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In light of the growing need for non-Euclidean data analysis, graphs have been recognized as 
an effective tool for characterizing the distribution and correlation of such data, thus inspiring 
many graph-based developments for various applications such as clustering, of non-Euclidean 
data. However, under unsupervised scenarios, the construction of graphs from unlabeled data 
often involves numerous noisy links, consequently leading to serious performance degradation in 
concerned applications. To resolve this issue, we propose a novel method, referred to as Graph 
Frequency Reorganization (GFR), to enhance the discriminability of potential clusters and the 
associated graph quality. GFR shows capability far beyond the suboptimality in unsupervised 
graph construction. Furthermore, a fast version of GFR is proposed to reduce its computation 
overhead for large-scale datasets. Consequently, the obtained unsupervised clustering results can 
be significantly upgraded using the GFR data (i.e., the data after the GFR processing). To evaluate 
the effectiveness of the GFR, some experimental results on ten real-world datasets are provided 
to demonstrate that the overall clustering performance of a simple k-means using the GFR data is 
superior to several state-of-the-art graph-based clustering methods1.

1. Introduction

Data mining often encounters data with irregular distributions and nonlinear structures [33,14,5]. Graphs utilize vertexes and 
edges to characterize the distributions and structures, thereupon providing a powerful tool to handle such data. The graph tool has 
been widely used in many data analytical tasks such as community detection [20], recommendation systems [28] and information 
retrieval [13].

Unsurprisingly, graphs also play a crucial role in unsupervised learning [18]. Among existing graph-based unsupervised learning 
methods, the most representative category would be spectral clustering. It models the data as a similarity graph and then transforms 
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Fig. 1. Illustration for the idea to disentangle clusters from non-Euclidean data via graph frequency reorganization (GFR). Non-Euclidean data can be characterized 
by a graph. The proposed GFR aims to utilize the graph to acquire a more informative feature representation where potential clusters become disentangled (linearly 
separable).

the clustering task into a minimal graph-cut problem [31,45]. The representational flexibility of graphs enables spectral clustering 
methods to handle clusters with irregular shapes. However, these methods rely entirely on the spectrum of the constructed graph, 
overlooking the rich information embedded in the original data. In contrast, graph filtering methods [33,15,11] use the graph affinity 
matrix to “filter” graph signals residing on the vertices, yielding the “filtered features” used in the considered application. Graph 
filtering has achieved great success in many graph-based semi-supervised learning applications [22,41].

Nevertheless, the unsupervised scenario poses a challenge to graph construction due to the absence of data labels. This issue has 
been the central focus of numerous research endeavors. For instance, Tao et al. [40] introduced an unsupervised cross-domain fault 
diagnosis method that leverages time-frequency information fusion. Moreover, Zhuang et al. [48,49] devised iterative learning con-

trol methods for repetitive systems with random variations in trial lengths. These methods exhibit the effectiveness of iteration-based 
techniques for repetitive tracking tasks. Such insights have inspired us to employ iterative graph filtering to enhance feature repre-

sentations for unsupervised learning applications. Existing research [15,2] indicates that multiple operations of graph filtering make 
the low-frequency components (dependent on the graph quality) critical to the performance of downstream processing. However, 
in an unsupervised scenario, the graph is constructed from unlabeled data, indicating that few mechanisms exist to guarantee the 
quality of the constructed graph. As a result, filtering using a low-quality graph may degrade, rather than enhance, the performance 
of downstream tasks (additional interpretations will be presented in Section 3).

To solve the above problem, we reconsider the fundamental principle of graph filtering from the viewpoint of graph frequency 
[33,15]. Specifically, we revisit the fundamental frequency concepts of graph signals, leading us to an intriguing perspective on 
graph filtering. Based on this, we propose an alternative for unsupervised graph filtering, referred to as Graph Frequency Reorgani-

zation (GFR). GFR is an iterative approach to alternately improve the discriminability of non-Euclidean data and the quality of the 
constructed graph, thus enabling it to go beyond the performance sub-optimality suffered by traditional graph filtering. Furthermore, 
an acceleration strategy is proposed to reduce the computation overhead of GFR for large-scale datasets. The main contributions of 
this work are summarized as follows:

1. A new frequency reorganization strategy for graph signals is designed, based on which a feature-graph alternating enhancement 
framework GFR is proposed. GFR offers a new avenue to upgrade the discriminability of potential clusters (as illustrated in 
Fig. 1) and the quality of the constructed graph.

2. We further develop a fast version of GFR to reduce the computational cost of large-scale data sets, enabling its scalability up to 
million-level data size.

3. Extensive simulation results and real-data experimental results on unsupervised clustering demonstrate that a GFR-aided clus-

tering (denoted as GFR-C) achieves overall superior performance over several state-of-the-art graph-based clustering methods.

The rest of the paper is organized as follows. Section 2 introduces the related works. Section 3 reviews the basic concepts of graph 
frequency and presents some insights into traditional graph filtering. Section 4 elaborates on the proposed GFR followed by the fast 
GFR design. Section 5 provides some simulation and experimental results to demonstrate the efficacy of GFR. Finally, we conclude 
the paper in Section 6.

2. Related works

Graph Signal Processing. Graph signal processing serves to analyze and extract information from the data that are defined on 
an irregular discrete domain and represented by graphs [33]. It extends traditional signal processing operations, such as sampling, 
convolution, and frequency-domain filtering, to signals on graphs [12,7]. Particularly, the graph frequency representation which, 
2

from a new perspective in our work, plays an essential role.
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Table 1

The upper part lists general mathematical notations and the lower part collectively lists all 
the graph-related notations.

Notation Meaning

‖ ⋅ ‖,‖ ⋅ ‖𝐹 𝓁2-norm of a column vector, Frobenius norm of a matrix

(⋅),Tr(⋅) Range space, trace of a matrix

⊙ Hadamard (element-wise) product of two homogeneous matrices√
⋅ Element-wise square root of a scalar or a matrix

𝐗⊤,𝐱⊤ Transpose of matrix 𝐗 and vector 𝐱
𝐃𝐢𝐚𝐠(⋅) Diagonal matrix with its diagonal elements given by a column vector

