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Abstract—Multicell coordinated beamforming (MCBF), where
multiple base stations (BSs) collaborate with each other in the
beamforming design for mitigating the intercell interference
(ICI), has been a subject drawing great attention recently. Most
MCBF designs assume perfect channel state information (CSI) of
mobile stations (MSs); however CSI errors are inevitable at the
BSs in practice. Assuming elliptically bounded CSI errors, this
paper studies the robust MCBF design problem that minimizes
the weighted sum power of BSs subject to worst-case signal-to-in-
terference-plus-noise ratio (SINR) constraints on the MSs. Our
goal is to devise a distributed optimization method to obtain
the worst-case robust beamforming solutions in a decentralized
fashion with only local CSI used at each BS and limited backhaul
information exchange between BSs. However, the considered
problem is difficult to handle even in the centralized form. We first
propose an efficient approximation method for solving the non-
convex centralized problem, using semidefinite relaxation (SDR),
an approximation technique based on convex optimization. Then
a distributed robust MCBF algorithm is further proposed, using
a distributed convex optimization technique known as alternating
direction method of multipliers (ADMM). We analytically show the
convergence of the proposed distributed robust MCBF algorithm
to the optimal centralized solution. We also extend the worst-case
robust beamforming design as well as its decentralized implemen-
tation method to a fully coordinated scenario. Simulation results
are presented to examine the effectiveness of the proposed SDR
method and the distributed robust MCBF algorithm.

Index Terms—Alternating direction method of multipliers
(ADMM), convex optimization, coordinated multipoint (CoMP),
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distributed optimization, multicell processing, robust beam-
forming, semidefinite relaxation (SDR).

I. INTRODUCTION

ECENTLY, multicell coordinated signal processing has

drawn great attention because it can provide signifi-
cant system throughput gains compared to the conventional
single-cell designs [2], [3]. We consider the scenario where the
base stations (BSs) are equipped with multiple antennas and
the mobile stations (MSs) are equipped with single antenna.
The BSs in different cells employ multicell coordinated beam-
forming (MCBF) [2], aiming at jointly designing the beam
patterns of each BS in order to effectively mitigate the intercell
interference (ICI). To this end, various MCBF designs have
been proposed [4]-[8]. Most of the MCBF designs assume that
the BSs are connected with a control center which knows all
the MSs’ channel state information (CSI) and computes the
beamforming solution in a centralized manner. In practical
multicell systems, however, obtaining the MCBF solutions in
a decentralized fashion using only local CSI at each BS is of
central importance, thereby having drawn extensive studies
on distributed beamforming [6]-[13]. The reasons are that
1) the future wireless systems prefer a flat Internet Protocol
(IP) architecture where all BSs are directly connected with the
core network [14]; 2) if the control center is still employed,
a distributed optimization method can be used to decouple
the original problem into multiple parallel subproblems with
smaller problem size, thus reducing the required computation
power of the control center [15]. One of the most popular
beamforming design criteria is to minimize the transmit power
of BSs subject to quality-of-service (QoS) constraints of MSs
[4]-[6], [16]. In [6], by leveraging the uplink-downlink duality
[4], a distributed optimization method was proposed for the
power-minimization-based MCBF design problem. Distributed
optimization methods based on primal and dual decomposition
techniques [17] were, respectively, reported in [13] and [10] for
fully exploiting the inherently block-separable structure of the
MCBEF problem. Game theory-based distributed optimization
methods were also proposed in [9] recently. Though being
suboptimal in general, game theoretic approaches demand a
much smaller amount of information exchange among BSs.
In [12], the idea of uplink-downlink duality was used for dis-
tributed optimization of a different max-min-fair MCBF design
problem [18].
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The efficacy of beamforming designs relies on the assump-
tion that the BSs have the perfect CSI of MSs. In practical sce-
narios, however, the BSs can never have perfect CSI, due to,
e.g., imperfect channel estimation and finite rate feedback [19].
In the multicell scenario, it is even more difficult for the BSs to
obtain reliable intercell CSI (i.e., the CSI of MSs in the neigh-
boring cells). In the presence of CSI errors, the MSs’ QoS re-
quirements can no longer be guaranteed. In view of this, ro-
bust MCBF designs, which take into account the CSI errors, are
of great importance. Robust beamforming designs have been
studied for the single-cell scenarios; e.g., see [20]-[24]. De-
pending on how the CSI errors are modeled, there are two major
design criteria, namely, the chance constrained robust design
[22]-[24] and the worst-case constrained robust design [20],
[21]. The former assumes that the CSI errors are random fol-
lowing certain statistical distribution (usually Gaussian), and the
robustness is achieved in a probabilistic sense; while the latter
assumes that the CSI errors lie in a bounded uncertainty region,
e.g., quantization errors, and MSs’ QoS is guaranteed for all
possible errors within the region. These existing works provide
useful insights and mathematical tools for the development of
the robust MCBF design [25].

The focus of this paper is on the worst-case signal-to-in-
terference-plus-noise ratio (SINR) constrained MCBF design
problem [1], [26], where the weighted sum power of BSs is min-
imized subject to constraints that guarantee worst-case SINR
requirements for the MSs. Our goal is to develop a distributed
beamforming optimization algorithm for the worst-case robust
formulation; however, the considered problem itself is difficult
to handle even in the centralized form, due to the fact that each
of the worst-case SINR constraints corresponds to infinitely
many nonconvex constraints. In contrast with the single-cell
robust beamforming design in [20] and [21], the robust MCBF
formulation considered in this paper is more challenging be-
cause the CSI errors not only appear in the desired signal and
intracell interference terms, but also in the ICI term. To handle
this problem, a convex restrictive approximation formulation
was proposed in [26]. Distributed optimization algorithms
based on dual decomposition and alternating optimization were
also presented in [26]. However, due to the reduced feasible
set, the approximation method in [26] is less power efficient
than the original problem.

In this paper, we propose a new convex approximation
method for the worst-case SINR constrained robust MCBF
design problem. Our approach is based on a convex approx-
imation technique known as semidefinite relaxation (SDR)
[27]. SDR has been a popular approach to dealing with various
transmit beamforming designs [28], [29]. By SDR, we come
up with an approximation formulation, which is a convex
semidefinite program (SDP) and can be efficiently solved by
interior-point methods [30]. We also identify several conditions
under which the proposed SDR method can yield the global
optimal solution.

We further develop a distributed optimization algorithm for
solving the proposed SDR approximation formulation. While,
as shown in [10], the dual decomposition method [17] can suc-
cessfully handle the nonrobust MCBF design, direct application
of the dual decomposition method to the proposed SDR-based
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robust MCBF formulation may result in unbounded subprob-
lems due to lack of strict convexity, and the resulting algorithm
is thus numerically unstable. To overcome this problem, we
instead consider the so-called alternating direction method
of multipliers (ADMM) [31], [32]. ADMM is an advanced
dual decomposition method that combines the idea of dual
decomposition and the augmented Lagrangian method [33],
where the latter is often used for bringing numerical robust-
ness to the dual ascent method [32] by adding strictly convex
penalty terms. Hence, ADMM is in general more numerically
stable and faster in convergence than the conventional dual
decomposition method [32], [34]. Based on the principle of
ADMM, we propose a distributed robust MCBF algorithm
that is provably able to converge to the global optimum of the
centralized problem.

In addition to the multicell coordinated scenario, we further
consider a fully coordinated scenario where the BSs collaborate
to serve the MSs near the cell edges, and extend the proposed
worst-case robust design, as well as the distributed implemen-
tation method to this scenario. This fully coordinated scenario
can enhance the QoS of the cell-edge MSs, but the BSs have to
share with each other the data and CSI of the cell-edge MSs and
synchronize their transmission phases, which is more complex
and requires more backhaul signaling [2], [8].

