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AbstrAct
The proliferation of distributed sensitive data 

in recent years in network edge devices moti-
vates the introduction of edge computing which 
moves machine learning (ML) applications from 
the data center to the edge of the network. On 
the other hand, recent demands on data privacy 
have called for federated learning (FL) as a new 
distributed paradigm. The inherent privacy protec-
tion nature of FL makes FL in edge computing a 
prospective framework, especially for application 
scenarios where privacy protection and resource 
utilization are critical. Nevertheless, FL also suffers 
from privacy leakage as the exchanged messag-
es between edge devices and the edge server 
can be revealed. As such, differential privacy has 
drawn great attention for privacy protection in 
the edge FL system for its extremely low computa-
tion cost, which is readily implemented by adding 
well-designed noise to target data/models. How-
ever, the added noise will deteriorate learning 
performance, and it is challenging to get a satis-
factory trade-off between privacy protection and 
learning performance. This article gives the first 
systematic study on the framework of differentially 
private FL in edge networks from the perspec-
tive of noise reduction. To this end, three noise 
reduction methods are summarized based on 
the intrinsic factors influencing the added noise 
scale, including privacy amplification, model spar-
sification, and sensitivity reduction. Furthermore, 
we discuss the ongoing challenges and propose 
some future directions where differential privacy 
can be implemented to obtain a better trade-off 
between privacy and learning performance.

IntroductIon
The past few years have witnessed a fast growth 
of artificial intelligence and machine learning (ML) 
applications deployed in edge networks, called 
edge intelligence or computing. In comparison 
with the traditional cloud computing framework 
relying on a powerful data center to execute these 
ML tasks, edge computing physically moves com-
putation from the data center toward the edge 
nodes of the network where the data are usually 
generated. This is accomplished on the basis of 
the rapid evolution of the high-bandwidth mobile 
networks, such as 5G and 6G, and the increas-
ing computation power of edge nodes such as 

resource-constrained Internet of Things (IoT) devic-
es. The concept of edge computing has exhibited 
great potential in significantly reducing the traffic 
load resulting from data transmission, shortening 
the response latency for time-critical ML applica-
tions, and preserving data privacy in edge networks 
[1]. On the other hand, as an emerging distribut-
ed learning paradigm, federated learning (FL) [2] 
has gained significant interest in the last decade 
because of its inherent emphasis on user privacy. 
In particular, FL enables collaborative ML model 
training over massively distributed clients under the 
orchestration of a central server without the need 
to share the clients’ raw private data [2].

Applying FL to the edge networks is appealing 
as edge computing can be undertaken within edge 
devices under the orchestration of an edge server 
(ES), which offers a prospective framework for dis-
tributed ML applications. The combination of FL 
and edge computing, namely edge FL (EFL), has 
been widely deployed in numerous edge ML sce-
narios where privacy protection and resource utiliza-
tion are critical. The main challenges in conventional 
FL are privacy protection, massively distributed 
clients, non-i.i.d. and unbalanced data, and limit-
ed communication resources [2]. Compared with 
conventional FL, the EFL system confronts some 
new challenges due to the characteristics of edge 
networks, which intimately adhere to the infrastruc-
ture of edge networks, including the demand for 
computational efficiency and light-weight algorithm 
design, interference among edge devices, low data 
quality, the need for strong and fine-grained data 
security, and so on [3]. We remark that the above 
challenges are unique or severer in edge FL. For 
example, the challenge of interference among edge 
devices is caused by the unique characteristics of 
the edge communication protocols, while low data 
quality emerges due to the ubiquitous uncertainty in 
the data acquisition of noisy edge network environ-
ments. They not only bring difficulty to the system 
development but also put emphasis on data security 
and privacy. Nevertheless, FL fails to meet the secu-
rity demand as the edge devices’ private data may 
be easily revealed from periodically exchanged mes-
sages between the server and edge devices.