ℝ𝑁 ,ℝ𝑁×𝑁 Set of 𝑁 -dimensional vectors, set of 𝑁 ×𝑁 -dimensional matrices

𝟏𝑁 , 𝐈𝑁 All-one vector in ℝ𝑁 , identity matrix in ℝ𝑁×𝑁

𝕊𝑁
+ Set of 𝑁 ×𝑁 symmetric matrices with real non-negative elements

 = ( ,) Simple undirected graph with vertex set  and edge set 

𝐀 =
[
𝑎𝑖𝑗

]
∈ 𝕊𝑁

+ Affinity matrix

𝐃 Degree matrix, i.e., 𝐃 =𝐃𝐢𝐚𝐠(𝑑1,… , 𝑑𝑁 ), where 𝑑𝑖 =
∑𝑁

𝑗=1 𝑎𝑖𝑗

𝐀̂ ∈ 𝕊𝑁
+ Normalized affinity matrix, i.e., 𝐀̂ =𝐃−1∕2𝐀𝐃−1∕2

𝐋 ∈ 𝕊𝑁
+ Combinatorial Laplacian matrix, i.e., 𝐋 =𝐃−𝐀

𝐋̂ ∈ 𝕊𝑁
+ Normalized Laplacian matrix, i.e., 𝐋̂ =𝐃−1∕2𝐋𝐃−1∕2

Over-Smoothing and Graph Frequency in Graph Neural Networks (GNNs). The phenomenon of over-smoothing in GNNs 
refers to the progressive indistinguishability of node features as the depth of the network increases. This effect has captured the 
attention of researchers, with Li et al. [27] being among the first to document its implications. Over-smoothing is generally believed 
to adversely affect the performance of downstream tasks, prompting numerous strategies aimed at mitigating its impact [34,6,47]. In 
an effort to elucidate the mechanics of over-smoothing, Nt et al. [15] established a theoretical connection between GNNs and graph 
frequency theory. Through this lens, it was discerned that GNNs inherently act as low-pass filters on feature vectors, which may 
precipitate over-smoothing when the low-frequency components of a graph are misaligned with the requirements of the target task. 
Bo et al. [2] further explored this concept, demonstrating that both low-frequency and high-frequency signals can be significant in 
various contexts and should be considered in downstream processes. In advancing the field, Wu et al. [42] introduced the RFA-GNN 
model, which broadens the scope for adjusting frequency components within GNNs, thereby enhancing the incorporation of high-

frequency information. Complementing these frequency-based insights, Bodnar et al. [3] applied cellular sheaf theory to demonstrate 
a profound connection between graph geometry and both the performance and over-smoothing tendencies of GNNs in heterophilic 
contexts. In a theoretical stride, Keriven et al. [21] conducted an in-depth analysis of graph smoothing within the realm of simplified 
GNN frameworks. Extending this line of inquiry, Jiang et al. [19] introduced a sparse-motif ensemble graph convolutional network, 
designed as an antidote to the over-smoothing challenge. The proposed frequency decomposition technique in our study draws 
inspiration from these seminal contributions, aiming to further advance the understanding and practical manipulation of graph 
frequency under unsupervised scenarios.

Graph Spectral Clustering. Spectral clustering (SC) is renowned for its ability to handle non-convex distributed clusters together 
with its straightforward implementation. In the machine learning community, SC has gained popularity thanks to the works of Shi 
and Malik [37] and Ng et al. [32]. Subsequently, many variants of SC have been reported [17,36]. Recently, Shi et al. [38] proposed 
a self-weighting method based on nuclear norm to learn a high-quality similarity graph for multi-view spectral clustering. Sun et 
al. [39] proposed a lifelong learning framework for spectral clustering via dual memory. One of the drawbacks of SC is its high 
computational cost. Some researchers have suggested the use of anchors or landmarks to expedite the spectral decomposition in SC 
[30,4,8]. In addition, there have been other acceleration strategies based on power iteration [29,44]. Different from these works, the 
proposed GFR adopts a feature-graph alternating enhancement framework. It first constructs a graph from the feature representation. 
Based on the constructed graph, the feature representation can be enhanced via the proposed frequency reorganization operation. By 
repeating these two steps, GFR is shown to go beyond the sub-optimality due to unsupervised graph construction, thereby yielding 
high-quality feature representations.

3. Preliminary

We first present a novel perspective on the basic concepts of graph signals and frequency, laying the foundation for the proposed 
GFR to be elaborated in Section 4. To facilitate the ensuing discussion, some notations are defined in Tabel 1. Unless stated otherwise, 
we use italic (e.g., 𝑎 and 𝐴), boldface lowercase (e.g., 𝐚) and boldface capital (e.g., 𝐀) symbols to denote scalars, vectors and matrices, 
respectively.

3.1. New perspective on graph frequency

For a given graph , a graph signal on  is defined as a vector 𝐳 =
[
𝑧1,… , 𝑧𝑁

]⊤ ∈ℝ𝑁 , where 𝑧𝑖 denotes the signal value residing 
on the vertex 𝑖 [33]. Let us introduce an alternative definition for the frequency of a temporal discrete signal, which is then used for 
3

another perspective on the frequency of a graph signal.
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Fig. 2. Illustration of (a) low-frequency temporal signal (signal 1) and high-frequency temporal signal (signal 2), with sampling points indicated by black dots (and 
hence the sampling interval being the spacing of contiguous sampling points); (b) generalization from a path graph (which corresponds to the underlying structure of 
the temporal signals in part (a)) to a general graph.

For a discrete temporal signal 𝐳 ∈ ℝ𝑁 , its frequency can be reflected by the changes in signal value between adjacent sampling 
points, i.e., high frequency implies fast signal value changes. Specifically, these changes between adjacent sampling points can be 
measured by the squared difference:

fre(𝐳) =
𝑁−1∑
𝑖=1

(𝑧𝑖 − 𝑧𝑖+1)2, (1)

which is referred to as the temporal frequency of 𝐳. In the example shown in Fig. 2, the temporal frequency of signal 1 (in blue) 
and signal 2 (in orange) are approximately 2.4 and 18, respectively, indicating that the former has a lower frequency than the latter, 
which aligns with intuition. Based on (1), we can naturally extend the frequency of signals over the temporal domain to signals on 
a graph. As displayed in Fig. 2b, by regarding the sampling points as vertices and the temporal relation of adjacent points as edges, 
the temporal domain can be characterized by a certain graph: a path graph. Extending the path graph to any general graph, one can 
generalize the frequency definition (cf. (1)) to any graph. Formally, for a given signal 𝐳 ∈ ℝ𝑁 on a graph , its graph frequency is 
defined as

fre(𝐳) =
𝑁∑
𝑖=1

𝑁∑
𝑗>𝑖

𝑎𝑖𝑗 (𝑧𝑖 − 𝑧𝑗 )2, (2)

where 𝑎𝑖𝑗 indicates the affinity between vertexes 𝑖 and 𝑗. Using the Laplacian 𝐋 of , (2) can be further written as

fre(𝐳) =
𝑁∑
𝑖=1

𝑁∑
𝑗>𝑖

𝑎𝑖𝑗 (𝑧𝑖 − 𝑧𝑗 )2 = 𝐳⊤𝐋𝐳. (3)

Intuitively, fre(𝐳) measures the smoothness of the signal 𝐳 is on  [15].

