in Appendix D. Let

{t1, . . . , tN} =bdB(r) ∩ bdW
{t′1, . . . , t′N} =bdB(r) ∩ bdW′

which, by Lemma 7, always exist. Since B(r) ⊂ W and B(r) ⊂
W′, the aforementioned two equations can be equivalently
expressed as

{t1, . . . , tN} =bdB(r) \ intW (54)

{t′1, . . . , t′N} =bdB(r) \ intW′. (55)

Also, by Lemma 7(b), we have W = W′ if {t1, . . . , tN}={t′1,
. . . , t′N}. In the following steps, we focus on proving {t1, . . . ,
tN} = {t′1, . . . , t′N}.

Step 1: We first prove

bd (W ∩ B(r̄)) ⊆ bdW ∪ bdB(r̄) (56)

by contradiction. Suppose that (56) does not hold, i.e., there
exists an x ∈ R

N−1 satisfying

x ∈ bd (W ∩ B(r̄)) , but (57)

x /∈ bdW ∪ bdB(r̄). (58)

Now, since W ∩ B(r̄) is a closed set, (57) implies that

x ∈ W ∩ B(r̄). (59)

Equations (58) and (59) imply that x ∈ intW and that x ∈
intB(r̄). Thus, we have x ∈ int(W ∩ B(r̄)) which contradicts
(57). Hence, (56) must hold.

Step 2: We show that {t1, . . . , tN} = bdB(r) ∩ bdR. Let
us first consider proving {t1, . . . , tN} ⊆ bdB(r) ∩ bdR. We
observe from B(r) ⊆ B(r̄) and B(r) ⊆ W that

B(r) ⊆ B(r̄) ∩W = R. (60)

Subsequently, the following inequality chain can be derived:

{t1, . . . , tN} =bdB(r) \ intW (61a)

⊆ bdB(r) \ (intW ∩ intB(r̄)) (61b)

=bdB(r) \ intR (61c)

=bdB(r) ∩ bdR (61d)

where (61a) is by (54); (61c) is by int(W ∩ B(r̄)) = intW ∩
intB(r̄); and (61d) is by (60).

Moreover, we have bdB(r) ∩ bdR ⊆ {t1, . . . , tN}, ob-
tained from the following chain:

bdB(r) ∩ bdR
= bdB(r) ∩ bd (W ∩ B(r̄)) (62a)

⊆ bdB(r) ∩ (bdW ∪ bdB(r̄)) (61b)

= (bdB(r) ∩ bdW) ∪ (bdB(r) ∩ bdB(r̄)) (62c)

= (bdB(r) ∩ bdW) ∪ ∅ (62d)

= bdB(r) \ intW (62e)

= {t1, . . . , tN} (62f)

where (62b) is by (56), (62d) is by r̄ > r, (62e) is by bdB(r) ⊆
B(r) ⊆ W , and (62f) is by (54).

Step 3: We prove {t1, . . . , tN} = {t′1, . . . , t′N}. In step 2, it
is shown that

{t1, . . . , tN} = bdB(r) ∩ bdR. (63)

By the fact that t′i ∈ B(r) and by (60), we have

t′i ∈ R. (64)

Moreover, from the assumption that R ⊆ W′, we have bdW′ ∩
intR = ∅. However, from (55), we note that t′i ∈ bdW′. Thus,
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we can conclude that t′i /∈ int(R), which, together with (64),
yields

t′i ∈ bdR. (65)

Combining t′i ∈ bdB(r) [cf., (55)] with (63) and (65), we
obtain t′i ∈ {t1, . . . , tN}. Since property (a) in Lemma 7 re-
stricts t′1, . . . , t

′
N to be affinely independent, the only possible

choice of t′1, . . . , t
′
N is {t′1, . . . , t′N} = {t1, . . . , tN}. Lemma 4

is therefore proven.

D. Proof of Lemma 7

The proof of Lemma 7 requires several convex analysis
results. To start with, consider the following results.