Numerous efforts have been devoted to the 
development of privacy-enhancing techniques for 
establishing a secure FL system. They can be cate-
gorized into cryptography-based approaches and 
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differential privacy (DP) based approaches. While 
the cryptography-based methods [4], such as secure 
multiparty computation, homomorphic encryption, 
and secret sharing, run with a very high privacy guar-
antee, their success requires complicated encryp-
tion protocols, substantial extra communication 
and computation cost, and a strong assumption of 
a trustworthy server. Recently, a blockchain-based 
approach was also deployed in FL without the 
assumption of a reliable server, but the complicated 
protocols and high computation power are neces-
sary. The resulting prohibitive overheads particularly 
for large-scale ML tasks and unrealistic assumptions 
make it hard for a wide deployment of cryptog-
raphy-based approaches to the edge FL networks 
[5]. On the other hand, the use of DP in EFL is ris-
ing rapidly, thanks to its complete theoretic guar-
antees, algorithmic simplicity and negligible system 
overhead. Recent studies [6] show that specially-de-
signed DP mechanisms can provide FL clients with 
strong privacy protection, and any adversary, includ-
ing the dedicated server, is unable to infer sensitive 
information from the intermediate communications 
during the training process [6]. Incorporating DP into 
the EFL framework is also straightforward by simply 
perturbing the transmitted messages in each com-
munication round with random noise. Therefore, the 
diff erentially private EFL frameworks (DP-EFL) being 
deployed have drawn high attention in both aca-
demic research and industry in recent days.

Nevertheless, the DP-EFL framework preserves 
client privacy at the cost of a training perfor-
mance degradation because applying perturba-
tion with random noise would adversely affect 
the convergence of learning algorithms to the 
desired high-accuracy ML model. Moreover, a 
larger noise scale means a stronger privacy guar-
antee but results in lower learning performance. 
Thus, a trade-off exists between the noise scale 
and the learning performance. Understanding and 
balancing the trade-off  is a promising direction for 
realizing desirable DP-EFL frameworks. This natu-
rally raises the following research question.

Question: How to reduce the noise scale in 
DP-EFL network without sacrificing the privacy 
guarantee?

Exploring the fundamental principles of the 
DP-EFL framework is essential to fi nding possible 

answers. Its theoretical foundation relies on the 
defi nition of DP and privacy composition proper-
ty. DP defi nes a diff erentially private randomized 
mechanism which generates similar outputs for 
two input datasets with only one different sam-
ple. Once it is applied to the learning process, it 
is extremely hard to tell whether or not a specifi c 
sample is used, thus preventing data leakage. The 
privacy protection level is usually determined by a 
positive parameter e, and a smaller e corresponds 
to a stronger privacy protection. The privacy com-
position property states that sequentially apply-
ing the DP randomized mechanism would yield 
an accumulated privacy loss. Then, the DP-EFL 
framework is built by applying a DP randomized 
mechanism (e.g., using additive artifi cial noise) to 
the exchanged messages of each communication 
round. The privacy composition property enables 
modular design and privacy analysis of the com-
plicated FL process given the total privacy budget 
–e. Thereby, the required privacy protection level 
and the corresponding noise scale for each round 
can be readily determined [6].

The noise scale required for guaranteeing 
DP of the whole EFL network depends on three 
main factors, including privacy protection level, 
model dimension and sensitivity, where the term 
“sensitivity” refers to the magnitude of the larg-
est change measuring the impact of a single data 
record on the output of a randomized mechanism 
[6]. Therefore, noise reduction can be progres-
sively achieved by the analysis of these factors 
together with all the involved building blocks of 
the DP-EFL framework. Research communities 
have proposed several promising approaches by 
focusing on a specifi c factor. For instance, recent 
works [7, 8] attempted to use randomly shuff ling 
and data subsampling to maintain privacy protec-
tion levels with a smaller noise. Additionally, the 
sparse vector techniques [9] or dimension selection 
algorithms [10] were applied to the DP-EFL frame-
work to mitigate the noise eff ect on model accura-
cy, especially for ML applications with large models.