Several studies [31,9] have demonstrated that low-frequency graph signals display a strong correlation with the cluster structure 
within the graph. However, it is worth noting that any isotropic signal, such as 𝟏𝑁 , can achieve the lowest possible graph frequency 
(zero), providing no valuable information. To circumvent this trivial case, orthogonality constraints are commonly applied to the 
initial low-frequency components. The mathematical formulation of this problem can be expressed as:

min
𝐳1 ,…,𝐳𝐶

𝐶∑
𝑖=1

𝐳⊤
𝑖 𝐋𝐳𝑖

s.t. 𝐳⊤
𝑖 𝐳𝑖 = 1

𝐳⊤
𝑖 𝐳𝑗 = 0 (𝑖 ≠ 𝑗),

(4)

where 𝐶 is usually considered as the number of clusters in the dataset. To select suitable low-frequency signals that offer a better 
balance [31], the normalized Laplacian ̂𝐋 (cf. Table 1) is usually used instead of 𝐋 in (4). Furthermore, letting 𝐙 = [𝐳1, … , 𝐳𝐶 ] ∈
ℝ𝑁×𝐶 , we come up with the following minimization problem for finding the 𝐶 low-frequency graph signals:

min
𝐙∈ℝ𝑁×𝐶

Tr(𝐙⊤𝐋̂𝐙)

s.t. 𝐙⊤𝐙 = 𝐈𝐶 .
(5)

The solution to (5) is known to be the eigenvectors with the 𝐶 smallest eigenvalues of ̂𝐋 [16], i.e., the eigenvectors with the 𝐶
4

largest eigenvalues of 𝐀̂ (cf. Table 1). Specifically, suppose that the eigenvalue decomposition (EVD) of 𝐀̂ is given by
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𝐀̂ = 𝐏𝚲𝐏⊤ =
𝑁∑
𝑖=1

𝜆𝑖𝐩𝑖𝐩⊤
𝑖

=
𝐶∑

𝑖=1
𝜆𝑖𝐩𝑖𝐩⊤

𝑖 +
𝑁∑

𝑖=𝐶+1
𝜆𝑖𝐩𝑖𝐩⊤

𝑖

= 𝐏
̃
𝚲
̃
𝐏
̃

⊤ + 𝐏̃𝚲̃𝐏̃⊤,

(6)

where 𝚲 = 𝐃𝐢𝐚𝐠(𝜆1, … , 𝜆𝑁 ), 𝐏
̃
=
[
𝐩1,… ,𝐩𝐶

]
∈ ℝ𝑁×𝐶 collecting the 𝐶 principal eigenvectors of 𝐀̂ is actually the optimal solution 

to (5), and 𝐏̃ =
[
𝐩𝐶+1,… ,𝐩𝑁

]
∈ℝ𝑁×(𝑁−𝐶) gathers the remaining eigenvectors. Note that 𝐏

̃
and 𝐏̃ respectively form a basis for the 

low-frequency subspace and the high-frequency subspace, facilitating the orthogonal decomposition of the graph signals of .

3.2. Graph filtering under a frequency perspective

Graph filtering is an effective tool to handle data analytic tasks with graph structures [22,26]. Specifically, given a data matrix 
𝐗 ∈ℝ𝑁×𝐷 and a graph  with the corresponding normalized affinity matrix 𝐀̂, the graph filtering can be expressed as

𝐗𝑡 = 𝐀̂𝐗𝑡−1, 𝑡 = 1,2,… , (7)

where 𝐗𝑡 denotes the data matrix produced by the 𝑡-th iteration and 𝐗0 =𝐗. Substituting (6) into (7) yields

𝐗𝑡 = 𝐀̂𝐗𝑡−1

= 𝐏
̃
𝚲
̃
𝐏
̃

⊤𝐗𝑡−1 + 𝐏̃𝚲̃𝐏̃⊤𝐗𝑡−1

=
𝐶∑

𝑖=1
𝜆𝑖𝐩𝑖𝐩⊤

𝑖 𝐗𝑡−1 +
𝑁∑

𝑖=𝐶+1
𝜆𝑖𝐩𝑖𝐩⊤

𝑖 𝐗𝑡−1.

(8)

It has been a fact that 𝐀̂ guarantees 1 = 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑁 ≥ −1 for 1 ≤ 𝑖 ≤ 𝑁 . Furthermore, when the graph consists of 𝐶
clusters, by the spectral graph theory [9], we have a good eigenvalue approximation 1 = 𝜆1 ≈ 𝜆2 ≈⋯ ≈ 𝜆𝐶 ≫ 𝜆𝐶+1 ≥⋯ ≥ 𝜆𝑁 and 
|𝜆𝑖| < 1 (𝑖 = 𝐶 + 1, … , 𝑁) in general. Thus, let 𝜆

̃
= 1

𝐶

∑𝐶
𝑖=1 𝜆𝑖 ≈ 1 and then simplify (8) into

𝐗𝑡 =
𝐶∑

𝑖=1
𝜆𝑖𝐩𝑖𝐩⊤

𝑖 𝐗𝑡−1 +
𝑁∑

𝑖=𝐶+1
𝜆𝑖𝐩𝑖𝐩⊤

𝑖 𝐗𝑡−1

≈ 𝜆
̃
𝐏
̃
𝐏
̃

⊤𝐗𝑡−1 +
𝑁∑

𝑖=𝐶+1
𝜆𝑖𝐩𝑖𝐩⊤

𝑖 𝐗𝑡−1.

(9)

After 𝑡 recursions of (9), we have

𝐗𝑡 ≈ 𝜆
̃

𝑡𝐏
̃
𝐏
̃

⊤𝐗+
𝑁∑

𝑖=𝐶+1
𝜆𝑡

𝑖𝐩𝑖𝐩⊤
𝑖 𝐗 ≈ 𝐏

̃
𝐏
̃

⊤𝐗 (10)

for large 𝑡 due to 𝜆
̃
≈ 1 and |𝜆𝑖| < 1 (𝑖 = 𝐶 + 1, … , 𝑁). Inspired by (10), we decompose 𝐗 into

𝐗 = 𝐏
̃
𝐏
̃

⊤𝐗
⏟⏟⏟

low-frequency
component

+ 𝐏̃𝐏̃⊤𝐗
⏟⏟⏟

high-frequency
component

,

(11)

which is called the frequency decomposition of 𝐗 with respect to (w.r.t.) the graph . Note that 𝐏
̃
𝐏
̃

⊤ and 𝐏̃𝐏̃⊤ act as the projection 
matrices to the mutual complementary orthogonal subspaces of (𝐏

̃
) and (𝐏̃), respectively. Through the frequency decomposition, 

one can obtain the low-frequency component 𝐏
̃
𝐏
̃

⊤𝐗 and the high-frequency component 𝐏̃𝐏̃⊤𝐗 of 𝐗. Next, let us further discuss the 
effects of these two components on the unsupervised clustering.