Fact 3: Let W = conv{w1, . . . ,wN} ⊂ R
N−1 denote an

(N − 1)-dimensional simplex. Also, let

P(g,H) =
{
θ ∈ R

N−1 | HTθ + g ≥ 0

− (H1)Tθ + (1− 1Tg) ≥ 0
}

(66)

denote a polyhedron, where (g,H) ∈ R
N−1 × R

(N−1)×(N−1)

is given.

(a) Any W can be equivalently represented by P(gH) via
setting

H = W̄
−T

, g = −W̄
−T

wN (67)

where W̄ = [w1 −wN , . . . ,wN−1 −wN ].
(b) Suppose that H has full rank. Under the aforementioned

restriction, the set P(g,H) for any (g,H) can be equiva-
lently represented by W , whose vertices w1, . . . ,wN can
be determined by solving the inverse of (67). Also, the
corresponding volume is

vol (P(g,H)) =
1

(N − 1)!
|det(H)|−1 . (68)

The proof of Fact 3 has been shown in the literature [6], [23].
Also, (68) is determined by the simplex volume formula (1)
and the relation in (67). From Fact 3, we derive several convex
analysis properties for proving Lemma 7.

Fact 4: Let W be an (N − 1)-dimensional simplex on
R

N−1, and consider the polyhedral representation of W
in (66) and (67). Also, recall the definition B(r) = {θ ∈
R

N−1 | ‖θ‖ ≤ r}.

(a) If B(r) ⊆ W , then the following equations hold:

−r‖hi‖+ gi ≥ 0, i = 1, . . . , N − 1 (69a)

−r‖H1‖+ (1− 1Tg) ≥ 0 (69b)

where hi and gi denote the ith column of H and ith
element of g, respectively. Conversely, if (69) holds, then
B(r) ⊆ W .

(b) Suppose that B(r) ⊆ W . The boundaries of B(r) and W
have at most N intersecting points. Specifically, we have
bdB(r) ∩ bdW ⊆ {t1, . . . , tN}, where

ti = − r

‖hi‖
hi, i = 1, . . . , N − 1 (70a)

tN =
r

‖H1‖H1. (70b)

Also, if ti ∈ bdB(r) ∩ bdW , then{
−r‖hi‖+gi=0, i∈{1, . . . , N−1}
−r‖H1‖+(1−1Tg)=0, i = N ;

(71)

otherwise{
−r‖hi‖+gi>0, i∈{1, . . . , N−1}
−r‖H1‖+(1−1Tg)>0, i = N.

(72)

Proof of Fact 4: The proof of Fact 4(a) basically fol-
lows the development in [23, pp. 148–149] and is omitted
here for conciseness. To prove Fact 4(b), observe that a point
θ̃ ∈ bdB(r) ∩ bdW satisfies the following: i) ‖θ̃‖ = r and
ii) either

hT
i θ̃ + gi = 0 (73)

for some i ∈ {1, . . . , N − 1} or

−(H1)T θ̃ + (1− 1Tg) = 0. (74)

Suppose that θ̃ satisfies (73). Recall that the assumption B(r) ⊆
W implies that

hT
i θ + gi ≥ 0, for all ‖θ‖ ≤ r, (75)

and that the left-hand side of (75) attains its minimum if and
only if θ = −(r/‖hi‖)hi = ti. Thus, if (73) is to be satisfied,
then θ̃ must be equal to ti, and subsequently, (73) becomes

−r‖hi‖+ gi = 0. (76)

Likewise, it is shown that, if θ̃ satisfies (74), then θ̃ =
(r/‖H1‖)H1 = tN is the only choice and (74) becomes

−r‖H1‖+ (1− 1Tg) = 0. (77)

We therefore complete the proof that θ̃ ∈ bdB(r) ∩ bdW im-
plies θ̃ ∈ {t1, . . . , tN}.