The rest of this paper is organized as follows. Section II
presents the multicell signal model and the worst-case SINR
constrained robust MCBF design problem. In Section III, the
proposed SDR approximation method and its optimality condi-
tions are presented. Using ADMM, a distributed robust MCBF
algorithm is proposed in Section IV. Section V extends the
proposed method to a fully coordinated scenario. Simulation
results are presented in Section VI. Finally, conclusions are
drawn in Section VII.

Notations: C", R™ and H™ stand for the sets of n-di-
mensional complex and real vectors and complex Hermitian
matrices, respectively. R’y denotes the set of n-dimensional
nonnegative orthant. Column vectors and matrices are written
in boldfaced lowercase and uppercase letters, e.g., a and A. I,
denotes the n x n identity matrix, and 0 denotes an all-zero
vector (matrix) with appropriate dimension. The superscripts
()T, ()% and (-)' represent the transpose, (Hermitian) con-
jugate transpose and pseudoinverse operations, respectively.
Rank(A) and Tr(A) represent the rank and trace of matrix A,
respectively. A > 0 (- 0) means that matrix A is positive
semidefinite (positive definite). For vector a, ||a|| denotes the
Euclidean norm. E{-} denotes the statistical expectation. For
a variable anmr, where n € {1,...,N},m € {1,...,M}
and £ € {1....,K}, {anmi}, denotes the set containing
Apmls - - - » Gnmic; While {a,mi | denotes the set containing all
possible Anmks i.e., A111s -+ - A11K,A121.-- - ONMK -

II. SIGNAL MODEL AND PROBLEM STATEMENT

A. Signal Model

Consider a multicell downlink system that consists of N,
cells. Each cell is composed of one BS, which is equipped
with N; antennas, and K single-antenna MSs. The N. BSs
are assumed to operate over a common frequency band and
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each communicates with its K associated MSs using transmit
beamforming. The scenario under consideration is that each
MS is served by only one BS; extension to the scenario where
one MS is served by multiple BSs will be given in Section V.
We use BS,, to denote the nth BS, and MS,,;, the kth MS

in the nth cell, for all n € N, 2 {1,2,...,N.} and k ¢

K2 {1.2,...,K}. Let 8,(t) € C be the s1gna1 of interest for
MS,.%, and w,,;. € CN* be the associated beamforming vector.
The transmit signal by BS,, is given by

K
= anksnk(t) (1)
k=1

for n € N.. The received signal of MS,,;, can be expressed as

§ hmnkxm

m=1

ynk + an( )

K

) + Z hﬁLkwnisni (t)

H
=h nnk WnkSnk (t

i*k
N, K
+ Z Z hmnkwmt"’mt( ) + 4nk( ) 2)
m#n 1=1

where h,,,. € C™ denotes the channel vector from BS,, to
MS,.k, and z,4(t) € C is the additive noise of MSnk, which
is assumed to have zero mean and variance o*nk > 0. The
term 2, ({) may capture both the receiver noise and the in-
terference from the noncoordinated BSs. In (2), the first term
is the signal of interest for MS,,;, and the second and third
terms are the intracell interference and ICI, respectively. As-
sume that s, (¢) are statistically independent, with zero mean
and E{|s,x(t)|?} = 1 foralln € N, and k € K, and that each
MS employs single-user detection. By (2), the SINR of MS,,;,
is given by

SINR.,.x ({wml,. Wk Je {hmnk}fﬁ;l)

’hankW"k ‘ ’

= — R . 0)

, N K 5
;k |h£nkw7li| + Z#: zl |hznkwmi| + Ug,k
k3 Tre n 1=

Single-cell beamforming designs [16], [29], [35] are devel-
oped mainly for handling the intracell interference. To effec-
tively mitigate the ICI, the following MCBF design has been
considered [36]

(4a)

--------

s.t. SINR,. ({wml, ..
Vke K,neWN,

wml&} =11 {hmnk}m 1)>FYrLk
(4b)

where «,, > 0 is the power priority weight for BS,,. As seen,
the MCBF design jointly optimizes the beamforming vectors
of all the BSs such that the weighted sum power is minimized,
and meanwhile the MSs’ SINR requirements 7y, > 0 must
be fulfilled. It has been shown that (4) can be reformulated as
a convex second-order cone program (SOCP) [36], which can
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be efficiently solved via standard convex solvers, e.g., SeDuMi
[37].

B. Worst-Case Robust MCBF Design

The MCBF design in (4) assumes that the BSs have perfect
knowledge of the CSIs. As discussed in the introduction sec-
tion, in practice, the BSs inevitably suffer from CSI errors. Let
Boni € CV¢, n,m € N., k € K be the preassumed CSI at the
BSs. Then the true CSI can be expressed as

hynr = flmnk + €pmnk v’"by” € Ng, kek (5)

where e, € C™ denotes the CSI error vector satisfying the
following elliptic model:

H
Cmnk ankemnk <1 (6)

where Qune € HY, Quung > 0 speciﬁes the size and shape
of the ellipsoid. When Quonie = €, In, where emnk >0, (6)
reduces to the popular spherical error model ||eynx||? < €2,
[20]. The following simulation example motivates the need of
robust designs for accounting for the CSI errors.

Example: Let us consider a two-cell system (N, = 2), with
two MSs in each cell (K = 2). Each of the BSs is equipped
with four antennas (N; = 4). A set of preassumed CSI { honn k}
is randomly generated following the independent and iden-
tically distributed (i.i.d.) complex Gaussian distribution with
zero mean and unit variance (see Section VI-A for the detailed
channel model used in the simulation). Using the preassumed
CSI, an optimal beamforming solution is obtained by solving
the MCBF problem (4) for 7y, = 20 dB forn,k = 1, 2. To
examine the impact of the CSI errors, we generated 10 000 sets
of CSI errors satisfying ||€,nx||? < 0.01, ||lemnz]|? < 0.04 for
allm # n, m,n € N, k € K, and evaluated the achievable
SINR values in (3). Fig. 1 displays the probability distribution
of the achievable SINR values of MS17. As seen, it is with very
high chance that the achieved SINR is smaller than the target
value, due to the CSI errors. The worst SINR value can be even
less than 5 dB. ]

To guarantee that the SINR requirement ~,,; can be satisfied
for all possible CSI errors, we consider the following worst-case
robust MCBF design [1], [26]:

min Uy Wi, 7a
L oo (St 2
n=1
st SINRuk ({Wont, -, Wonic Fos,
{ﬁmnk + e'm'nk}ml(::l) 2 Tk
Vel Qunkemni < 1,m,n € N,k € K. (7b)

In comparison to the nonrobust design in (4), the above worst-
case robust MCBF design can provide guaranteed QoS for the
MSs, as illustrated in Fig. 1. Solving the robust design problem
(7), however, is more challenging because, firstly, each of the
SINR constraints is nonconvex, and second, there are infinitely
many such nonconvex SINR constraints (due to the worst-case
design criterion). In the next section, we propose to apply the
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40 mmmm Non-robust MCBF .....
= Robust MCBF : :

Probability of Achievable SINR (%)

0 5 10 15 20 25
Achievable SINR (dB)

Fig. 1. Distribution of the achievable SINR values of MS;;, when the non-
robust MCBF design (4) and the robust MCBF design (7) are, respectively, used.
The target SINR value is 20 dB.

convex optimization-based SDR technique [27]. We will further
present conditions under which SDR is optimal.