3.3. Further discussion about frequency decomposition

In an ideal case, where the cluster structure is well characterized by the graph, the low-frequency component encapsulates the 
essential information of discriminative clusters while the high-frequency component mostly comes up with a mixture of miscellaneous 
structures of different clusters. Under unsupervised scenarios, the constructed graph may involve lots of noisy links, thus blurring the 
boundaries between different clusters. Consequently, the discriminability of the low-frequency component may also be diminished.

Fig. 3 illustrates the distributions of these two components in both ideal (upper panel) and noisy (lower panel) cases. For the 
5

ideal scenario, the low-frequency component 𝐏
̃
𝐏
̃

⊤𝐗 demonstrates strong discriminability, and the high-frequency component 𝐏̃𝐏̃⊤𝐗
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Fig. 3. Illustration of graph projection for the case where the graph specifically characterizes the cluster structure (ideal case, the upper part) and the case with many 
noisy links (noisy case, the lower part), where the affinity matrix is carefully constructed to match the true class distribution for the former, while the affinity matrix 
is generated by adding random noises to the data for the latter.

can be viewed as the superposition of centralized distributions of different clusters. On the other hand, in the noisy case, the low-

frequency component 𝐏
̃
𝐏
̃

⊤𝐗 blurs the borders between the two clusters, and in contrast, the high-frequency component 𝐏̃𝐏̃⊤𝐗 still 
contains partial cluster information. The above observations imply that multiple graph filtering operations (cf. (9)) will maintain the 
low-frequency component outright, thereby yielding the proposed GFR to be presented in the next section.

3.4. Problem formulation

Consider a data matrix 𝐗 ∈ℝ𝑁×𝐷 , alongside an optional graph , wherein each node corresponds to a sample within 𝐗. Here, 𝑁
signifies the number of samples, and 𝐷 represents the data dimension. Our objective is to discover a transformation mapping in an 
unsupervised scenario:

𝑓 ∶ (𝐗,)↦ (𝐗̂, ̂), (12)

that takes 𝐗 and  as inputs and yields an enhanced data matrix 𝐗̂ ∈ ℝ𝑁×𝐷 and a refined graph ̂. The objective of this mapping 
is to disentangle potential clusters that are non-Euclidean distributed in 𝐗 (meaning they are linearly inseparable), such that they 
exhibit more pronounced linear separability in 𝐗̂, thereby facilitating a more robust and discernible characterization by ̂.

4. Methods

This section elaborates on the proposed GFR. We will first detail the proposed GFR in Section 4.1 and then present an acceleration 
strategy to accelerate its computation, making it more suitable for large-scale datasets, in Section 4.2.

4.1. Graph frequency reorganization

As illustrated in Fig. 4, the proposed GFR consists of three main steps. Given a non-Euclidean dataset (i.e., the raw dataset), GFR 
first constructs an affinity graph from the raw data. Based on the constructed graph, the low-frequency component and the high-

frequency component are acquired through the frequency decomposition presented in Section 3.2. Finally, the re-organized data 
are constructed with the proportion of the low-frequency component enhanced and that of the high-frequency component reduced. 
These steps are repeated until a pre-determined stopping rule is met. We will now discuss each step in detail.

Graph construction. As no label information is available, we begin by constructing a graph from the raw data matrix 𝐗 ∈ℝ𝑁×𝐷. 
We first compute the Euclidean pair-distance matrix:√
6

𝐄 = (𝐗⊙𝐗)𝟏𝐷𝟏⊤
𝑁
+ 𝟏𝑁𝟏⊤

𝐷
(𝐗⊙𝐗)⊤ − 2𝐗𝐗⊤, (13)
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Fig. 4. Synoptic illustration for the three steps of GFR: Graph Construction, Frequency Decomposition and Frequency Reorganization.

where 𝐄 =
[
𝑒𝑖𝑗

]
∈ 𝕊𝑁

+ and 𝑒𝑖𝑗 denotes the Euclidean distance between data points 𝐱𝑖 and 𝐱𝑗 (the 𝑖-th row and 𝑗-th row of 𝐗, 
respectively). We then apply a modified softmax function to 𝐄 to obtain an asymmetric similarity matrix 𝐒 =

[
𝑠𝑖𝑗

]
∈ℝ𝑁×𝑁 defined 

as

𝑠𝑖𝑗 = 𝜎(𝑒𝑖𝑗 ,𝐾) ≜
⎧⎪⎨⎪⎩

exp{−𝑒𝑖𝑗∕𝜏}√∑
𝑘∈ 𝑖

𝐾
exp{−2𝑒𝑖𝑘∕𝜏}

if 𝑗 ∈ 𝑖
𝐾

,

0 otherwise,
(14)

where  𝑖
𝐾

denote the 𝐾 -nearest-neighbors (KNN) set of 𝐱𝑖 and 𝜏 is the temperature parameter, determined by the mean value of 
the distances between each sample to its 𝐾 nearest neighbors. We then compute the affinity matrix by 𝐀 = 𝐒𝐒⊤ ∈ 𝕊𝑁

+ , which has 
two key properties: 1) 𝐀 is positive semidefinite, i.e., all its eigenvalues are nonnegative; 2) 𝐀 is sparse, which can accelerate the 
subsequent frequency decomposition steps [46].

Frequency decomposition. We normalize the obtained 𝐀 by 𝐀̂ = 𝐃−1∕2𝐀𝐃−1∕2, and then obtain the low-frequency component 
𝐏
̃
𝐏
̃

⊤𝐗 and the high-frequency component 𝐏̃𝐏̃⊤𝐗 via the frequency decomposition given by (11).

Frequency reorganization. The low-frequency component is enhanced by a factor of 1 +𝛼, while the high-frequency component 
is reduced by a factor of 1 − 𝛼, where 0 ≤ 𝛼 ≤ 1. They are then combined to form the GFR data:

𝐗̂ = (1 + 𝛼)𝐏
̃
𝐏
̃

⊤𝐗+ (1 − 𝛼)𝐏̃𝐏̃⊤𝐗. (15)

Obviously, the larger 𝛼, the more enhanced the strength of the low-frequency component. For 𝛼 = 1, 𝐗̂ contains only the enhanced 
low-frequency component, and 𝛼 = 0 means 𝐗̂ =𝐗. The effect of 𝛼 will be further analyzed through experiments in Section 5.5.

Algorithm 1 summarizes the entire process of the proposed GFR. Among all the rows in Algorithm 1, lines 4, 6 and 9 are the most 
time-consuming steps, resulting in a complexity of (𝑁2𝐷 + 𝑁3). Due to the higher computational complexity of Algorithm 1 for 
larger data size (𝑁 ×𝐷), an acceleration strategy is presented in the next section so that it applies to large-scale datasets.