We should also mention (71) and (72). From the aforemen-
tioned proof, it is clear that ti ∈ bdB(r) ∩ bdW holds if and
only if (76) holds for i = 1, . . . , N − 1 and (77) holds for
i = N , respectively. By considering (69) as well, we obtain the
conditions in (71) and (72). �

We are now ready to prove Lemma 7. Recall that W ∈
MVES(B(r)) is assumed. By Fact 3(a), we can write W =
P(g,H) for some (g,H), with H being of full rank. Then,
by Fact 4(b), we obtain bdB(r) ∩ bdW ⊆ {t1, . . . , tN}. We
consider two cases.
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Case 1: Suppose that ti /∈ bdB(r) ∩ bdW for some i ∈
{1, . . . , N − 1}. For simplicity but w.l.o.g., assume that i = 1.
By Fact 4(a) and (b), we have

−r‖h1‖+ g1 > 0 (78a)

−r‖hi‖+ gi ≥ 0, i = 2, . . . , N − 1 (78b)

−r‖H1‖+ (1− 1Tg) ≥ 0. (78c)

Let us construct another polyhedron, denoted by P(g̃, H̃),
where the two-tuple (g̃, H̃) ∈ R

N−1 × R
(N−1)×(N−1) is

chosen as

g̃1 = g1 −Nε (79a)

g̃i = gi + ε, i = 2, . . . , N − 1 (79b)

H̃ =

(
r + δ

r

)
H (79c)

where

ε =
−r‖h1‖+ g1

2N
> 0 (80)

δ =
ε

max {‖h1‖, . . . , ‖hN−1‖, ‖H1‖} > 0. (81)

The polyhedron P(g̃, H̃) is also an (N − 1)-dimensional sim-
plex; this is shown by Fact 3(b) and the fact that the rank of H̃
is the same as that of H (which is full). Now, we claim that
B(r)⊆P(g̃, H̃) and vol(P(g̃, H̃))<vol(P(g,H))=vol(W).
For the first claim, one can verify from (78) and (79) that

−r‖h̃1‖+ g̃1 ≥ (N − 1)ε ≥ 0

−r‖h̃i‖+ g̃i ≥ 0, i = 2, . . . , N − 1

−r‖H̃1‖+
(
1− 1T g̃

)
≥ ε ≥ 0

where h̃i and g̃i denote the ith column of H̃ and ith element
of g̃, respectively. The aforementioned equations, together with
Fact 4(a), implies that B(r) ⊆ P(g̃, H̃). The second claim
follows from (68) in Fact 3(b) and (79c):

vol
(
P(g̃, H̃)

)
=

1

(N − 1)!

(
r

r + δ

)N−1

| det(H)|−1

<
1

(N − 1)!
| det(H)|−1 = vol(W) (82)

for N ≥ 2 (note that N = 1 is meaningless). The aforemen-
tioned two claims contradict the assumption that W is an
MVES of B(r).

Case 2: Suppose that tN /∈ bdB(r) ∩ bdW . The proof
is similar to that of Case 1. Very concisely, this case has
−r‖H1‖+ (1− 1Tg) > 0 and −r‖hi‖+ gi ≥ 0 for all i ∈
{1, . . . , N − 1}. By constructing a polyhedron P(g̃, H̃) where

g̃ = g + ε1, H̃ =

(
r + δ

r

)
H

ε =
−r‖H1‖+

(
1− 1Tg

)
2N

and δ is the same as (81), we show that B(r) ⊆ P(g̃, H̃)
and vol(P(g̃, H̃)) < vol(W). The aforementioned two claims
contradict the MVES assumption with W .

The aforementioned two cases imply that bdB(r) ∩ bdW =
{t1, . . . , tN}, the desired result. In addition to this, prop-
erty (a) in Lemma 7 is obvious since the expression of ti’s
in (70), as well as (67), already suggests the affine inde-
pendence of t1, . . . , tN . As for property (b) in Lemma 7,
note that the two equalities in (71) are all satisfied.
It can be verified that, by substituting (70) and (71)
into (66), W can be rewritten as W = ∩N

i=1{θ ∈ R
N−1 |

r2 ≥ tTi θ}.