III. PROPOSED SDR-BASED METHOD

A. Solving (7) by SDR and S-Lemma

Considering that each of the SINR constraints is non-
convex, we first apply SDR to “linearize” the robust MCBF
problem . Let us express the objective function of (7)
as Z 10/,LZA_ Tr(wnkwfk) and express each of the
worst-case SINR constraints in (7b) as

§ WTI’I

i#k

[ H H
(hnnk+ennk) Aok Wnkw nnl. +ennk')

> E : (hrrLrLk+errLILk) (E W,,“W"“> mnk+emnk)

m¥#£n
2 H |
+Unk;7 vemnkankemnk: S 17 m € J\/cv (8)

The idea of SDR is to replace each rank-one matrix w,, kwfk

by a general-rank positive semidefinite matrix W, > 0 [27].
After applying SDR to (7), we obtain the following:

nk )
hnnk + ennk)

(zwm,) (i + o)

kankemnk <l.meg M, n e Nw kek.
(9b)

(9a)

N,
2 E (hmnk' + e'mnk

m7$77
+ a2, vell

mn

Note that the SDR problem (9) is convex, since the objec-
tive function and constraints are linear in W ;. However, (9)
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is still computationally intractable because it involves an infi-
nite number of constraints. Fortunately, the infinitely many con-
straints can be recast as a finite number of convex constraints.

To show this, we first observe that the left- and right-hand side
(LHS) (RHS) of the first inequality in (9b) involve independent
CSlI errors. Hence, (9b) for MS,, . can be alternatively expressed
as follows:

u min (hnnk + ennk) ’Lk - Z W,“
el Quniennr<l itk

X (BIL‘(Lk + e'nnk)

S

m#n

[ H
max (hmnk: + emnk)

H
el 1 Qmnremnr<l

(ZW7711> mnk‘+emnk)} +

By introducing the slack variable

onp- (10)

tm,nk: =

max
el Qumnkemnk<l

(flmnk +e'm.nk (Zwrn> mnk +emnk)
(1)

which is the worst-case ICI power from BS,,, to MS,,, for all
m € N\ {n}, (10) can be written as

rLk E Wnt

min

- H H
(hnnk + ennk)

el Quurennr<l Tk itk
N,
;. 2
X (hnnk’ + ennk) Z E tmnk? + Tk (12)
m#n

By (11) and (12), the worst-case SINR constraint for MS,,
in (9b) can be decoupled into the following N. worst-case
constraints:

nnk + ennk)

rLk - E Wnt

(hnnk + ennk)

i#Zk
N.
2 Z tmnk + aik venH,nannkennk S 1 (13)
m#n

H H
(hynn,k + em,nk) <Z Wm1> mnk + emnk‘) S tm,nlr,

Vel Qumakemni < 1,m € N, \ {n}. (14)

Since each of the constraints in (13) and (14) entails only one
CSI error, we can use the same approach as in [21] and [38],
to reformulate (13) and (14) into finite convex constraints. The
ingredient is the S-lemma.

Lemma 1 (S-Lemma [30]): Let ¢;(x) = x# A;x + bHx +
xHb;+¢;, fori = 0,1, where A; € HY*,b; € C¥ and¢; € R.
Suppose that there exists anx € CNt such that ¢ (X) < 0. Then
the two conditions are equivalent:

1) ¢o(x) > 0 for all x satisfying ¢ (x) < 0;
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2) There exists a A > 0 such that
{Ao bo] 4 [A1

bé-{ Cp b{{
By applying S-lemma, we can recast (13) and (14) as the fol-
lowing linear matrix inequalities (LMIs) (15)—(1 6) shown at the
bottom of the page, where U, 2 LW, — ZL# W, and

Tk
Amnk > 0 are slack variables. Consequently, one can reformu-

late (9) as the following:
min

AWok b mnn Fo{ nk} Z n (Z TI' Wk )

@, ({Wm}i:l, {tmnk }ns /\nnk> =0,

\Ilmnk ({Wmi}fils t?nnk‘a /\mnk) i 0Vm # T, (17C)
Wor = 0, Ank > 0VYm, Vn, k. (17d)

by

}30.
C1

(17a)

s.b. (17b)

Problem (17) is a convex SDP which can be efficiently solved
by off-the-shelf convex solvers [37].

B. Optimality Conditions

An important aspect of SDR is whether the optimal solution
{W?,} satisfies W%, = w*,(w*,)" for some w*, € C,
for all , k. If this is true, then {w?, } is an optimal solution of
the original robust MCBF problem (7). It, therefore, is important
to investigate the conditions under which the SDR problem (17)
can yield rank-one { W7, }. Some provable conditions are given
in the following proposition.

Proposition 1: Suppose that the SDR problem (17) is fea-
sible. Consider the following three conditions:

Cl) K =1, i.e, there is only one MS in each cell;
C2) Quur = oly, foralln, k, ie., e, = 0 foralln, k, ie.,
perfect intracell CSI {h,,.1.};

C3) For the spherical model, i.e., |l€nni||* < €2, for all
m, n, k, the CSI error bounds {cmni } satisfy
Uzk AnYnk

Emnk S Emnk and Ennk < (18)

f*
Jor all m, n, k, where {&,,n1, } are some CSI error bounds under
which (17) is feasible, with f* > 0 denoting the associated
optimal objective value.

If any one of the above three conditions is satisfied, then the SDR

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 6, JUNE 2012

problem (17) must yield a rank-one solution, that is, {W7, }
must satisfy W&, = w,*bk,(w,*lk)H Sor all n., k.

Proof: The proofs of Cl) and C2) are presented in
Appendix A. Case C3) is a generalization of the result in
[38] where the tightness of SDR for the worst-case robust
beamforming problem in the single-cell scenario (N, = 1) is
studied. Case C3) can be proved following exactly the same
idea as in [38] and thus the details are omitted here. ]

Case C1) of Proposition 1 shows that the global optimum of
the robust MCBF problem (7) can be attained by solving the
SDR problem (17) whenever K = 1. While this result is in-
teresting from the theoretical point of view, we should mention
that, when X' = 1, (7) can also be optimally solved by em-
ploying an SOCP reformulation idea presented in [26], [39]. It
is known that solving an SOCP is in general computationally
cheaper than solving an SDP [e.g., (17)]. For the general case
of K > 1, Case C2) shows that if the BSs have channel uncer-
tainty only for intercell CSI, i.e., {hy,,x} where m # n, and
perfectly know the intracell CSL, i.e., {hy,}, then rank-one
solutions are guaranteed. If errors occur in both intracell and in-
tercell CSI, Case C3) implies that rank-one solutions can also
be obtained as long as that the CSI errors are sufficiently small.

For a general setup, it is not known yet whether the SDR
problem (17) has a rank-one solution. If the obtained solution
is not of rank one, then additional solution approximation
procedure, such as the Gaussian randomization method [28],
can be employed to obtain a rank-one approximate solution
to (7). Quite surprisingly, we found in our simulation tests
that (17) with spherical CSI errors always yields rank-one
{WZ_ 1. Hence for these problem instances, we can simply
perform rank-one decomposition of W, wh (wh )"
Investigating the reasons behind would be an interesting future
research; see [38] and [40] for recent endeavors.

IV. DISTRIBUTED ROBUST MCBF ALGORITHM USING ADMM

Solving the SDR problem (17) calls for a control center
which requires all the CSI of MSs. As discussed in the Intro-
duction, it is desirable to obtain the beamforming solutions in a
decentralized fashion using local CSI at each BS, i.e., BS,, uses
{Dyk tin i only for all n € N.. A simple approach would be
applying the dual decomposition method [17], similar to the
approach in [10] and [26]. However, as will be explained later,
the dual decomposition method is not suitable for (17) due to
the fact that the decomposed problems lack strict convexity

Unk + /\nnk ank

K A
an ({an }izl: {tmnk}ma /\nn.k) — hnnkUnk

i=1

11>

‘I’mnk ({Wﬂli}filv t?nnk‘: /\mnk)

K
- Z Wmi + )\mnkank:

mnk ( Z W"”
L =1

. R Unkflnnk
b UniBunk — Annk — 3 b — 02, | =0, (15)
m#En
K R
- (Z Wmi) hmnk

i=1

) mnk (Z W'ml) 1jlmrr,k + 7’;m,nk - )‘m,nk
=0,me AN\ {n}. (16)
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and can be unbounded below. To fix this issue, we consider
the use of ADMM [31], [32]. In the first subsection, we briefly
review ADMM. In the second subsection, we present how a
distributed robust MCBF algorithm can be developed following
the principle of ADMM.

