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Abstract—In this article, we investigate the federated cluster-
ing (FedC) problem, which aims to accurately partition unlabeled
data samples distributed over massive clients into finite clusters
under the orchestration of a parameter server (PS), meanwhile
considering data privacy. Though it is an NP-hard optimization
problem involving real variables denoting cluster centroids and
binary variables denoting the cluster membership of each data
sample, we judiciously reformulate the FedC problem into a non-
convex optimization problem with only one convex constraint,
accordingly yielding a soft clustering solution. Then, a novel FedC
algorithm using differential privacy (DP) technique, referred to
as DP-FedC, is proposed in which partial clients participation
(PCP) and multiple local model updating steps are also consid-
ered. Furthermore, various attributes of the proposed DP-FedC
are obtained through theoretical analyses of privacy protection
and convergence rate, especially for the case of nonidentically
and independently distributed (non-i.i.d.) data, that ideally serve
as the guidelines for the design of the proposed DP-FedC. Then,
some experimental results on two real datasets are provided to
demonstrate the efficacy of the proposed DP-FedC together with
its much superior performance over some state-of-the-art FedC
algorithms, and the consistency with all the presented analytical
results.

Index Terms—Differential privacy (DP), federated clustering
(FedC), non-i.i.d. data, privacy amplification.

I. INTRODUCTION

EDERATED learning (FL) , as a novel distributed
Fparadigm, enables massively distributed clients to jointly
find a desired model through machine learning (ML) under
the orchestration of a parameter server (PS) while refrain-
ing the clients’ sensitive data from being exposed [1], [2].
FL has received tremendous attention in the past several
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Fig. 1. Framework of the FL system in the presence of adversaries.

years as it seriously takes numerous practical challenges into
account, including limited communication resources and data
heterogeneity and client privacy protection in the learning pro-
cess [3]. Under these challenges, most FL algorithms follow
a computation-aggregation protocol by which the local update
of model parameters and the PS aggregation are repeated in a
round-by-round fashion until convergence. Federated average
(FedAvg) algorithm [4], [5] is a typical one, which improves
communication efficiency by adopting partial client participa-
tion (PCP) and multiple local stochastic gradient descent (local
SGD) updating steps. Nevertheless, the data heterogeneity
(e.g., nonidentically and independently distributed (non-i.i.d.)
data) has been acknowledged to be the main bottleneck to
FL deployment. Numerous efforts have been devoted to the
analysis of the adverse effects of non-i.i.d. data on algorithm
convergence [4], [6]. In parallel, FL still suffers from pri-
vacy leakage as the clients’ sensitive information could be
inferred by adversaries through the exchanged model parame-
ters between the clients and the PS [7], [8], [9]. As illustrated
in Fig. 1, a vanilla FL system includes many clients and one
PS, where the uploaded parameters from local clients may
be overheard by powerful adversaries. The differential privacy
(DP) technique has recently gained increasing popularity in
enhancing privacy of FL thanks to its algorithmic simplic-
ity, support by rigorous mathematical theory, and negligible
system overheads [10], [11].

Despite the recent rapid progress of FL, substantial atten-
tion has been given to supervised learning, whereas the
problem of federated unsupervised learning, especially data
clustering, has not yet been investigated comprehensively in
FL community [12]. Clustering in the FL setting, called
federated clustering (FedC), aims to partition data samples
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distributed over massive clients based on a global simi-
larity measure while keeping them on respective clients.
As clustering is one of most suitable missions for ML
and has a great deal of applications, the FedC and its
implementation is believed to be in impending need. On
the other hand, recent years have witnessed an incessant
springing up of FedC applications, which again motivates
research efforts in this direction. For example, in e-commerce
applications, FedC is widely used to group the online cus-
tomers of multiple institutions with sensitive features, such
as personal details, purchase orders, and bank transaction
records, to identify their specific interests for precise service
recommendation [13], [14]. Note that, FedC is quite different
from clustered FL approaches [15], [16], which, instead of data
clustering, are concerned with clusters of clients such that each
cluster comes up with a local model to be uploaded to the PS
in order to reduce the communication cost of supervised FL
systems [17], [18], [19].

In this article, an effective FedC algorithm is proposed,
that considers both non-i.i.d. data and DP-based privacy
protection. In FedC scenarios where data heterogeneity is
prevalent, the global cluster information may not be avail-
able for each client as all the data in hands may belong to
just a few clusters, and the correct cluster structure might
become apparent only when the local datasets are com-
bined [19]. Moreover, effectively transferring the centralized
clustering algorithms into FedC, such as k-means, is almost
formidable due to the privacy concern. Directly applying them
to FedC by following the computation-aggregation protocol
would result in serious performance degradation [12], [20].
In addition, different from supervised FL, the process of
FedC involves the iterative constrained optimization of both
cluster centroids and cluster assignments of all data sam-
ples, which again brings more difficulties to algorithm
design.