4.2. Fast graph frequency reorganization

The substantial computational overhead of GFR arises from the large size of the distance matrix 𝐄 ∈ ℝ𝑁×𝑁 , due to the heavy 
computations of unnecessary entries. To illustrate, let us consider a simple example. As demonstrated in Fig. 5a, if the distance ‖𝐱 − 𝐲‖ has already been calculated, the triangle inequality

|||‖𝐱 − 𝐲‖− ‖𝐱 − 𝐳‖||| ≤ ‖𝐲 − 𝐳‖, (16)

allows us to infer that ‖𝐱 − 𝐲‖ ≈ ‖𝐱 − 𝐳‖ when ‖𝐲 − 𝐳‖ is sufficiently small (i.e., 𝐳 is within a small neighborhood of 𝐲). This implies 
that some calculations can be avoided.

Motivated by (16), we introduce the concept of supporting points, which can effectively approximate the domain of support for the 
entire data distribution. Note that similar ideas (known as anchors or landmarks) have been reported to accelerate spectral clustering 
7

[30,4,8], but the underlying intuition was not addressed. Specifically, we apply k-means++ [1] to divide all data points into 𝑀
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Algorithm 1: Graph Frequency Reorganization.

Input: Data matrix: 𝐗 ∈ℝ𝑁×𝐷 , Graph:  (optional), #KNN: 𝐾 , Low-frequency dimension: 𝐶 , Low-frequency enhancing factor: 𝛼, #Iterations: 𝐿
Output: GFR data matrix: 𝐗̂∈ℝ𝑁×𝐷

1 if  is given then

2 𝐗0 = Graph_Convolution(𝐗, );
3 else

4 𝐗0 =𝐗;

5 end

6 for 𝑙 = 1 to 𝐿 do

7 𝐗𝑙−1 =𝐗𝑙−1 −
1
𝑁
𝟏𝑁𝟏⊤

𝑁
𝐗𝑙−1 ; // Data centered at the origin

8 Calculate 𝐄; // Refer to (13)

9 𝐒 = 𝜎(𝐄, 𝐾); // Refer to (14)

10 𝐀 = 𝐒𝐒⊤ ;

11 𝐃 =𝐃𝐢𝐚𝐠(𝐀𝟏𝑁 );
12 𝐀̂=𝐃−1∕2𝐀𝐃−1∕2 ;

13 𝐀̂= 𝐏
̃
𝚲
̃
𝐏
̃

⊤ + 𝐏̃𝚲̃𝐏̃⊤ ; // EVD for 𝐀̂, 𝐏
̃
∈ℝ𝑁×𝐶

14 𝐗𝑙 = (1 + 𝛼)𝐏
̃
𝐏
̃

⊤𝐗𝑙−1 + (1 − 𝛼)𝐏̃𝐏̃⊤𝐗𝑙−1 ;

15 end

16 𝐗̂, ̂ =𝐗𝐿, ̂𝐀;

Fig. 5. (a) An illustration for distance computing from a data point 𝐱 to all the neighboring data points of 𝐲. (b) Visualization for a two-dimensional dataset, where 
black dots denote the supporting points selected using k-means++.

(≪ 𝑁) fine clusters and employ the corresponding 𝑀 cluster centers as the supporting points. Thus, a reduced distance matrix 
𝐄𝑆 ∈ℝ𝑁×𝑀 between the data points and the supporting points is calculated instead of the full pair-distance matrix 𝐄 ∈ℝ𝑁×𝑁 .

We then apply the modified softmax function (cf. (14)) to 𝐄𝑆 to derive the corresponding similarity matrix 𝐒𝑆 . Following the 
lines 6, 7 and 8 in Algorithm 1, one can approximate the affinity matrix by 𝐀𝑆 = 𝐒𝑆𝐒⊤

𝑆
∈ ℝ𝑁×𝑁 and then compute the EVD for 

the normalized affinity matrix 𝐀̂𝑆 = 𝐃−1∕2
𝑆

𝐀𝑆𝐃
−1∕2
𝑆

, where 𝐃𝑆 = 𝐃𝐢𝐚𝐠(𝐀𝑆𝟏𝑁 ). Nevertheless, computing the EVD for 𝐀̂𝑆 requires 
computational order (𝑁3), rendering the above supporting point strategy not efficient enough. Fortunately, this high computation 
cost can be circumvented through an equivalent representation for 𝐃𝑆 and 𝐃̂𝑆 :

𝐀̂𝑆 =𝐃−1∕2
𝑆

𝐒𝑆𝐒⊤
𝑆𝐃

−1∕2
𝑆

= 𝐒̂𝑆 𝐒̂⊤
𝑆, (17)

where 𝐒̂𝑆 = 𝐃−1∕2
𝑆

𝐒𝑆 , implying that 𝐒̂𝑆 can be computed at the cost of (𝑁𝑀). Furthermore, the EVD for 𝐀̂𝑆 can be equivalently 
performed by conducting singular value decomposition (SVD) on 𝐒̂𝑆 , thereby substantially reducing the computational overhead 
from (𝑁3) to (𝑁𝑀2).

Algorithm 2 encapsulates all steps of the Fast GFR (FGFR). The two most time-consuming steps are given in line 5 and line 9, which 
require the complexity of (𝑁𝑀𝐷) and (𝑁𝑀2), respectively. Expectantly, the total computational complexity of Algorithm 2 is 
(𝑁𝑀𝐷 +𝑁𝑀2), a significant reduction from (𝑁2𝐷 +𝑁3) (required by Algorithm 1), especially when 𝑀 ≪ 𝑁 .

4.3. Further discussion

Computational Complexity Analysis: A detailed breakdown of the computational complexities for each step in Algorithms 1

(GFR) and 2 (FGFR) is provided in Table 2. For Algorithm 1 (GFR), the most computationally intensive steps involve the construction 
8

of the affinity matrix (Line 10) and the frequency decomposition (Line 12). The former involves the multiplication of two 𝑁 × 𝑁
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Algorithm 2: Fast Graph Frequency Reorganization.

Input: Data matrix: 𝐗 ∈ℝ𝑁×𝐷 , Graph:  (optional), #KNN: 𝐾 , Low-frequency dimension: 𝐶 , Low-frequency enhancing factor: 𝛼, #Iterations: 𝐿, 
#Supporting points: 𝑀

Output: GFR data matrix: 𝐗̂∈ℝ𝑁×𝐷

1 if  is given then

2 𝐗0 = Graph_Convolution(𝐗, );
3 else

4 𝐗0 =𝐗;

5 end

6 for 𝑙 = 1 to 𝐿 do

7 𝐗𝑙−1 =𝐗𝑙−1 −
1
𝑁
𝟏𝑁𝟏⊤

𝑁
𝐗𝑙−1 ; // Data centered at the origin.