A. Review of ADMM

To illustrate the idea of ADMM, let us consider the following
convex optimization problem [31], [32]:

et F(x)+ G(=) (19a)
s.t. XeS, z€eSy (19b)
z = Ax (19¢)

where /' : R™ — R and G : R™ — R are convex functions, A
is an m X n matrix, and S; C R™ and S5 C R™ are nonempty
convex sets. Assume that (19) is solvable and strong duality
holds.

ADMM considers the following penalty augmented problem:

(20a)

(20b)
(20c)

min
. 7Z ER'NI,

C 2
min F(x)+Glz) + S| Ax g

s.t. X € 51,
z = Ax

z € So,

where ¢ > (0 is the penalty parameter. It is easy to see that (20) is
essentially equivalent to (19). The term §||Ax —z||? guarantees
strict convexity of the objective function with respect to x and
to z, respectively.

The second ingredient of ADMM is dual decomposition [32]
where the dual of (20) is concerned:

min, F(X)+G(Z)+%HAX—ZHQ—I—fT(Ax—Z)
max ’
¢geR™ | s.t. XES), z€eS,
21

in which £ is the dual variable associated with the constraint
(20c¢). Given a dual variable £, the inner problem is a convex
problem and can be efficiently solved. The outer variable £ can
be updated by the subgradient method [17]. In a standard dual
optimization procedure, one usually updates the outer variable
& when the associated inner problem has been solved for the
global optimum. For example, one can use the nonlinear Gauss-
Seidel method [31] to optimally solve the inner problem. Specif-
ically, one iteratively solves the following two subproblems:

z(q 4 1)=arg min G(z)—&(q) 'z + % ||Ax(q)—z||2 (22a)

zZESH
x(q+ 1)=argmin F(x) + &(¢)T Ax + % |[Ax—z(q + 1)||2
xES)
(22b)

until convergence, where ¢ is the iteration number. Instead,
ADMM, as its name suggests, alternatively performs one
iteration of the Gauss-Seidel step (22) and one step of the outer
subgradient update for speeding up its convergence. The steps
of ADMM are summarized in Algorithm 1.

ADMM can actually converge to the global optimum of (19)
under relatively loose conditions by the following lemma.

Lemma 2 [31, Proposition 4.2]: Assume that S; is bounded
or that AT A is invertible. A sequence {x(q),z(q),&(q)} gen-
erated by Algorithm 1 is bounded, and every limit point of
{x(¢),2(¢)} is an optimal solution of (19).
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Algorithm 1: ADMM
: Set ¢ = 0, choose ¢ > 0,

: Initialize £(q) and x(q);
: repeat

Eg+1)=€&(q) +c(Ax(g+ 1) —z(g+1));

1
2
3
4: Solve the two subproblems in (22).
5
6: qg:=q+1;

7

: until the predefined stopping criterion is satisfied.

B. Applying ADMM to (17)

Our intention in this subsection is to reformulate (17) such
that the corresponding ADMM steps in Algorithm 1 are decom-
posable and thus (17) can be solved in a distributed fashion. To
this end, we first introduce the following two auxiliary variables:

N,
Tnk = E tm,nk:

m#n

K
pn =Y Tr(W), (23)
k=1

foralln € N, and k € K, where p,, represents the transmission
power of BS,,, and T, stands for the total worst-case ICI power
from the neighboring BSs to MS,,;. Then (17) can be rewritten

as
N,
min Zoa 24a
(W, 203 A i 203, nPn (242)
Conp o d At} n=l
st @, ({Wm}izl,Tnk,/\mk> =0,  (24b)

\I’m,nk‘ ({Wm,i}i[i]_at’m,nka )‘m,n,k:) = 0, (240)

K

> TH(Wok) = pu, (24d)
k=1

N.

Z Lok = Top 2 0, vn’v kv m 7é n. (246)
m#n

It is interesting to observe from (24b) that each MS,,;, concerns
only the total worst-case ICI power T}, instead of the individual
worst-case ICI powers {1 } . Note that, with the problem un-
changed, we can interchange the subindices m and 7 in (24c¢).
Hence, the constraints in (24b) to (24d) can be decomposed into
N. independent convex sets

C. = { ({Wnk}kv {/\nmk}m,kv {Tnk}k" {tnmk}m,kvpn) ’
s (AW Tt A ) 2 0 ¥

\Iifn,m,k ({WT”}LIil tnm,ka )‘nmk) = 0 Vm 7£ n, k

K

/\'n'mk 2 0 VTH, kv Z Tr(W"k) =DPn

k=1
W = 0VE T >0 Vk}, VneN. — (25)
Further define the following variables:
T
t= [[tml, ... ,tng], e [tNC(chl)lv . ,tNC(NC—l)KH

c HNP(NCfl)Kv (26a)



2994

tn = [[Tn,17 e Tn,Ix"]y [tnlh s 7tn1K]: s
tamitse s tan.x]]T €RYS n e N, (26b)

where t collects all the ICI variables, and t,, collects variables
{T,Lk} vy and {tymi b, . (Wherem # n)thatare only relevant
to BS,,. It is not difficult to check that there exists a linear map-
ping matrix E,, € {0, 1} KxNeAN.—1K “guch that t,, = Ept
for all n € N.. By (25), (26), and t,, = E,t, we can rewrite
(24) in a compact form as

{W,nk) {)\7 mk} Z G’npn (27a)
{tn ) {pntot n=1

({Wnk}k7 {)‘”mk}rn,kf'/ tnapn) € Cn (27b)

t, = E,t, Vn €N, (27¢)

Note that in (26a) and (27), the elements of t are relaxed to the
real space rather than explicitly required to be nonnegative so as
to simplify the later optimization steps of ADMM. It will be seen
that ADMM will converge asymptotically with a nonnegative
iterate t in the sequel due to the constraints (26b) and (27c).

Before applying ADMM, let us first see why the conventional
dual decomposition method [17] is not suitable for (27). Con-
sider the dual problem of (27)

N, ,
min Y appn— Z;\ 1 vTt,
Hl\a)}% n=1
v RN K vy,
Z’\ec ETWLJ, s.t. ({Wnk}k:{)\nmk}m k,stn:pn)ECnVﬂ
1 n ?

(28)
where v,, € RM¥ 5 € A/, are the dual variables associated
with (27¢). While the inner minimization problem of (28) is
obviously decomposable, given v, ... ¥y, it is possible to
obtain an inner solution of t,, such that —Vftn — —00, l.e.,
the inner minimization problem is unbounded below, due to the
unbounded feasible sets C,, [see (25), (15), and (16)]. In fact, by
our numerical experience, this undesired situation happens very
often, especially when N, > 2.