In this article, we aim to provide a system-
atic review of various existing and prospective 
research problems on the crucial noise-level 
reduction for the DP-EFL system. After an over-
view of the DF-EFL framework, we concentrate 
on the above-mentioned three intrinsic factors on 
which the power of the additive artificial noise 
relies, including a review of existing approaches, 
their strengths and weaknesses, followed by some 
new future research directions. Finally, we draw 
some conclusions.

edge federAted leArnIng WIth 
dIfferentIAl PrIvAcy

edge federAted leArnIng And threAt model
We start with a brief introduction to the EFL 
framework. Figure 1 depicts the EFL system con-
sisting of an ES and a total of N (which could be 
very large) distributed devices, and they respec-
tively own non-overlapping and private datasets. 
The objective of FL is to train a high-quality ML 
model with the datasets from edge devices under 
the orchestration of ES without directly assessing 
the devices’ private data. This can be achieved 
cooperatively by the ES and devices, who follow 

FIGURE 1. The framework of private EFL network exposed to adversaries.
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a computation and aggregation protocol to imple-
ment the designed FL algorithm. The ES receives 
and aggregates local ML model updates comput-
ed by the devices, and then updates the global 
ML model, which is then broadcast to the devices 
for each communication round. The process con-
tinues in a round-by-round manner until conver-
gence to an accurate ML model.

While FL is more secure than traditional dis-
tributed ML frameworks owing to no data sharing 
among devices, data leakage is still possible. The 
exchanged messages between devices and ES 
may contain private information of the devices’ 
data, and adversaries could fi gure out the devic-
es’ private data from these messages. In addition 
to the adversary, the ES and third parties can 
also acquire the exchanged messages during the 
whole FL process. Specifi cally, the ES may be curi-
ous about the devices’ private data and recover 
it from the uploaded local model updates. Con-
currently, the exchanged messages may be over-
heard by third parties who could reveal devices’ 
private data using advanced techniques like auxil-
iary data or cutting-edge attacks.

the dP-efl frAmeWorK
DP provides a strong criterion for privacy pres-
ervation together with the inherent advantage 
of preserving privacy without complicated com-
putation. The purpose of DP-EFL is to build a 
framework that enables edge devices to preserve 
their privacy against the above-mentioned threats 
without sacrifi cing much accuracy of the learning 
model. In the EFL system, the DP is implemented 
by proper use of artifi cial noise in training process 
before uploading to the ES. However, we need 
to determine where to apply the additive noise 
with suitable power, for example, the local data, 
objective function, and local gradient/models as 
depicted in Fig. 2. Moreover, the noise scale and 
where it is applied will aff ect the algorithm design 
as well as the resulting sensitivity.

Adding noise to the local data or the objective 
function is impractical as it is diffi  cult to determine 
the required noise scale for guaranteeing DP. In 
particular, owing to the complex and diverse data 
types such as images, videos and texts, the sensi-
tivity cannot be calculated if the noise is injected 
into the local raw data. Likewise, it is hard to deter-
mine the sensitivity when the noise is injected into 
the non-convex objective function, especially for 
the ML tasks using deep neural networks. There-
by, these two schemes are seldom applied in the 
EFL framework because of extra performance loss 
for determining the sensitivity [11].

On the contrary, adding the noise to local gra-
dients/models can be readily applied to the FL 
system and hence it has been widely adopted in 
the current DP-EFL framework. There exist quite 
a few schemes of privacy protection based on 
this approach in the FL system, such as DP-SGD 
[12], DP-FedAvg [13] and DP based primal-dual 
method (DP-PDM) [14], where additive noise is 
applied to the local gradient, local models and 
local primal variable or dual variable. More impor-
tantly, the impact of the additive noise on the 
learning performance can be disclosed through 
an algorithm convergence analysis, and the total 
privacy loss can be readily tracked during the 
training as well.

noIse scAle cAlculAtIon
Given the total privacy loss –e for a DP-EFL frame-
work after T communication rounds of training, 
the scale of the additive noise s for guaranteeing 
DP in each communication round is proportional 
to the dimension of the ML model d and sensi-
tivity Ds while it is inversely proportional to the 
privacy protection level e μ f(–e, T)[6, 12], that is