As for privacy protection, such coupling optimization neces-
sitates a more careful and fine-grained design and analysis
of the DP-based FedC algorithms. In particular, it is widely
known that DP protects privacy at the cost of learning
performance loss [21], and balancing the tradeoff between
protection level and convergence performance, so-called the
privacy—utility tradeoff, is essential in practical FL applica-
tions. To improve the privacy—utility tradeoff, privacy ampli-
fication [22], [23] has been pervasively adopted in many
DP-based FL (DP-FL) applications [5], [24]. The privacy
amplification can reduce the variance of noise added to locally
uploaded models without sacrificing the privacy protection
level, thereby mitigating the adverse effects of DP [25]. In
addition to the challenges posed by non-i.i.d. data and pri-
vacy protection, the practical application of FedC algorithms
in FL systems requires careful consideration of communica-
tion cost and straggler effect [26]. These factors and concerns
not only affect the algorithm design but also make the asso-
ciated theoretical algorithm performance analysis much more
involved. However, the involvement of cluster centroids and
data’s cluster-membership assignment in FedC further compli-
cates the design of DP, and it is still not clear how to achieve
a good privacy-utility tradeoff in FedC.
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A. Related Works

Currently, many successful methods have been reported
about traditional distributed clustering, however, they are sim-
ply parallel implementations of the centralized clustering
algorithms [27], [28], [29] or implementations through clus-
tering representative data samples collected from distributed
clients [20], [30]. Apparently, the critical challenges of FL,
such as massive clients, limited communication resources and
data heterogeneity, were rarely considered, and the demand
for privacy protection was also overlooked.

The recent works in [13], [31], [32], and [33] have consid-
ered the FL scenarios and presented FedC algorithms, while
most of them were developed by combining the simple cen-
tralized k-means algorithm (and its variants) with FedAvg [4].
Specifically, in each communication round, the clients employ
k-means algorithms to obtain the local cluster centroids, which
are then uploaded to the PS to produce the global clusters. The
works [13], [31] adopted the fuzzy k-means to perform local
clustering, while the global centroids are obtained from the
received local centroids by k-means clustering. The work [32]
proposed a federated spectral clustering approach to train a
generative model for each cluster, such that each data sample
can be classified to only one cluster using the generated mod-
els. Nevertheless, the above-mentioned FedC algorithms did
not consider the data heterogeneity issue; thus, hardly yielding
satisfactory clustering performance as the clustering algorithm
only works well in clustering datasets that are evenly spread
around the centroids but fails in clustering datasets of complex
and heterogeneous cluster structure [19], [20], [34].

To the best of our knowledge, only few works have specif-
ically addressed FedC in the context of non-i.i.d. data [15],
[18], [35], [36]. However, these works also have their lim-
itations. The approach reported in [15] directly apply the
conventional k-means to the FL framework, resulting in sub-
optimal clustering performance, that will be discussed in
Section II-B. The work [18] considered one-shot FedC, where
each client obtains a local model using k-means and then
upload the trained model only once for the aggregation by the
PS. However, the one-shot FedC may not be very effective
when the FL problem under consideration is NP-hard or non-
convex due to the low-quality of local solutions. The work [36]
proposed a FedC scheme by assuming that heterogeneous data
to be clustered come from a probabilistic model, that is, assign
each data point to a cluster model with the highest likelihood.
More importantly, these works [15], [18], [36] lack a com-
plete theoretical analysis of the impact of non-i.i.d. data on
convergence performance. The work in [35] formulates the
clustering problem as a constrained nonconvex problem and
theoretically analyze the impact of non-i.i.d. data. However,
none of above-mentioned works ever consider the crucial issue
of privacy protection, which we believe, is one of the most fun-
damental concerns in FL system. The work [5] is the first that
adopted a secret sharing approach to protect privacy in the fed-
erated k-means algorithm. However, such a strategy requires
complicated encryption protocols and substantial extra com-
munication and computation cost [37], thus not applicable to
large-scale FL models. As far as we are aware, none of the
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existing works simultaneously consider data heterogeneity and
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II. PRELIMINARIES

privacy protection, hence motivating us to develop advanced 4 pifferential Privacy

privacy-preserving FedC algorithms over non-i.i.d. data.

B. Contributions

Motivated by the aforementioned issues of existing FedC
methods, we propose a differentially private FedC algorithm,
called DP-FedC, with the data heterogeneity and privacy pro-
tection taken into account. The main contributions of this work
are summarized as follows.

1) A novel clustering problem is formulated to over-
come the shortcomings of the conventional centralized
k-means, then applied it to FedC scenarios. To handle
the proposed FedC problem, a DP-FedC algorithm under
the computation-aggregation protocol is developed, that
alternatively update local cluster centroids and indica-
tor matrices (indicating each sample and the cluster it
belongs) through allowing multiple local SGD steps and
partial clients PCP. Furthermore, the privacy amplifica-
tion strategy is employed to reduce the DP noise vari-
ance for better tradeoff between learning performance
(i.e., clustering accuracy) and privacy protection.

2) Two theoretical analyses for the proposed DP-FedC
algorithm are presented. One is a privacy analysis, show-
ing that a tighter upper bound of the total privacy loss,
i.e., (O(ge/pR), 8)-DP over R consecutive communi-
cation rounds, where 0 < p,q < 1 are defined in
Remark 2. The other is a convergence analysis, show-
ing the convergence rate O(1/+/R) under nonconvex and
non-i.i.d. data setting.