To overcome this issue, we apply the augmented Lagrangian
method to (27) according to the principle of ADMM,; this leads
to the following problem:

N, N,
: ¢ 2
{Z @npn + 5 > IEnt — t||
n=1 n=1

c N,

53}
s.t. ({Wnk}ka {)\nmk}m,,k«v t'n,vpn) € Cn Vn € Nc (29b)

t, =E,t YnecNMN, (29¢)
Pn = Pn Vn € ./\/rc (29d)

min
Wb {me b {tn}
irnt dentt

(29a)

where p,, > 0,n = 1,..., N, are slack variables, Whlch are
introduced in order to impose the penalty term 5 Zn 1(pn —

pn)?. Problem (29) is equivalent to (27), but the added penalty
terms can resolve the numerically unbounded below issue; see
[31].
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Now we are ready to apply ADMM. Consider the following
correspondences between (29) and (20):

xé[t?m:---’m? L N
N
E 0
F( Zoénpn |:0 I]\ :|
n=1
€é I:Vfa-..,yirC,Ml,..../‘LL]VP]T?
Sy A RN-(Ne DK +N.
Szé{[t,{ tAT 7[)1""7[)1\"6],1—“

({Wnk}k, Dot o s s pn)e Coim e/\fc} (30)

where E = [E1T7~~~7EEYC]T and v,, € RMK 4, € R,
n = 1,...,N,., are the dual variables associated with con-
straints (29¢) and (29d), respectively. According to Algorithm
1, the corresponding ADMM step 4 for (29) is to solve the
following:

Ne { anpn + % |E.t(g) — tT,,||2
. 2
{Wnk}kI?gilmk Yon ke +T§ ([)n(Q) - pn)
L n=1 -V, ((])t - M‘IL(Q)pn

({Wnk}k {)\mnk}m ke n pn)ecnv n=1 (31)

As one can see, (31) can be decomposed as the following N,
subproblems:

{tn(g+ 1), pu(g+ 1)}
v 2
npn + 5 [[Ent(g) — to]]

= arg min +£ (pn(q) — pn)z
_VE:(Q)t'n - /1'71((])])71

st (IWakdo Doumi by basin ) € Can (32)
forn = 1,...
solved.

Second, the corresponding ADMM step 5 is given by solving
the following two problems:

, N.. Since (32) is convex, it can be efficiently

t(¢g+1)= argmin Z |E.t —t.(q+ 1)”
tERNe(No—1)K & T
+ Z vI(g)Ent, (33)
n=1
¢ N
. 2
{pn(q + 1)}n 1 alngYIH 5 2:1 (pn - pn(q + 1))
n=1,..,] - n=
+ Z Hn(q)p'm (34)

n=1

Because both (33) and (34) are convex quadratic problems,
they have closed-form solutions given by

t(q+1) =E (‘E(q +1) - %WD) ; (35a)
pulg+1)=pulg+1) - %Mn(Q): n €N, (35b)
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where (g + 1) = [t (¢ +1).....tL (¢+1)]" and #(g) =

T (), % (@)

Finally, the corresponding ADMM step 6 is given by the fol-
lowing dual variable update

vn(g+1) =vn(q) + c(Ent(g + 1) — tn(g + 1)),
ll"n(q + 1) :/l“n((I) + C(pn(q + 1) - pn(q + 1)) »

for all n € M. It is important to note that the ADMM steps
(32), (35), and (36) can be implemented in a distributed fashion.
Essentially, given the knowledge of local CSI {h,,;.i},,, ., the
optimization problem (32) can be independently solved by BS,,,
forall n = 1,..., N.. After that, each BS,, broadcasts its new
t,, to the other BSs. With the knowledge of {t,, }, each BS can
compute the public ICI iterate t by (35a) and then use it to up-
date the dual variables {»,,(¢ + 1)} by (36a). Moreover, both
pn{q + 1) and p,,(q + 1) in (35b) and (36b) can be indepen-
dently updated by each BS,,, forn = 1,.... N.. Summarizing
the above steps, we thus obtain the distributed robust MCBEF al-
gorithm in Algorithm 2.

(36a)
(36b)

Algorithm 2: Proposed Distributed Robust MCBF

Algorithm

1: Input a set of initial variables {¥,,(0), 11,,(0), £(0),
pn(O)}ﬁ;'l that are known to all BSs; choose a penalty
parameter ¢ > 0.

2: Setq = 0.

3: repeat

4: Each BS,, solves the local beamforming design problem
(32) to obtain the local ICI iterate t,,(¢ + 1) and the local
power pn(q + 1).

5: Each BS,, informs the other BSs of its local ICI iterate t.,,.

6: Each BS,, updates the public ICI t and p,, by
(35a) and (35b), respectively.

7:  Each BS,, updates the dual variables {v,} and s, by
(36a) and (36b), respectively.

8: Setq:=gq+1;

Nel

: until the predefined stopping criterion is met.

Interestingly, Algorithm 2 can be interpreted as an adaptive
ICI regularization scheme where the cooperative BSs gradually
attain their own beamforming solutions until a consensus on the
induced ICI powers among BSs is reached, i.e., E, t(g + 1) =
t,(q + 1) for all n.

Algorithm 2 is guaranteed to converge to the global optimum
of the SDR problem (17). Specifically, one can verify that the
matrix A in (30) satisfies AT A = 0. Therefore, by Lemma 2,
we obtain the following result on the convergence of Algorithm
2.

Proposition 2: For the proposed distributed robust
MCBF  algorithm in Algorithm 2, the iterates t(q),
{on(@): 0 (@) pu(@Insy  and  {walq), pnlg)bns,  will
respectively, converge to the optimal primal and dual solutions
of (29) as ¢ — oo. When the algorithm converges, the optimal
{Wp1,... ,Wn,[(}i);l obtained in Step 4 is a global optimal
solution of the SDR problem (17).
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Three remarks regarding the proposed distributed robust
MCBEF algorithm are in order.

Remark 1: Since ADMM operates in the dual domain without
guarantee of the constraint E, t(¢+1) = t,,(¢ + 1) to hold true
before convergence, the obtained {W,,;.} and { ;.. } in Step
4 thus may not be feasible to the primal problem (17). However,
each BS may perform one more optimization of

K
Z Tr(W'nk)
k=1

min
(W, 520},

Prame 20} &
s.t. q)nk, ({Wni}ilip {tmnk(q + 1)}7n;£n ’ )\’”lk’) = 0 vk

\Iln’mk ({W'ui}fila t'nmk‘(q + 1)7 /\n'm.k) t 0vm ;é ., k
(37)

using the tentatively consented ICI power vector t{g+1). It can
be shown that the obtained {W,,x} and {A,.,..x } are feasible to
the SDR problem (17), provided that (37) is feasible for all BSs.
If at least one of the BSs declares infeasibility of (37), then more
iterations are needed for Algorithm 2 since it may stop too early
to reach a reasonable consensus on the global ICI t(q + 1).

Remark 2: In Algorithm 2, each BS,, is required to inform the
other BSs of its local ICI iterate t,, at each iteration. In ad-hoc
networks [41], this information exchange is commonly achieved
through broadcasting [41]. However, for a cellular system where
the BSs are physically connected via dedicated fiber links or by
microwave radio links, BSs are preferred to communicate with
each other in a point-to-point fashion. In that case, Algorithm
2 requires each BS to send out N.K real values (i.e., t;,) to
the other (N, — 1) BSs in a one-by-one manner, resulting in a
total signaling overhead of (N, — 1)N.K real values. Interest-
ingly, Algorithm 2 can actually be modified so that the excessive
amount of signaling overhead due to point-to-point information
exchange can be appreciably reduced for large V. or K. Such
an alternative distributed robust MCBF algorithm is detailed in
Appendix B.

Remark 3: There actually exist several variants of ADMM
in the literature of convex optimization, e.g., the fast itera-
tive shrinkage-thresholding algorithm (FISTA) [42] and the
Bregman distance-based primal-dual algorithm [34], that may
potentially be applied to solving the SDR problem (17) for
faster convergence and reduced backhaul signaling overhead.
Further investigation of such possibilities will be an interesting
direction for future research.