  (1)σ ∝ O #
𝑑𝑑 × Δ𝑠𝑠
𝑓𝑓(ε+, 𝑇𝑇)/,	

where Ds is the sensitivity which relates to data dis-
tribution or data processing. The model/data dimen-
sion d indicates the number of elements perturbed 
with random noise. In most existing works, e is set in 
the DP-EFL framework rather than the total privacy 
–e accumulated over T communication rounds for 
each client. However, this policy may lead to sub-
stantial data leakage in the sequel simply because –e
(also a function of e and T) increases with T. Instead, 
we consider the more practical case that –e is con-
strained in the DP-EFL system in our work.

overvIeW of eXIstIng WorKs on noIse reductIon
Following the above analysis, existing  works on 
the mitigation of the noise eff ect on the learning 
performance naturally can be categorized into 
three directions:
• Privacy amplification: to target the additive 

noise power reduction by adversely enlarging 
f(–e, T) under the constraint on the resulting –e
after T communication rounds of training.

• Model dimension reduction: to reduce the 
number d of model dimensions that the addi-
tive noise is applied simply because smaller 
noise power is needed for smaller d, thereby 
mitigating the adverse eff ect on the learning 
performance.

• Sensitivity reduction: to make use of specifi c 
DP properties or fi nd where to apply the addi-
tive noise in the DP-EFL framework such that 
the resulting sensitivity Ds can be reduced, 
thus leading to a smaller noise scale.
We fi rst give an overview of these three kinds 

of approaches by comparing them with respect to 
three viewpoints including communication saving, 
computational reduction and performance loss. 
All aspects mean a lot to the choice of appropri-
ate approaches in certain applications. Table 1 
shows the comparison result, and Fig. 3 depicts 

FIGURE 2. An illustration indicating where the artifi cial noise can be added in the 
DP-EFL system.
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the resulting testing accuracy (model learning 
performance) on the Adult dataset if they are 
respectively adopted in FedAvg algorithm while 
guaranteeing (1, 10–5)-DP in each communication 
round. In general, as shown in Fig. 3, the learning 
performance will be downgraded if each noise 
reduction scheme is adopted. We can observe 
from Table 1 and Fig. 3 that the data subsampling 
scheme can greatly reduce the computation load 
because only a small portion of local data is used 
in the local update. Nevertheless, this scheme 
also significantly downgrades the learning per-
formance due to using the mini-batch gradient 
descent. The model dimension reduction meth-
od not only achieves communication saving but 
also may have a negligible effect on learning per-
formance with carefully chosen parameters. It is 
worth mentioning that only one sensitivity reduc-
tion scheme is considered in Table 1 and Fig. 3, 
others may yield better performance. Next, we 
review these noise reduction schemes in detail.

noIse reductIon by PrIvAcy AmPlIfIcAtIon
Many recent works on privacy amplification 
adopt the idea of shuffling [7] or subsampling [8] 
to achieve a larger f(–e, T) for noise reduction.

dAtA shufflIng
Data shuffling achieves privacy amplification accord-
ing to the fact that the anonymity in DP will enhance 
privacy protection. Specifically, a sufficient number 
of data or updated models are collected and ran-
domly shuffled at each local step so that any individ-
ual data can “hide in the crowd.” Thus, the privacy 
loss for the model can be dramatically lowered as 
anonymity will greatly increase model uncertainty. 
The work [7] demonstrated that the privacy loss of 
the global model could be much lower than only 
requiring each edge device to guarantee –e-DP. In 
the EFL system, when there exists a trustworthy serv-

er that randomly shuffle (e.g., anonymized) the local 
models collected from local edge devices before 
uploading, the global model achieves stronger priva-
cy protection than without any shuffling operation. 
However, it may not be practical to perform model 
shuffling in real-world applications due to the con-
cern that any trustworthy third-party seldom exists.

dAtA subsAmPlIng
Applying data subsampling to a given dataset also 
leads to amplification of the privacy protection 
level of the model being trained using the subsam-
pled data. Provided that each round guarantees (e, 
d)-DP, the work [8] demonstrated that data subsa-
mpling provides stronger privacy protection e’ (i.e., 
e’ < e). In this way, if the total privacy loss is fixed in 
FL, data subsampling offers a stronger privacy pro-
tection level f(–e, T) for each round, thereby leading 
to smaller noise power. It should be noted that the 
value of e’ is affected by different data sampling 
strategies, so a proper data subsampling strategy is 
important for different applications.