8 Select 𝑀 supporting points 𝐘 ∈ℝ𝑀×𝐷 from 𝐗𝑙−1 via k-means++;

9 𝐄𝑆 =
√(

𝐗𝑙−1⊙𝐗𝑙−1
)
𝟏𝐷𝟏⊤

𝑀
+𝟏𝑁𝟏⊤

𝐷
(𝐘⊙𝐘)⊤−2𝐗𝑙−1𝐘⊤ ;

10 𝐒𝑆 = 𝜎(𝐄𝑆 , 𝐾); // Refer to (14)

11 𝐃𝑆 =𝐃𝐢𝐚𝐠
(
𝐒̄𝑆 (𝐒̄⊤

𝑆
𝟏𝑁 )

)
;

12 𝐒̂𝑆 =𝐃−1∕2
𝑆

𝐒𝑆 ;

13 𝐒̂𝑆 =𝐔𝚺𝐕 = 𝐔
̃
𝚺
̃
𝐕
̃
+ 𝐔̃𝚺̃𝐕̃; // SVD for 𝐒𝑆, 𝐔

̃
∈ℝ𝑁×𝐶

14 𝐗
̃

𝑙−1 = 𝐔
̃
(𝐔
̃

⊤𝐗𝑙−1);
15 𝐗̃𝑙−1 =𝐗 −𝐗

̃
𝑙−1 ;

16 𝐗𝑙 = (1 + 𝛼)𝐗
̃

𝑙−1 + (1 − 𝛼)𝐗̃𝑙−1 ;

17 end

18 𝐗̂, ̂ =𝐗𝐿, ̂𝐀;

Table 2

Computational complexity for each line in Algorithms 1 (GFR) and 
2 (FGFR). In practice, we typically have 𝑁 (#samples) > 𝑀 (#sup-

proting points) > 𝐷 (#dimensioans) > 𝐶 (#clusters). Given this 
condition, the complexities are listed in ascending order from top 
to bottom.

Complexity Algorithm 1 (GFR) Algorithm 2 (FGFR)

(𝑁 ×𝐷) Line 7. Lines 7, 15 and 16.

(𝑁 ×𝑀) - Lines 10, 11 and 12.

(𝑁 ×𝐷 ×𝐶) - Line 14.

(𝑁 ×𝑀 ×𝐷) - Lines 8 and 9.

(𝑁 ×𝑀2) - Line 13.

(𝑁2) Lines 9, 11 and 13. -

(𝑁2 ×𝐷) Lines 8 and 14. -

(𝑁3) Lines 10 and 12. -

Total (𝑁3) (𝑁 ×𝑀2)

matrices (i.e., 𝐀 = 𝐒𝐒⊤), and the latter necessitates computing EVD for an 𝑁 × 𝑁 matrix (𝐀̂). Both of these operations have a 
computational complexity of (𝑁3).

On the other hand, the bottleneck for Algorithm 2 (FGFR) lies in SVD of an 𝑁 × 𝑀 matrix (𝐒̂𝑆 ), which has a computational 
complexity of (𝑁𝑀2). Given that 𝑁 (#sammples) is significantly larger than 𝑀 (#supporting points), FGFR, with its (𝑁𝑀2)
complexity, offers substantially higher efficiency compared to GFR’s (𝑁3) complexity. This makes FGFR more scalable when dealing 
with large-scale datasets.

It is noteworthy that the majority of the computational steps in FGFR are matrix operations, which are particularly amenable 
to acceleration using a GPU-based parallel computation framework, such as pyTorch.2 This further enhances the scalability and 
efficiency of FGFR.

Improvements in Methodology: The major advancements of GFR over established methods should be owing to two aspects: 
the feature-graph alternating enhancement framework and the frequency reorganization strategy. The former offers a new avenue to 
mitigate the sub-optimality arising from graph construction using unlabeled data, and the latter provides a specific recipe for how 
to enhance the feature presentation through a constructed graph. Specifically, GFR employs an iterative method, diverging from 
conventional approaches that seek to directly construct a high-quality graph in the raw feature space. The process starts by building 
an initial graph from the original feature representation, which is then improved through the proposed frequency reorganization 
strategy. With the refined feature representation, the prospects of constructing a superior-quality graph are heightened, thereby 
enabling us to achieve superior feature representations. Repeating these steps, we eventually obtain high-quality feature representa-

tions and corresponding graph structures. Through these innovative designs, the proposed GFR provides a promising solution to the 
9

2 https://pytorch .org/.

https://pytorch.org/
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Table 3

Datasets used to evaluate the performance of the proposed GFR.

Dataset #Samples #Clusters Extractor #Dimension

Gaussian4 2,000 4 None 2

Tetris 8,000 6 None 2

Iris 150 3 None 4

Seed 219 3 None 7

Wine 178 3 None 13

OrlFace10 [35] 100 10 None 92 × 112
OrlFace40 [35] 400 40 None 92 × 112
USPS [25] 9,298 10 CNN_AE 8

FMNIST [43] 70,000 10 CNN_AE 8

MNIST [24] 70,000 10 CNN_AE 8

STL10 [10] 13,000 10 ResNet18 512

CIFAR10 [23] 60,000 10 ResNet18 512

sub-optimality arising from graph construction using unlabeled data and bolsters data representations for downstream tasks, thereby 
establishing the novelty and contributions of our work.

In addition, compared to traditional clustering algorithms, the proposed GFR exhibits broader usability and better interpretability. 
Traditional clustering algorithms are mostly designed to directly assign cluster labels, denoted as 𝐘 ∈ℝ𝑁×1, to each sample within 
the original data matrix 𝐗 ∈ ℝ𝑁×𝐷 . While 𝐘 ∈ ℝ𝑁×1 effectively indicates which samples likely originate from the same category, 
it omits the distribution information inherent in the raw data space. This omission incurs the loss of valuable information for 
downstream tasks. In contrast, our proposed methods, GFR and FGFR, aspire to produce an improved data representation, 𝐗̂. This 
representation not only encapsulates the vital distribution information from the original data but also bolsters the discriminability of 
potential clusters. As a result, 𝐗̂ emerges as a more potent representation for facilitating downstream analyses. Moreover, GFR and 
FGFR provide a transparent trial (a two-dimensional example is shown in Fig. 6) of the transformation process from 𝐗 to 𝐗̂, enabling 
users to gain deeper insights into the nuances of the feature transformation.

5. Experiments

5.1. Experimental setup

We conduct experiments on a 64-bit Ubuntu 20.04.4 computer with 14 Intel E5-2680 2.40GHz CPUs, 256 GB memory, and 8 
NVIDIA RTX 2080 Ti GPUs. The code is available at https://github .com /gyla1993 /code _github _230326.

5.1.1. Datasets

The datasets used in the experiment are listed in Table 3 together with brief directions for each dataset. The first two (Gaussian4 
and Tetris) are simulation datasets to be used to show distinctions in the data distribution between the proposed GFR and a commonly 
used graph iteration. The others are real datasets (including 5 small-size ones and 5 large-size ones). Detailed descriptions about these 
datasets can be found in the cited references or websites.