V. EXTENSION TO FULLY COORDINATED BSs

In this section, we extend the robust beamforming design to
the scenario where some of the MSs are near the cell boundary
and thus desire to receive the signal of interest sent from mul-
tiple BSs for the guaranteed QoS. To simultaneously serve these
MSs, the BSs have to be fully coordinated, with shared data
streams and CSI of these cell-edge MSs [2]. Assume that there
are L cell-edges MSs, in addition to the K intracell MSs in each
cell. The transmit signal of BS,, is given by

L
X () = Xp(t) + > Fuedi(t) (38)
=1

where x,,() has been defined in (1) which is intended for the K
intracell MSs, d (%) is the data stream for the £th cell-edge MS,
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and f,,; € C™* is the beamforming vector of BS,, for sending
d¢(t). The received signals of intracell MS,, ;. and cell-edge MSy
are, respectively, given by

Intla)

Z hmnk Xom (f 7_(771))

m=1

N. L
- Z Z hrI;ILnkfmjd_j (t

m=1 j3=1

Z BmeXm (f_ 7 (m))

m=1

N. L
* Z Zggéfmjdj (

m=1 j=1

(m)>+4nk (t) (39)

Edgo)

7 al) @0

forn e N,k e K, andéeﬁ—{l ..... , L}, where g,,,, € Ct

is the channel vector from BS,, to cell-edge MS;, and z()
is the additive noise at cell-edge MS,, which is assumed to
have zero mean and variance o7 > 0. Note from (39) and
(40) that we have taken into account the inevitable time delays
7" 0™ 5 () between the BSs and MSs [8], [43]. Assume
that 7™ % 7™ for all m # n, and that each d(t) is tem-
porally uncorrelated with zero mean and unit variance. The re-
ceiver SINRs corresponding to (39) and (40) are given by (41)
and (42) [8], shown at the bottom of the page.

Our goal here is, again, to find the beamforming vectors that
are robust against the possible CSI errors. As the channel error
model for intracell MSs, we model the cell-edge MSs’ channel
aS e = Bme + Ve Vi € N, £ € L, where g,,, € C
is the preassumed CSI, and v,,,, € €Nt is the CSI error satis-
fying V,MQ,,L(V,,L[ < 1 in which Q,,,; > 0. We consider the
following worst-case robust formulation:

min

n + fn 2
{Wok b{Far} (Z”W kll? ZH ¢l >

st. SINR(nt) ({ mi b {fmj b, {hmn”emnk}m 1) > ks

Velr ik Qunkemnk <1,m, €N, k€K, (43b)
SINR;F4&” ({WT"”"}’ {fni} A&me+Vine }f:}:l) >,

YW Qe <1,meN,, LeL. (43¢)

N,

D

n=1

(43a)
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The proposed method based on SDR and S-lemma in
Section III-A can be used to handle (43) as well. First, re-
place each w,,,wi and each f,,,f by general-rank W5, = 0
and F',; > 0, respectively. Second, follow the steps in (8)—(16)
to decouple and transform the constraints in (43b) and (43c)
into a finite number of LMIs. The resulting SDR problem can
be shown to be

min
AWopt AFart,
Pomnk b ltmnkd
Db ime

8.t i’"’“ ({Wﬂl}fil {tm/”k}m‘ )\"”k)

Iy, L Iy,
he Z Fr; he

nnk nnk

z O, <Z Tr(W nk-)"'; TI'(an)>

n=1

H
] =0, Vn, k,
mnl. ({W’HH}L 1: Ennks A’mnk)

L) (e Lo

mnk
5H
Bt

5‘m,!.(gm,f 0
* |: 0 _)‘m,f_nm,f
Wﬂk i Ova,f t 0', )‘m,nk: Z 07 Xm,é 2 0,
N,
Z ’r]rnk_(f{? > 0, me, ]n[

m=1

H
] =0, Vn,m#n,k,

H
{ N, ]
5H
Bt

—/sz - Z Wini— Z Fm?

Jj#L
] =0, Ym, /4,

(44)

where { A ¢}, {nme} are slack variables. For the spherical error
model, a sufficient condition for the tightness of SDR, which is
similar to Proposition 1, can be shown to be

= = / 2 .
Enmik < Enmk, Ens < €nty Ennk < Oén’Ynko'nk/g*a and

Ent < \/oznfym?/g* Yn,m, k£ (45)

where {Zpm }, {€ne} are the CSI error bounds for which (44) is
feasible, and g* > 0 is the associated optimal objective value.
The condition in (45) implies that (44) can attain the global op-
timum of (43) if the CSI errors are sufficiently small. A dis-
tributed optimization algorithm for (44) can also be developed

Intra “r N,
SINR?th ) (JL mi}: {fm-j}’ {hm"k}m:l) = K

Edge N.
SINR% £ ) ({Wmi}7 {fnbj}a {gm,ﬂ,};l:l) - N. K

> 2 82 Wi

m=1i=

2
|h1[jn,kwnk‘ (41)
9 N. K 2 N, L ’
Z ‘hf‘nkw"i| + Z Z |hrI;IL'n.kwmi| + Z Z hrI;ILrkam] +J'I2Lk
itk m#Zn i=1 m=1j =1
N, o 9
Z |gm£fm£|
(42)

+ Z Z'm 1 |g'm1 ""J| +U[




SHEN et al.: DISTRIBUTED ROBUST MCBF

100G
oot —&E&— Robust MCBF (Proposed SDR method)
—&— Robust MCBF (Method in [26])
80} —FH+— Robust SCBF
;@‘ 70
B’ 0
= 60
o
> 50r
=
3
w 30f
20
10
0 : - : = = o
0 2 4 6 8 10 12 14 16 18
7 (dB)
(@)

Fig. 2. Feasibility rate (%) versus SINR requirement + for K = 4, iV,

by ADMM, using the same ideas as presented in Section [V-B
for (17). We will provide a simulation example in Section VI to
demonstrate the efficacy of (44) in providing guaranteed QoS
for the cell-edge MSs.

VI. SIMULATION RESULTS

A. Simulation Setting

In the simulations, we not only consider the small scale
channel fading but also the large scale fading effects such as
shadowing and path loss, in order to simulate the multicell
scenario. Specifically, we follow the channel model [6], [44]

_ —(128.1437.6log, 4 (dmnr)) /20
h'rn'nk =10 ( oz10( $))/20., q/}'mnk * Prmnk

~

'(hm‘nk + emnk) (46)

where the exponential term is due to the path loss depending on
the distance between the mth BS and MS,,;, (denoted by d,,,,.x
in kilometers), v, reflects the shadowing effect, and @y,
represents the transmit-receive antenna gain. The term inside
the parentheses in (46) denotes the small scale fading which
consists of the preassumed CSI h,,,,, and the CSI error e,,,,,1.
As seen from (46), it is assumed that the BSs can accurately
track the large scale fading, and suffers only from the small scale
CSI errors.

The inter-BS distance is 500 m, and the locations of the MSs
in each cell are randomly determined with the distance to the
serving BS at least 35 m, i.e., d,,,x > 0.035 for all n, k. The
shadowing coefficient 1/,,,,, % follows the log-normal distribution
with zero mean and standard deviation equal to 8. The elements
of the preassumed CSI {h,,,;} are i.i.d. complex Gaussian
random variables with zero mean and unit variance. We also
assume that all MSs have the same noise power spectral den-
sity equal to —162 dBm/Hz (—92 dBm over a 10-MHz band-
width), and each BS has a maximum power limit 46 dBm [44].
The SINR requirements of MSs are the same, i.e., Yk 2 v,
and each link has the same antenna gain (,,,,;; = 15 dBi. The
power weight «v,, for BS,, is set to one for all 2 (i.e., sum power).
For the CSI errors, the spherical error model is considered, i.e.,
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Qunk = e,;li I, forall m, n and k. If not mentioned specifi-
cally, all error radii &,y are the same and equal to <.