E. Proof of Lemma 5

For notational convenience, denote

U(α) = {s ∈ Te | si ≤ α, i = 1, . . . , N}

and recall that the aim is to prove convP = U(α). The afore-
mentioned identity is trivial for the case of α = 1, since we have
convP = Te ≡ U(1) for α = 1. Hence, we focus on 0.5 < α <
1. The proof is split into three steps.

Step 1: We start with showing that s ∈ convP =⇒ s ∈
U(α). Note that any s ∈ convP can be written as

s =
∑
j �=i

θjipij

for some {θji} satisfying
∑

j �=i θji = 1 and θji ≥ 0 for all
j, i, j �= i. From the aforementioned equation and the ex-
pression of pij in (42), one can verify that s ∈ Te and that
sk ≤ maxj �=i[pij ]k ≤ α for any k (here, [pij ]k denotes the kth
element of pij). Thus, any s ∈ convP also lies in U(α).

Step 2: We turn our attention to proving s ∈ U(α) =⇒ s ∈
convP . To proceed, suppose that s ∈ U(α), and assume that
s1 ≥ s2 ≥ . . . ≥ sN w.l.o.g. From a given s, choose an index
k by the following way:

k = max {i ∈ {1, . . . , N} | si ≥ δi} (83)

where δ1 = 0 and

δi =
1− α−

∑N
j=i+1 sj

i− 1
, i = 2, . . . , N. (84)

From (83) and (84), the following properties can be shown.

i) It holds true that

s1 ≥ δk
...

sk ≥ δk

sk+1 < δk+1 (85)
...

sN < δN .
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ii) Suppose that 2 ≤ k ≤ N − 1 and N ≥ 3. Then, s satisfies∑N
j=k+1 sj < 1− α.

iii) For any s ∈ U(α), the index k must satisfy k ≥ 2.
iv) α− δk > 0 for any 0.5 < α ≤ 1.

The proofs of the aforementioned properties are as follows.
Property i) follows directly from the definition of k and
the ordering of s. Property ii) is obtained by induction.
Observe that, if k ≤ N − 1, the last equation of (85) reads

sN < δN =
1− α

N − 1
≤ 1− α (86)

and for k = N − 1 the proof is complete (trivially). For k <
N − 1, we wish to show from (86) that sN−1 + sN < 1− α,
and then recursively,

∑N
j=i sj < 1− α from i = N − 2 to i =

k + 1. To put this induction into context, suppose that

N∑
j=i+1

sj < 1− α (87)

for i ∈ {k + 1, . . . , N − 1}, and note that (87) already holds
for i = N − 1 due to (86). The task is to prove that

∑N
j=i sj <

1− α. The proof is as follows:

N∑
j=i

sj < δi +

N∑
j=i+1

sj (88a)

=
1− α

i− 1
+

(
1− 1

i− 1

) N∑
j=i+1

sj (88b)

< 1− α (88c)

where (88a) is obtained by si < δi in property i), (88b) by
(84), (88c) by (87), and i− 1 ≥ k > 1 for k ≥ 2. Hence, we
conclude by induction that property ii) holds. To prove property
iii), note that s satisfies 1Ts = 1. Thus, s2 can be written as

s2 = 1− s1 −
N∑
j=3

sj .

Since every s ∈ U(α) satisfies si ≤ α for any i, we get

s2 ≥ 1− α−
N∑
j=3

sj = δ2.

The aforementioned condition implies that k ≥ 2 must hold. To
prove property iv), observe the following inequalities:

α− δk ≥ α− 1− α

k − 1
≥ 2α− 1

k − 1
.

Here, the first inequality is done by applying (84), and the
second inequality is done by k ≥ 2. From the aforementioned
equation, we see that α− δk > 0 for α > 0.5.

With the aforementioned properties, we are ready to show
that s ∈ U(α) lies in convP . First, for each i ∈ {1, . . . , k}, we
construct a vector

p̄i =
∑
j �=i

θjipij

where

θji =

{
c, 1 ≤ j ≤ k, j �= i
sj

1−α , k + 1 ≤ j ≤ N,N ≥ 3,

c =
1

k − 1

(
1−

∑N
j=k+1 sj

1− α

)
=

δk
1− α

.