5.1.2. Baseline methods and parameter settings

To evaluate the performance of the proposed GFR, a GFR-aided unsupervised clustering algorithm, denoted as GFR-C, is con-

sidered. Specifically, we process the raw data with GFR (i.e., applying Algorithm 1 and Algorithm 2 to the five small and the five 
large datasets, respectively) to obtain the GFR data for each dataset, and then performing k-means++ (KM++) [1] directly on the 
GFR data to obtain clusters. For performance comparison, we select four existing graph-based benchmark clustering methods as 
baselines, including spectral clustering (SC) [31], low-frequency clustering (LFC), power iteration clustering (PIC) [29] and graph 
filtering (GF). All four baseline methods are tested through the common procedure: a) extracting features from the raw data by its 
own graph-based strategy and b) applying k-means++ (KM++) [1] to the extracted features to yield clustering results. Step b) is 
identical for all of them. Their feature extractions in step a) are addressed respectively, as follows. After constructing an affinity 
graph from the raw data, SC employs the first several eigenvectors of the associated affinity matrix as its features; LFC adopts the 
low-frequency component of the constructed graph as its features; PIC extracts features by performing several graph iterations on 
an 𝑁 -dimensional normalized vector with the initial value for each entry proportional to the degree of the associated vertex; GF 
extracts features by performing graph iterations on the raw data matrix.

All the methods (including the proposed GFR) under test share the same graph construction process (i.e., construction of the 
affinity matrix 𝐀 from the raw data matrix 𝐗), elaborated in the second paragraph of Section 4.1, where 𝐾 (the number of nearest 
neighbors) is taken from the set {4, 8, 16, 32}. Moreover, GFR has an additional parameter 𝛼 ∈ {0.025, 0.05, 0.075, 0.1}. For the three 
iteration-based methods, PIC, GF and GFR, their iteration numbers are respectively set to 120, 30 and 30, where the iteration number 
of PIC is much larger than the other two due to its slow convergence rate. When applied to the large-scale datasets, all the graph-

based methods utilize the supporting point strategy described in Section 4.2, where 𝑀 (the number of supporting points) is set to 
500. The low-frequency dimension 𝐶 is set to the true number of clusters, which is the prior knowledge in our experiments. The best 
10

performance is obtained for all the methods under test by searching through the aforementioned parameter spaces.

https://github.com/gyla1993/code_github_230326
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Fig. 6. The visualization of different iterations between GF (the top row in each sub-figure) and the proposed GFR (the bottom row in each sub-figure) on the two 
simulation datasets: (a) Gaussian4 and (b) Tetris. The generated features in #iteration 5, 10, 15 and 20 are visualized.

5.1.3. Performance metrics

We evaluate the clustering quality of all the algorithms under test by two classic measures: adjusted rand index (ARI) and 
normalized mutual information (NMI). The larger the two measures, the better the clustering quality. Both ARI and NMI range 
between 0 and 1.

5.2. Visual results on simulation datasets

By visualizing different iterations of GF and the proposed GFR on two simulation datasets Gaussian4 and Tetris, their different 
iteration characteristics can be illustrated.

As shown in Fig. 6, Gaussian4 consists of four partial-overlapping Gaussian clusters. We observe that GF just shrinks the distri-

bution of each cluster. GFR not only shrinks the distribution of each cluster but also unscrambles the boundaries between different 
clusters. Note that we re-scale the data after each iteration to focus on their distribution characteristics. Fig. 6b illustrates the results 
of Tetris, where six irregular clusters are tangled seriously. For GF, the similar behaviors shown in Fig. 6a can also be observed 
in Fig. 6b: it only compresses the area of each cluster, without changing their distribution characteristics (linear inseparability). In 
contrast, as shown in the bottom row of Fig. 6b, GFR gradually disentangles these irregular clusters and unfolds them.

5.3. Quantitative results

Quantitative results (ARI and NMI) of all the six methods on the ten datasets are given in Table 4.

From the results shown in Table 4, we have some observations as follows. Obviously, KM++ performs better than PIC, which 
performs worst in terms of both ARI and NMI. The SC method, one of the most classic graph-based methods, demonstrates significant 
improvements over KM++ on several datasets such as OrFace40, USPS and MNIST. LFC performs better than SC, especially on Iris 
and OrFace40, though their overall performances are competing with each other. Moreover, GF displays better overall performance 
than both SC and LFC, perhaps because it can capture more subtle clustering information through the attenuation of the high-
11

frequency component in the ensuing graph iterations. Nonetheless, its performance is still limited by the capability of the initial 
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Table 4

Quantitative results (ARI and NMI) of various clustering methods on the ten datasets. The best (second) performance for each dataset is highlighted in boldface 
(underline).

Method
Iris Seed Wine OrlFace10 OrlFace40 USPS MNIST FMNIST STL10 CIFAR10

ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

KM++ .730 .758 .797 .754 .898 .876 .913 .949 .584 .847 .673 .744 .761 .791 .498 .664 .794 .823 .270 .386

SC .772 .786 .811 .761 .915 .893 .954 .971 .692 .902 .760 .838 .893 .887 .492 .686 .740 .808 .274 .446

LFC .818 .804 .811 .761 .915 .893 .954 .971 .724 .912 .764 .840 .891 .887 .492 .689 .747 .807 .277 .433

PIC .674 .759 .288 .342 .823 .805 .643 .830 .305 .692 .468 .579 .446 .604 .405 .587 .516 .648 .070 .139

GF .834 .817 .836 .785 .915 .893 .954 .971 .722 .912 .748 .822 .892 .887 .505 .682 .811 .834 .311 .434

GFR-C .886 .862 .837 .787 .915 .893 .977 .986 .753 .927 .768 .850 .906 .899 .503 .695 .811 .842 .352 .483

Fig. 7. GFR-C performance (measured by ARI and NMI) versus iteration number on the five small datasets for 𝐾 ∈ {4,8,16} and 𝛼 = 0.025.

constructed graph. Finally, GFR-C achieves the best performance for almost all datasets, demonstrating that the proposed GFR can 
go beyond the limitation due to imperfect graph construction. Note that SC, LFC, GF and GFR-C obtain the same scores on Wine, 
indicating that the initially constructed graph is also quite close to the one obtained by GFR for this dataset, thus yielding almost the 
same good performance. Therefore, these experimental results have justified that the graph frequency representation and filtering 
can better characterize data manifold, thus enhancing the subsequent clustering quality.