B. Performance Comparison With Existing Methods

For the robust MCBF design (7), we compare the proposed
SDR method with the convex restrictive approximation method
in [26] which is the only existing method as far as we know.
The single-cell beamforming (SCBF) design with independent
ICI constraints [1], [45] is also compared. All the design formu-
lations are solved by SeDuMi [37].

We first present the feasibility rates of the three beamforming
designs. In the simulation, (7) is considered feasible for a
channel realization if it can yield an optimal solution with
each BS’s power no greater than 46 dBm. Fig. 2 presents the
simulation results obtained by testing over seven thousand
channel realizations. One can observe from this figure that both
robust MCBF designs exhibit much higher feasibility rates
than the robust SCBF design, showing the improved capability
of coordinated beamforming by exploiting the degrees of
freedom provided by multiple BSs. Second, one can see that
the proposed SDR method exhibits a slightly higher feasibility
rate than the method in [26]. We should emphasize that in the
simulation tests, the SDR problem (17) all yields rank-one
solutions. Hence, the feasibility rate shown here is in fact that
of the original problem (7).

Next, let us examine the average sum powers of the two
robust MCBF designs. As a performance benchmark, we also
present the average sum power of the nonrobust MCBF de-
sign (4). Fig. 3(a) and (b) shows the results of average sum
power (dBm) versus the SINR requirement  and versus the CSI
error radius &, respectively. Note that, over the seven thousand
channel realizations, each of the results in Fig. 3 for one value
of v or ¢ is obtained by averaging over the channel realizations
for which the three methods under test are all feasible. One can
observe from both figures that, as a price for worst-case per-
formance guarantee, the robust MCBF designs require higher
average transmission powers than the nonrobust design, but the
proposed SDR method is more power efficient than the method
in [26]. For example, for v = 10 dB in Fig. 3(a), the proposed
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Fig. 3. Average transmission sum power (dBm) of various methods for N, = 2, K =4 and NV, = 6. (a) = = 0.1. (b)~» = 10 dB.

SDR method consumes around 24 dBm while the method in
[26] requires 29 dBm. On the other hand, it is noticeable from
Fig. 3(b) that the average powers of all methods decrease with
¢, which seems counter-intuitive. The reason for this is that the
set and the total number of feasible channel realizations used
for evaluating the average powers significantly vary with ¢, and
thus the obtained average powers turn out not necessarily to in-
crease with .

C. Performance of Proposed Distributed Robust MCBF
Algorithm

Now, let us examine the performance of the proposed dis-
tributed robust MCBF algorithm (Algorithm 2). In the simu-
lations, the initial input values {#,,(0), 1, (0), £(0), p (0)} e,
are all set to zero. The augmented penalty parameter ¢ is not a
constant, but given by

. _ Jacla), ifelg) <1,
clg+1) = { 1, otherwise, (47)
where ¢(0) = 1075, As one can verify that ¢(q) will reach the
value of one after nine iterations, Algorithm 2 following (47)
will still converge to the global optimum for a sufficiently large
¢, according to Proposition 2. First, we compare the optimal
sum power of the centralized problem (7) with that obtained
by Algorithm 2. The simulation results by testing over 50 ran-
domly generated channel realizations are presented in Fig. 4,
under various simulation settings. From Fig. 4(a) and Fig. 4(b),
where N, = 2 and K = 2 and K = 4, respectively, we can ob-
serve that Algorithm 2 can yield near-optimal solutions within
50 iterations. As observed, for most of the cases, 10 and 20 it-
erations are quite sufficient for the scenarios in Fig. 4(a) and
Fig. 4(b), respectively. When the number of cells N, increases
to three (N, = 3), as shown in Fig. 4(c), 25 iterations are suf-
ficient to obtain a near-optimal solution. General speaking, as
the number of cells and that of MSs increase, the number of it-
erations needed to achieve a near-optimal performance also in-
creases. As seen from Fig. 4(d), where N. = §, at least 100
iterations are required.

To further look into the convergence behavior of Algorithm
2, we show in Fig. 5(a) the typical convergence curves of Algo-
rithm 2 in the scenarios considered in Fig. 4(a) to Fig. 4(c). In
Fig. 5, the normalized power accuracy is defined as

|P*(q) — P*|

Normalized power accuracy = P

(43)
where P*(q) = Zn\/:l pn(q) is the sum power at iteration ¢,
and P* denotes the centralized solution of (17). We can see
from Fig. 5(a) that Algorithm 2 can yield a solution with the
normalized power accuracy smaller than 0.1 within 50 itera-
tions. Fig. 5(b) shows the convergence curves of Algorithm 2
for N. = 2, K = 2, N, = 4, and various CSI error radii
and SINR requirements. It can be seen from this figure that the
convergence speed can be slowed down as the CSI error radius
or SINR requirement increases. Nevertheless, for the scenarios
considered in Fig. 5(b), less than 40 iterations are needed for
achieving 0.01 normalized power accuracy. The simulation re-
sults shown in Fig. 4 and Fig. 5 well demonstrate the conver-
gence of Algorithm 2, as stated in Proposition 2.

D. Performance of Robust Fully Coordinated BF

In this subsection, we examine the effectiveness of the robust
fully coordinated BF design (43) in serving the cell-edge MSs.
To this end, let us consider a three-cell system (N, = 3) with
two MSs in each cell (K = 2). As illustrated in Fig. 6, we divide
each cell into two parts, namely, the intracell region (circular
disks) and the cell-edge region. In particular, the inter-BS dis-
tance is set to 500 meters and the radius for the intracell region
is 235 meters. In each cell, the position of one of the MSs is ran-
domly generated within the intracell region; while the other MS
is randomly located in the cell-edge region within the equilat-
eral triangle formed by the three BSs (see Fig. 6). As the robust
fully coordinated BF design (43) is applied, the three MSs in
the cell-edge regions will be served simultaneously by the three
BSs,ie., K = 1 and L = 3 in (43); while when the robust
MCBEF design (7) is applied, each BS will serve the two MSs
located inside its cell region (the hexagon), i.e., K = 2 in (7).
Fig. 7 shows the performance comparison results of the robust
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fully coordinated BF design (43) and the robust MCBF design
(7) by testing over 17 000 channel realizations. The SDR formu-
lation (44) is used as an approximation to (43). It is found in the
simulation that SDR formulation (44) always yields rank-one
solutions; hence the obtained solution is exactly the optimal so-
lution of (43) for the tested problem instances. From Fig. 7, it
can be observed that the robust fully coordinated (with cell-edge
users simultaneously served by all the coordinated BSs) BF de-

sign is more feasible and more power efficient (by about 3 dB)
than the robust MCBF design.

VII. CONCLUSION

We have presented an efficient approximation method based
on SDR, formulated as (17), for the worst-case SINR con-
strained robust MCBF design problem [in (7)]. We have shown
that when there is only one MS in each cell or when the CSI
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errors are sufficiently small, the proposed SDR method can
yield the global optimal solution to the original problem, i.e.,
(7) (Proposition 1). Moreover, by using ADMM, we have
presented a distributed robust MCBF algorithm (Algorithm 2).
The proposed distributed algorithm is appealing because it is
proven to converge to the global optimum of the centralized
problem (Proposition 2). Extension of the proposed SDR
method to the fully coordinated scenario has been presented
as well. The presented simulation results have shown that the
proposed SDR method is more power efficient than the existing
method reported in [26], and that the proposed distributed
optimization algorithm can obtain beamforming solutions with
the normalized power accuracy smaller than 0.1 in several tens
of iterations for the typical scenario of N, < 3. As a future
research, it is also possible to apply other variations of ADMM
to distributed MCBF design for faster convergence and smaller
backhaul signaling overhead.