It can be verified that θji ≥ 0,
∑

j �=i θji = 1 (in particular,
property ii) is required to verify c > 0); that is to say that every
p̄i satisfies p̄i ∈ convP . Moreover, from the aforementioned
equations, p̄i is shown to take the structure

p̄i =

[
(α− δk)ei + δk1

sk+1:N

]
(89)

where sk+1:N = [sk+1, . . . , sN ]T . Now, we claim that

s =
k∑

i=1

βip̄i (90)

where

βi =
si − δk
α− δk

, i = 1, . . . , k (91)

and they satisfy
∑k

i=1 βi = 1, βi ≥ 0 for all i. The aforemen-
tioned claim is verified as follows. The property βi ≥ 0 directly
follows from properties i) and iv). For the property

∑k
i=1 βi=1,

observe that

k∑
i=1

βi =

∑k
i=1 si − kδk
α− δk

=
1−

∑N
j=k+1 sj − kδk

α− δk

=
(k − 1)δk + α− kδk

α− δk
= 1

where the second equality is by 1Ts = 1 and the third equality
is by (84). In addition, by substituting (89) and (91) into the
right-hand side of (90) and by using 1Ts = 1, one can show
that (90) is true. Equation (90) and the associated properties
with βi suggest that s ∈ conv{p̄1, . . . , p̄k}. This, together with
the fact that p̄i ∈ convP , implies that s ∈ convP .

Step 3: By combining the results in step 1 and step 2, we get
s ∈ convP ⇐⇒ s ∈ U(α). Lemma 5 is therefore proven.

F. Proof of Lemma 6

Recall that R(r) = {s ∈ Te | ‖s‖ ≤ r}, and notice that Te
can be rewritten as

Te = {s ∈ R
N | s ≥ 0,1T s = 1}.

Let s ∈ R(r), and assume that s1 ≥ s2 ≥ . . . ≥ sN w.l.o.g.
From the aforementioned assumption, it is easy to verify that
s1 ≥ 1/N . Also, by denoting s2:N = [s2, . . . , sN ]T , we have

r2 ≥ ‖s‖2 = s21 + ‖s2:N‖2

≥ s21 +
(1− s1)

2

N − 1
(92)
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where the second inequality is owing to the norm inequality∑n
i=1 |xi| ≤

√
n‖x‖ for any x ∈ R

n and the fact that s ≥ 0,
1Ts = 1. Moreover, the equality in (92) holds if s takes the
form s = [s1, (1− s1/N − 1)1T ]T (which lies in Te). Hence,
α�(r) can be simplified to

α�(r) = sup s1 (93a)

s.t. s21 +
(1− s1)

2

N − 1
≤ r2 (93b)

1

N
≤ s1 ≤ 1. (93c)

By the quadratic formula, the constraint in (93b) can be reex-
pressed as

(s1 − a)(s1 − b) ≤ 0 (94)

where

a =
1 +

√
(N − 1)(Nr2 − 1)

N

b =
1−

√
(N − 1)(Nr2 − 1)

N
.

From (93c) and (94), it can be shown that, for 1/
√
N ≤ r ≤ 1

b ≤ 1

N
≤ s1 ≤ a ≤ 1.

Hence, the optimal solution to problem (93) is simply s�1 = a,
and the proof is complete.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and associate editor who have helped them in improving this
paper significantly.

REFERENCES

[1] J. M. Bioucas-Dias et al., “Hyperspectral remote sensing data analysis
and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2,
pp. 6–36, Jun. 2013.

[2] W.-K. Ma, J. M. Bioucas-Dias, J. Chanussot, and P. Gader, Eds.,
“Special issue on signal and image processing in hyperspectral re-
mote sensing,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 22– 23,
Jan. 2014.

[3] J. Bioucas-Dias et al., “Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches,” IEEE J. Sel. Topics
Appl. Earth Observ., vol. 5, no. 2, pp. 354–379, Apr. 2012.