noIse reductIon by model sPArsIfIcAtIon
Owing to the relation of s and d in Eq. 1, another 
strategy aims to reduce the noise scale by perturb-
ing a small subset of the elements in exchanged 
messages. To this end, many existing related 
works proposed to combine model sparsification 
and DP, that is, the model parameter is first spar-
sified and the additive noise is then applied over 
all the dimensions of the sparsified model. One 
advantage of this strategy is to improve commu-
nication efficiency since the size of transmitted 
messages per round is significantly reduced.

To be specific, the work [9] proposed a vec-
tor sparsification approach that returns a sparse 
privatized vector with at most h ≤ d dimensional 
values from the original model dimension d. By 
this way, per-dimension privacy protection level 
is increased from e to de/h, thus resulting in the 
sparse model with stronger protection level. To 
remedy this issue, recent work [10] proposed a 
two-stage dimension selection framework con-
sisting of a dimension selection (DS) stage and 
a value perturbation stage, as illustrated in Fig. 4, 
where the DS stage first builds a top-k (k largest 
values) dimension set from the local model, from 
which the h important dimensions are then select-
ed. Then, in the value perturbation stage, the value 
of the selected dimension is perturbed via the DP 
algorithms and used to construct a sparse privatized 
local update. Finally, a sparse privatized local model 
update is constructed and returned to the server.

Although the strategy of model sparsification 
is encouraging to reduce the noise scale, it would 
dramatically downgrade learning performance 
when the most informative dimensions set is not 
selected. It is acknowledged that existing works 
[9, 10] tried to mitigate the performance degrada-
tion by selecting the model dimensions with the 
largest magnitudes. Nevertheless, there may still 
exist much privacy deficiency because the select-
ed dimensions may not be the most informative 
for the convergence of FL algorithms.

noIse reductIon by reducIng the sensItIvIty
The noise reduction can also be implemented 
by reducing the sensitivity Ds according to Eq. 
1. The sensitivity in the DP mechanism gives 

TABLE 1. Comparison of various noise reduction methods.

Noise reduction methods Communication  saving Computation reduction Performance loss

Data subsampling no no large

Model dimension reduction yes yes small

Sensitivity reduction no no large

FIGURE 3. Testing accuracy (model learning perfor-
mance) of FedAvg respectively adopting three 
typical noise reduction schemes and a baseline 
without DP noise. 
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an upper bound on the amount of noise for 
effective privacy, but it is almost formidable to 
determine the sensitivity ahead of time in real-
world applications. In some cases, the sensitivity 
is determined by data processing in order that 
a smaller sensitivity might be found to reduce 
noise. For instance, DP-SGD [12] adopts the 
scheme of gradient clipping on the edge devic-
es to determine the sensitivity, hence, we can 
choose a smaller sensitivity during the model 
training to mitigate the adverse effect of noise. 
In addition, the sensitivity Ds may possibly be 
reduced by utilizing the post-processing property 
of DP [6]. To be specific, the post-processing 
property enables any nonprivate data oper-
ation on the results of DP outputs without the 
risk of losing their privacy guarantees, that is, 
maintaining the privacy protection provided by 
DP. Owing to the post-processing property, the 
noise for ensuring DP can be added somewhere 
with lower sensitivity before uploading to the ES. 
For example, if the DP outputs may meet some 
domain constraints, the post-processing is simply 
the projection of the privacy-preserving outputs 
onto the feasible region under such constraints, 
thus lowering the sensitivity.

chAllenges And future WorK
As previously presented, most existing noise 
reduction approaches can be categorized into 
three classes. Despite their eff orts, there are still 
many diffi  culties to overcome in order to obtain a 
desirable trade-off  between learning performance 
and privacy protection. Currently, there is an 
increasing privacy protection demand of applying 
the DP-EFL to the IoT, such as online learning tasks 
for network advertising and positioning-based ser-
vices, where it is easier for adversaries to acquire 
and infer private data with more available prior 
knowledge in such challenging scenarios. In such 
cases, stronger privacy protection is required 
but the existing DP-EFL system cannot provide it 
because the exaggerated privacy protection level 
for preventing information leakage will dramati-
cally deteriorate the learning performance. Thus, 
the noise reduction methods are indispensable for 
DP-EFL. In view of these problems, we put forth 
several possible research directions to improve or 
supplement the aforementioned approaches.