APPENDIX A
PROOF OF PROPOSITION 1

Proof of Case C1): Let us rewrite (17) for K = 1 as follows:

Ne
min a, Tr(W A.la
Wb Dhon Wt b, ; ( (A1
s.t. Qn (an {tmn.},,n?gnv)‘nn) > 0 V’”’a (Alb)

Q'VTL?L(‘R777L7 f"ﬂl?L? )\'NLIL) t 0 vn7 m ;é n? (A lc)
W, =0 Vn, (A.1d)
)\mn Z 0 vmv n, (Ale)

where the subindices & and ¢ in (17) have been removed for no-
tational simplicity. Proposition 1 can be proved by investigating
the KKT conditions of (A.1). Specifically, let {Y%, = 0},
{Y?%,, = 0} and {Z} = 0} be the optimal dual varlables asso-
ciated with (A.1b), (A.1c), and (A.1d), respectively. Moreover,
let

A'IL bIL

Y, 2 {bf C} > 0. (A.2)
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According to the KKT conditions of (A.1), one can verify
that the optimal {WZ}, {A%, .}, {tF,,,} satisfy the following
conditions:

Z W5 =0, W #0, (A3)
N, In
Z* - I\t + Z A\t ’L"L]ann |:hH :|
m¥#£n nm
1 I/

— 1[Iy, han] Y2, | | =0, A4
ity BV | (A
4)77 (W* {tmn m#En 7)‘:”7) Y;n =0, Y:m 7& 07 (AS)
(Q,m n) < Cn, (A.6)
tr. >0 Ym#mn, (A7)
Arn >0, (A.8)

forn € N.. Specifically, to show (A.8), we note thatif A%, =
then it follows from (15) that:

—h,,
he 1] (W*, ¢ By )
[ nn n { mn}n1,7érl, nn 1
== Z tmn 0-721. < 07

m#£n

(A.9)

which contradicts with (A.1b).
The first step of the proof is to show that W has rank one
whenever Y7, has rank one. Suppose that Y7, is of rank one

nin l l
and that Y,*m = yy! wherey € CNet! Let X, 2 X2XJ =

In, + 3, Iy, hnm]Y,*L,,L[I“f] > 0. Then by (A.4)

T

Rank (Z})

R I~
Y 1/2~1/2 . -1 . H |tV
_R@nk(Xn X1/2 - [Im h} ¥y LAIHD

) I,
:Rank(L\,-t—ynlxnl/? [IM h] yyH{ o }X 1/2)

>Ny —

It follows from (A.3) and (A.10) that W7 must be of rank one
due to

0 < Rank (W7) < Nullity (Z}) = N; — Rank (Z}) <1

(A.11)

What remains is to show that Y is indeed of rank one. First,
one can show that ¢,, > 0 since, if not, by (A.2), (A.6), and the
fact of Qn, > 0, we must have Y*, = 0, which, however,
leads to Z* > 0 by (A.4) and thus W2 = 0 by (A.11), and
consequently contradicts with (A.3). By substituting (A.2) into
(A.5), where ®,, is given by (15), it is not difficult to verify that
the following two equalities hold:

(Vi "WE X5 Qun) A + 7, ' WD, bZ =0, (A.12)
(’Vn 1W* + )‘;nan) bn + ’szlwzl:lnncn =0. (A13)

By postmultiplying (A.13) with —
equality to (A.12), one can obtam

== and adding the resultant

(’Yn IW* + )\Znan) (An - bnbf/cn) =0. (Al4)
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Since ( LwWr + /\Z,Ian,) > 0 due to both A%, > 0 and

Q.n > 0, (A.14) implies that A,, = bob, , and thus (A.2)
reduces to

H
L e e } NN

(A.15)

which is a rank-one matrix. Case C1) is thus proved.
Proofof Case C2): Case C2) can be proved following similar
derivations in (A.10) and (A.11), but using the KKT conditions
of (17) with Q,,..k, = oIy, (i.e., €unr = 0) forall n, k. [ |

APPENDIX B
AN ALTERNATIVE DISTRIBUTED ROBUST MCBF ALGORITHM

In the appendix, we present an alternative distributed robust
MCBEF algorithm which has a reduced amount of point-to-point
information exchange between BSs. Note that the SDR problem
(16) can be expressed as

N,
§ QnPn

min (B.1a)
{W =0} {rn},

Domne 200ty =1

s.t. nk ({W'ru}l 13 {tmnk}mv Annkﬁ) t 07
Vn e N,k ek, (B.1b)
‘Iinm,k ({Wﬂl}fi17 7,;nm,k"/ An'mk) = 07
Vﬂ eN.,meNN\{n}kek, (B.Ic)
Z Tr(Woi) =pn Vn €N (B.1d)

Different from (26b), we follow the idea as in [10] to define the
local ICI variable vector t,, as follows:

t”L = |:|: g?l)l """ tg:}}'&’} |:t1(’\r:>nl """ ti(’\rronl(:l

[t B | [ R

’nNCKH eR*WN-"UE (B2)

where the superscript (n) indicates that {f'r:;nk} , and

{ v k} . are the local incoming and outgoing worst-case ICI
variables maintained by B‘Sn, forn =1,..., N.. Then there ex-
ists a linear mapping matrix E,, € {0, 1}2(\7 SDE XNV DK
such that

t, = E,t (B.3)
for all n € N, where t is as defined in (26a). Equation (B.3)
ensures tfm)bk = ffﬁlﬂ; = tpme for all n, m, k. We therefore can
rewrite (B.1) in the following compact form

N,
min P B.4a
{Waorh {2 mme b {tu b {pa ] t ; b ( )
({Wnk}ka {/\nmk}m’ka tnvpn) € C?M (B4b)
t, = E.t, VneAN. (B.4c)

where

Cn = { ({WrLk}k:7 {/\’”"k}m,,k:7 t'Hpn) |
nk ({Wnt}z 1 {tsr?nl.} ~ a/\nnk> EOV’& (= ]C7

‘I’nmk ({Wni}fila tg,rlzk, /\'n'mk) i 0vm ¢ Ne \ {77,},
EeK, Amre >0VmeN, EEK,

Z Tr(W

timlyk > 0,4 >0Vm e N\ {n},k e K;} .

= Pn, War =0 VE € K|

Note that (B.4) has exactly the same form as (27). Therefore,
by applying ADMM to (B.4), one can obtain the same ADMM
steps as in (32)to (36) for (B.4), except t,, now defined in (B.2)
and E,, replaced by ]:J,L instead. We show next that the two dif-
ferences can result in a quite different algorithm which has a
reduced amount of signaling overhead for point-to-point infor-
mation exchange between BSs.
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One should note that for updating (35a), each BS,, in fact
does not need to compute the whole t(¢+ 1); instead, BS,, only
needs E,,,t(q+ 1), which is composed of {#,n(¢ + 1)},,, and
{tnmr (g + 1)}mk Similarly, to compute (36a), each BS,, also
only needs Ent( ). The interesting part is that, by explomng
the structure of E,,, one can show that BS,, can actually learn
{tmnr(¢+ 1)}, and {tnmi(g+ 1)}, by communicating only
with BS,,,. Specifically, one can show that (35a) has an explicit
structure of

tnmk((J‘H):% ( 1) (g +1) - fq'fik )

3 ()=S0 @) . B
tmnk(’l‘f‘l):% (tn:f‘r)r,k(q-l_l) mnn)k )

5 (S =0k@)  ®sb)

for all n,m, k. From (B.5), we can see that B%m only needs
to send the 2K real values of {#"), (¢ + 1) — 1™ (¢)}, and

nmk

{f(m) q + 1) _ y(’n)(q)}k to BS,,. In summary, each BS to-

‘mnk mnk
tally needs to send out 2(N, — 1)K real values in each itera-

tion, which is more backhaul efficient than Algorithm 2 ((N,. —
1)N_ K real values as stated in Remark 2) when N, > 2.
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