[4] W.-K. Ma et al., “A signal processing perspective on hyperspectral
unmixing,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67–81,
Jan. 2014.

[5] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and
A. O. Hero, “Joint Bayesian endmember extraction and linear unmixing
for hyperspectral imagery,” IEEE Trans. Signal Process., vol. 57, no. 11,
pp. 4355–4368, Nov. 2009.

[6] T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “A convex analysis
based minimum-volume enclosing simplex algorithm for hyperspectral
unmixing,” IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418–4432,
Nov. 2009.

[7] N. Gillis and S. A. Vavasis, “Fast and robust recursive algorithms for
separable nonnegative matrix factorization,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 36, no. 4, pp. 698–714, Apr. 2014.

[8] J. Li and J. Bioucas-Dias, “Minimum volume simplex analysis: A
fast algorithm to unmix hyperspectral data,” in Proc. IEEE IGARSS,
Aug. 2008, pp. III-250– III-253.

[9] M. D. Craig, “Minimum-volume transforms for remotely sensed data,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542–552,
May 1994.

[10] W. E. Full, R. Ehrlich, and J. E. Klovan, “EXTENDED QMODEL—
Objective definition of external endmembers in the analysis of mixtures,”
Math. Geol., vol. 13, no. 4, pp. 331–344, Aug. 1981.

[11] M. E. Winter, “N-FINDR: An algorithm for fast autonomous spec-
tral end-member determination in hyperspectral data,” in Proc.
SPIE Conf. Imag. Spectrometry, Pasadena, CA, USA, Oct. 1999,
pp. 266–275.

[12] Q. Du, N. Raksuntorn, N. H. Younan, and R. L. King, “End-member
extraction for hyperspectral image analysis,” Appl. Opt., vol. 47, no. 28,
pp. F77–F84, Oct. 2008.

[13] T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, “A simplex
volume maximization framework for hyperspectral endmember extrac-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4177–4193,
Nov. 2011.

[14] L. Miao and H. Qi, “Endmember extraction from highly mixed data
using minimum volume constrained nonnegative matrix factorization,”
IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765–777,
Mar. 2007.

[15] A. Agathos, J. Li, D. Petcu, and A. Plaza, “Multi-GPU implementation
of the minimum volume simplex analysis algorithm for hyperspectral
unmixing,” IEEE J. Sel. Topics Appl. Earth Observ., vol. 7, no. 6,
pp. 2281– 2296, Jun. 2014.

[16] J. Bioucas-Dias, “A variable splitting augmented Lagrangian
approach to linear spectral unmixing,” in Proc. IEEE WHISPERS,
Aug. 2009, pp. 1– 4.

[17] A. Ambikapathi, T.-H. Chan, W.-K. Ma, and C.-Y. Chi, “Chance-
constrained robust minimum-volume enclosing simplex algorithm for hy-
perspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11,
pp. 4194–4209, Nov. 2011.

[18] E. M. Hendrix, I. García, J. Plaza, G. Martin, and A. Plaza, “A new
minimum-volume enclosing algorithm for endmember identification and
abundance estimation in hyperspectral data,” IEEE Trans. Geosci. Remote
Sens., vol. 50, no. 7, pp. 2744–2757, Jul. 2012.

[19] M. B. Lopes, J. C. Wolff, J. Bioucas-Dias, and M. Figueiredo, “NIR
hyperspectral unmixing based on a minimum volume criterion for fast and
accurate chemical characterization of counterfeit tablets,” Anal. Chem.,
vol. 82, no. 4, pp. 1462–1469, Feb. 2010.

[20] J. Nascimento and J. Bioucas-Dias, “Hyperspectral unmixing based on
mixtures of Dirichlet components,” IEEE Trans. Geosci. Remote Sens.,
vol. 50, no. 3, pp. 863–878, Mar. 2012.

[21] J. Plaza, E. M. Hendrix, I. García, G. Martín, and A. Plaza, “On
endmember identification in hyperspectral images without pure pixels:
A comparison of algorithms,” J. Math. Imag. Vis., vol. 42, no. 2-3,
pp. 163–175, Feb. 2012.