combInAtIon of dP And cryPtogrAPhy

It may be feasible and beneficial to advisably 
combine DP in EFL and cryptography-based 
approaches because the strong privacy protec-
tion guarantee of the latter may potentially help 
reduce the noise scale of the former; the former 
can prevent the differential attack and the latter 
can prevent the backdoor attack or model inver-
sion attack. Therefore, their combination may 
enable signifi cant noise reduction with a stronger 
privacy protection level if the extra computational 
overhead is acceptable. For instance, combining 
the DP and homomorphic encryption (HE) can 
be applied to DP-EFL as illustrated in Fig. 5. In 
this case, HE is applied on the local client side to 
protect the local data privacy, and DP is imple-
mented on the cloud/edge server to prevent the 
global model’s information leakage. In this scenar-
io, the trained global model can be used by other 
third-party for further data analysis, which is appli-
cable for privacy protection of sensitive health 
data lying on isolated hospitals. Nevertheless, the 
combined privacy protection cryptography-based 
consumes extra computation resources of the 
local clients. Thus, a careful design to balance the 
computation and privacy protection is signifi cant.

mIXed PrIvAcy ProtectIon
It allows the DP-EFL system to utilize some data avail-
able with no privacy concerns to train the model, 
such as synthetic datasets or datasets available for 
public use. In this way, less local sensitive data will be 
used for training, thus reducing the data privacy leak-
age. In other words, this scheme provides stronger 
privacy protection within the same communication 
round and constrained total privacy loss –e by using 
a smaller dataset in one communication round. The 
use of large amounts of public data for pre-training 
has recently enabled the learning models to achieve 
DP for the target task along with near state-of-the-art 
performance. It might be helpful to use auxiliary data 
to pre-train the model on the ES side followed by 
fi nely tuning the model parameters using the DP-EFL 
to mitigate the eff ect of the additive noise during the 
FL training. However, the associated theoretical anal-
yses are still yet to be explored, such as convergence 
analysis, privacy analysis of a completed ML task and 
the trade-off  between the privacy protection and the 
pre-train model.

FIGURE 4. The framework of the two-step dimension selection in DP-EFL.
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selectIon of InformAtIve models

The key to noise reduction by model sparsifi cation 
is the selection of the most representative top-k
dimension models, which is non-trivial in a real-
world deployment. Most existing model reduction 
algorithms with DP are based on the Euclidean 
distance (absolute value) between the select-
ed model and the target model, and thus their 
drawbacks include the inconsistency between 
the selected model and the value to the learn-
ing performance, and the learning performance 
backfires due to the selection of misrepresenta-
tive components of the model. Thus, the selec-
tion of the informative components of the model 
can be implemented by other approaches with 
better learning performance, such as selecting 
the informative components by modular scores, 
which have been studied for subset selection 
in FL recently, e.g., a utility score for each sam-
ple or client often measured by the training loss 
[15]. However, the selection of top-k informative 
components from the model of large size is also 
non-trivial, besides the determination of k (Fig. 4).

conclusIon
In view of various pervasive edge computing 
applications in 5G and 6G, where privacy protec-
tion is not only needed but also must be guaran-
teed, we have presented a comprehensive review 
from the background, central development issues 
and existing DP-based approaches for edge FL, 
that are naturally needed by the prospective 
DP-EFL framework that we focused on. Specifi cal-
ly, we concentrated on the noise reduction issue in 
DP-EFL and classifi ed the existing works into three 
categories. Furthermore, through insightful per-
spective analyses and discussions on the impact 
of the noise scale on the learning performance of 
DP-EFL systems, we fi nally presented challenges, 
promising solutions and future researches yet to 
be investigated for the advances of the DP-EFL.
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FIGURE 5. The combination of DP and HE. 
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