5.4. Parameter analysis on 𝐾

As a key parameter of GFR, the number of neighbors 𝐾 controls the degree of connectivity of the constructed graph. An excessive 
𝐾 blurs the boundaries between clusters while a too-small K reduces the connectivity within a cluster. It is needed to choose a proper 
𝐾 to balance the separability between clusters and compactness within each cluster for different datasets. To this end, we fix the 
low-frequency enhancing factor 𝛼 = 0.025 and investigate the effect of GFR on the clustering performance (in terms of ARI and NMI) 
as a function of the iteration number under different choices of 𝐾 ∈ {4, 8, 16}. The corresponding results for 𝐾 = 32 are omitted since 
they are similar or inferior to those for 𝐾 = 16.

Fig. 7 illustrates the performance curves for the five small datasets. It can be observed from this figure that, although 𝐾 = 4
and 𝐾 = 8 are better choices than 𝐾 = 16 for most datasets, there is not a common rule for different datasets, perhaps due to large 
difference in cluster sample sizes (cf. Table 3). On the other hand, Fig. 8 displays the performance curves for the five large datasets 
with 𝑀 = 500 (the number of supporting points). It can be seen that the clustering performance for 𝐾 = 4 is the best for all the five 
datasets except the STL10 dataset, for which 𝐾 = 8 achieves the most preferable clustering performance. Overall, for small datasets 
careful tuning for 𝐾 is needed, while for large datasets a small 𝐾 (e.g., 4 or 8) is suggested when the supporting point strategy is 
utilized.

5.5. Parameter analysis on 𝛼

To show the effect of the low-frequency component enhancing factor 𝛼 of the proposed GFR on the clustering performance (in 
terms of NMI), we show the 2-dimensional heatmap (distribution) of NMI versus 𝛼 and the iteration number in Fig. 9 for all the ten 
12

datasets.
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Fig. 8. GFR-C performance (measured by ARI and NMI) versus iteration number on the five large datasets for 𝐾 ∈ {4,8,16}, 𝛼 = 0.025 and 𝑀 = 500.

Fig. 9. The heatmap of GFR-C performance (measured by NMI) versus the low-frequency enhancing factor 𝛼 and iteration number, for all the datasets, where a proper 
13

𝐾 ∈ {4, 8, 16, 32} is used for each dataset.
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Fig. 10. Running time (in seconds) of the algorithms GFR, FGFR, and FGFR-GPU as a function of (a) the sample number 𝑁 and (b) the data dimension 𝐷 (showcased 
in a semi-log scale). The data dimension and the sample number are fixed at 25 and 214 respectively for (a) and (b).

Some interesting observations from Fig. 9 are as follows. A small 𝛼 can yield good clustering performance over a relatively wider 
range of iterations for most datasets. The heatmaps on the large datasets (the bottom row of Fig. 9) are relatively smoother than 
those on the small datasets (the top row of Fig. 9). Moreover, the heatmaps for USPS and MNIST in Fig. 10 are quite similar and 
smooth over a large area in the 𝛼-iteration domain, indicating that a common good choice for 𝛼 applies to these two datasets. As a 
rule of thumb, a small 𝛼 (e.g., 0.025 or 0.05) together with a large iteration number may be a good choice. We omit the heatmaps in 
terms of AIR since they exhibit similar phenomena as NMI.

5.6. Scalability analysis on 𝑁 and 𝐷

In this subsection, we explore the effects of the sample number 𝑁 and the data dimension 𝐷 on the running time of GFR, FGFR, 
and FGFR-GPU3 To conduct this analysis, we randomly generate a series of datasets composed of eight Gaussian-like clusters.

For the first experiment, we fix 𝐷 at 32 and vary 𝑁 in the range 210 to 220. The running time of the three algorithms is illustrated 
in Fig. 10a. Notably, there is no significant difference in the running time of the three methods for smaller datasets (𝑁 < 213). 
However, with increasing dataset size, the running time of GFR escalates exponentially. In contrast, the running times of FGFR 
and FGFR-GPU remain relatively stable, with FGFR-GPU showing an increasingly substantial efficiency advantage over FGFR as 𝑁
exceeds 217. Particularly, when 𝑁 = 220, FGFR-GPU (~600 s) saves 40% of the running time taken by FGFR (~1000 s).

In the second experiment, we keep 𝑁 fixed at 214, while varying 𝐷 from 25 to 214. As depicted in Fig. 10b, GFR’s running time 
remains fairly stable (around 200 s to 250 s) regardless of the increase in 𝐷. This is attributed to the fact that GFR’s computational 
complexity is primarily dominated by the sample number 𝑁 (as detailed in Table 2), resulting in its insensitivity to 𝐷. Conversely, 
while FGFR and FGFR-GPU initially have running times significantly lower than GFR, they continuously increase as 𝐷 enlarges. This 
is mainly due to that FGFR and FGFR-GPU are required to run an additional k-means stage for supporting point extraction, whose 
computational complexity substantially depends on the data dimension 𝐷 (refer to Section 4.2).

These findings suggest that FGFR is robust to the increase in data volume given a moderate data dimension, making it suitable for 
handling datasets with a large number of samples. However, for scenarios where the sample number is small yet the data dimension 
is extraordinarily large, GFR may be a more appropriate choice. Moreover, the utilization of GPU parallel computing technology can 
further accelerate FGFR.

6. Conclusion

Based on a new perspective on graph frequency, we have presented GFR, as implemented by Algorithm 1. GFR iteratively enhances 
the discriminability of potential clusters and the quality of the constructed graph, showcasing remarkable capabilities in overcoming 
the suboptimality inherent in unsupervised graph construction due to noisy links. Furthermore, a fast version of GFR enables its 
applicability to large-size datasets. In particular, the proposed GFR can be applied to unsupervised clustering for non-Euclidean 
data. Extensive experimental results for unsupervised clustering facilitated by the proposed GFR were provided to demonstrate its 
superior overall clustering performance compared to several state-of-the-art graph-based clustering algorithms. These merits position 
GFR as an appealing option for researchers and practitioners working with non-Euclidean data, as it offers an effective solution 
to the challenges posed by unsupervised graph construction. However, it is crucial to acknowledge the potential weaknesses of 
the GFR method. Similar to other unsupervised methods, the success of GFR relies to some on the clustering assumption of the 
data distribution, and the method may be less effective when applied to datasets with particularly complex or noisy structures. 
14

3 It is implemented with a GPU-based parallel computing framework, pyTorch.
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Additionally, GFR has been primarily tested on a limited number of real-world datasets, which may not yet comprehensively cover 
the full spectrum of possible applications. In light of these findings, we suggest several avenues for future work:

1. Develop a stopping criterion to attentively determine the maximum number of iterations, allowing for a more convenient 
application of GFR.

2. Devise a scheme for the proper choice of the low-frequency component enhancing factor 𝛼, which plays a crucial role in 
controlling the balance between the two types of frequency components to achieve a desired convergence point.

3. Investigate methods for further accelerating GFR, enhancing its robustness to large-scale and real-time applications.

4. Explore the potential applications of GFR in graph neural networks, which can benefit from GFR’s ability to improve graph 
structure and feature discriminability.
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