[22] C.-H. Lin, A. Ambikapathi, W.-C. Li, and C.-Y. Chi, “On the endmember
identifiability of Craig’s criterion for hyperspectral unmixing: A statisti-
cal analysis for three-source case,” in Proc. IEEE ICASSP, May 2013,
pp. 2139–2143.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[24] P. Gritzmann, V. Klee, and D. Larman, “Largest j-simplices in
n-polytopes,” Discr. Comput. Geometry, vol. 13, no. 1, pp. 477–515,
1995.

[25] A. Packer, “NP-hardness of largest contained and smallest containing
simplices for V- and H-polytopes,” Discr. Comput. Geometry, vol. 28,
no. 3, pp. 349–377, 2002.

[26] P. Gritzmann and V. Klee, “On the complexity of some basic problems
in computational convexity: I. Containment problems,” Discr. Math.,
vol. 136, no. 1, pp. 129–174, Dec. 1994.

[27] T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, “A convex
analysis framework for blind separation of non-negative sources,”
IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5120–5134,
Oct. 2008.

[28] R. Clark et al., “USGS Digital Spectral Library splib06a: U.S. Geolog-
ical Survey, Digital Data Series 231,” 2007. [Online]. Available: http://
speclab.cr.usgs.gov/spectral.lib06

[29] L. Gerber, “The orthocentric simplex as an extreme simplex,” Pac. J.
Math., vol. 56, no. 1, pp. 97–111, Nov. 1975.



5546 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

Chia-Hsiang Lin received the B.S. degree in electri-
cal engineering from the National Tsing Hua Univer-
sity, Hsinchu, Taiwan, in 2010, where he is currently
working toward the Ph.D. degree in communications
engineering.

He is currently a visiting Doctoral Graduate Re-
search Assistant with Virginia Polytechnic Institute
and State University, Arlington, VA, USA. His re-
search interests are network science, game theory,
convex geometry and optimization, and blind source
separation.

Wing-Kin Ma (M’01–SM’11) received the B.Eng.
degree in electrical and electronic engineering from
the University of Portsmouth, Portsmouth, U.K., in
1995 and the M.Phil. and Ph.D. degrees in elec-
tronic engineering from The Chinese University of
Hong Kong (CUHK), Hong Kong, in 1997 and 2001,
respectively.

He is currently an Associate Professor with
the Department of Electronic Engineering, CUHK.
From 2005 to 2007, he was also an Assistant Pro-
fessor with the Institute of Communications Engi-

neering, National Tsing Hua University, Hsinchu, Taiwan. Prior to becoming
a faculty member, he held various research positions with McMaster Univer-
sity, Hamilton, ON, Canada, CUHK, and University of Melbourne, Parkville,
Vic., Australia. His research interests are signal processing and communica-
tions, with a recent emphasis on optimization, MIMO transceiver designs and
interference management, blind signal processing theory, methods and applica-
tions, and hyperspectral unmixing in remote sensing.

Dr. Ma is currently serving or has served as Associate Editor and Guest
Editor of several journals, which include the IEEE TRANSACTIONS ON

SIGNAL PROCESSING, IEEE SIGNAL PROCESSING LETTERS, Signal
Processing, IEEE JOURNAL OF SELECTED AREAS IN COMMUNICATIONS,
and IEEE SIGNAL PROCESSING MAGAZINE. He was a tutorial speaker in
EUSIPCO 2011 and ICASSP 2014. He is currently a member of the Signal
Processing Theory and Methods Technical Committee (SPTM-TC) and the
Signal Processing for Communications and Networking Technical Committee
(SPCOM-TC). His students won ICASSP Best Student Paper Awards in 2011
and 2014, respectively, and he was a corecipient of a WHISPERS 2011 Best
Paper Award. He received Research Excellence Award 2013–2014 by CUHK.

Wei-Chiang Li received the B.S. degree in electrical
engineering from the National Tsing Hua University,
Hsinchu, Taiwan, in 2009, where he is currently
working toward the Ph.D. degree in communications
engineering.

His research interests are signal processing prob-
lems in wireless communications and convex opti-
mization methods and its applications.

Chong-Yung Chi (S’83–M’83–SM’89) received the
B.S. degree in electrical engineering from Tatung
Institute of Technology, Taipei, Taiwan, in 1975, the
M.S. degree in electrical engineering from National
Taiwan University, Taipei, in 1977, and the Ph.D.
degree in electrical engineering from the University
of Southern California, Los Angeles, CA, USA,
in 1983.

From 1983 to 1988, he was with the Jet Propul-
sion Laboratory, Pasadena, CA. He has been a Pro-
fessor with the Department of Electrical Engineering

since 1989 and the Institute of Communications Engineering (ICE) since 1999
(also the Chairman of ICE in 2002–2005), National Tsing Hua University,
Hsinchu, Taiwan. He has published more than 200 technical papers, including
more than 75 journal papers (mostly in IEEE TRANSACTIONS ON SIGNAL

PROCESSING), 4 book chapters, and more than 130 peer-reviewed conference
papers, as well as a graduate-level textbook entitled Blind Equalization and
System Identification (Springer-Verlag, 2006). His current research interests
include signal processing for wireless communications, convex analysis and
optimization for blind source separation, and biomedical and hyperspectral
image analysis.

Dr. Chi has been a Technical Program Committee member for many IEEE
sponsored and cosponsored workshops, symposiums, and conferences on signal
processing and wireless communications, including the Coorganizer and Gen-
eral Cochairman of the 2001 IEEE Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), Cochair of the Signal Processing for
Communications (SPC) Symposium, ChinaCOM 2008, and Lead Cochair of
SPC Symposium, ChinaCOM 2009. He was an Associate Editor (AE) of the
IEEE TRANSACTIONS ON SIGNAL PROCESSING (May 2001 to April 2006),
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II (January 2006 to
December 2007), IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I
(January 2008 to December 2009), AE of IEEE SIGNAL PROCESSING LET-
TERS (June 2006 to May 2010), a member of the Editorial Board of Elsevier’s
Signal Processing (June 2005 to May 2008), and an Editor (July 2003 to
December 2005) as well as a Guest Editor (2006) of EURASIP Journal
on Applied Signal Processing. He was a member of the Signal Processing
Theory and Methods Technical Committee (SPTM-TC; 2005–2010), IEEE
Signal Processing Society. He is currently a member of the Signal Process-
ing for Communications and Networking Technical Committee (SPCOM-TC)
and a member of the Sensor Array and Multichannel Technical Committee
(SAM-TC), IEEE Signal Processing Society, and an AE of IEEE TRANSAC-
TIONS ON SIGNAL PROCESSING.

ArulMurugan Ambikapathi (S’02–M’11) received
the B.E. degree in electronics and communica-
tion engineering from Bharathidasan University,
Tiruchirappalli, India, in 2003, the M.E. degree
in communication systems from Anna University,
Chennai, India, in 2005, and the Ph.D. degree from
the Institute of Communications Engineering (ICE),
National Tsing Hua University (NTHU), Hsinchu,
Taiwan, in 2011.

He is currently a Senior Algorithm Engineer with
Utechzone Co. Ltd., Taipei, Taiwan. He was a Post-

doctoral Research Fellow with ICE, NTHU, from September 2011 to August
2014. His research interests are hyperspectral and biomedical image analysis,
convex analysis, and optimization for blind source separation, with recent
emphasis on automated object identification and computer vision applications.

Dr. Ambikapathi was the recipient of Gold and Silver medals for academic
excellence in his B.E. and M.E. programs, respectively. He was also the recip-
ient of the NTHU Outstanding Student Scholarship award for two consecutive
years (2009 and 2010). He was awarded “The Best Ph.D. Thesis Award” from
the IEEE Geoscience and Remote Sensing Society, Taipei Chapter.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