3) Extensive experimental results are provided to demon-
strate the effectiveness of the proposed DP-FedC algo-
rithm on real world datasets, including TCGA cancer
gene data [38], and the MNIST handwriting digits
data [39], and its much superior performance over state-
of-the-art distributed clustering and FedC algorithms.

Synopsis: Section II introduces some preliminaries of DP.
Section III presents the problem formulation. Section IV
presents the proposed DP-FedC algorithm. Section V focuses
on privacy analysis and convergence analysis of the proposed
algorithm. Experiment results are presented in Section VI, and
finally the conclusion is drawn in Section VII.

Notation: E[ - ] represents the expectation of random vari-
ables or events; Pr [-] represents the probability function; R™*"
denotes the set of m by n real-valued matrices; the (i, j)th entry
of matrix A € R™" is denoted by A(i,j); A(i, :) and A(:, )
denote the ith row and the jth column of A, respectively; A > 0
means A(i,j) > 0, Vi,j; [A]T denotes the matrix by replacing
all the negative elements in A with zero. Amax(A) stands for
the maximum eigenvalue of A; || - ||, || - |l, and || - [lp are
the matrix Frobenius norm, Euclidean norm, (i.e., £2-norm)
and zero norm of vectors, respectively; (X,y) = xTy repre-
sents the inner product operator, where the superscript ‘T’
denotes the vector transpose; for any integer N, [N] denotes
the integer set {1,...,N}; 1 denotes the all-one vector; and
{Ci}f.‘:l denotes the set {C,C>...,Ci}; -] denotes the floor
function.

In this work, we assume that any third party is untrust-
worthy, including the honest-but-curious server. The core
privacy protection mechanism of the proposed DP-FedC is the
well-known DP based random mechanism defined as follows.

Definition 1 (e, §)-DP [I1]: Consider two neighboring
datasets D and D’, which differ in only one data sample. A
randomized mechanism M is (e, §)-DP if for any two D, D’
and measurable subset O C Range(M)

Pr{M(D) € O] < exp(e) - Pr[M(D') e 0] +5 (1)

holds true, € > 0 represents the privacy protection level, and
0 < § < 1 is the probability threshold to break (e, 0)-DP.

A smaller € means that it is more difficult to distinguish
between the two neighboring datasets D and D’, thus resulting
in stronger privacy protection. The required “noise variance”
o2 for achieving (¢, 8)-DP is given by the following lemma.

Lemma 1 [11, Th. 3.22]: Suppose a query function g
accesses the dataset D via randomized mechanism M. Let &
be a zero-mean Gaussian noise with variance o2. Then, g+ &
is (€, 8)-DP if

2521n(1.25/8)

ol = —2/ )
€

where s is the £;-norm sensitivity of the function g defined by
= D) —g(D)|. 3

s 2 max |s(D) — g(D')] (3)

In practical FL systems, it is crucial to monitor the total
privacy loss over multiple communication rounds of model
parameters exchange with the PS, which can be computed
from the individual privacy loss stated in the following
definition.

Definition 2 (Privacy Loss [11]): Suppose that a random-
ized mechanism M satisfies (e, §)-DP. Let D and D’ be two
neighboring datasets and O be a possible random vector of
M(D) and M(D'). Then, the privacy loss is defined by

P[M(D) = 0] )

A | 4
P[M(D') = 0] @

PL(O) £ ln(

Note that, the computation of total privacy loss is quite
involved, though its upper bound can be estimated using the
moment accountant method [40], which so far yields the
tightest bound on the total privacy loss.

According to the privacy amplification theorem [23], it has
been known that, running on a randomly generated subset of a
dataset, the DP mechanism can yield stronger privacy protec-
tion than running on the entire dataset. This fact implies that
the noise variance required for achieving a predefined DP level
can be reduced when partial data are randomly selected at each
iteration. The privacy analysis to be addressed in Section V-B
relies on the following privacy amplification theorem.

Theorem 1 (Privacy Amplification Theorem [23]): Suppose
that a mechanism M is (e, §)-DP over a given dataset D with
size n. Consider the subsampling mechanism that outputs a
random sample uniformly over all subsets Dy € D with size b.
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Then, when € < 1, executing M mechanism on the subset D;
guarantees (¢’, 8')-DP, where €’ and & are given by

€/ = min(2ge, €), 8 = gb 5)

where g = b/n is the data sampling ratio.
Proof: See Appendix A. |
According to Theorem 1, the privacy would be amplified
when g < 1/2. Note that, the privacy amplification for local
DP is pervasively adopted in existing FL literatures [10], [24]
since only a small portion of data being used in local SGD.

B. Centralized k-Means Clustering

Let X be a data matrix that contains n data samples and
each sample has m features, ie., X = [xq,...,X;,] € R™",
The clustering task is to assign the n data samples of X to a
predefined number of k clusters such that the samples within
a cluster are closer to each other than to those belonging to
any other cluster in terms of a certain distance metric. Among
hundreds of clustering algorithms, the most classic and popu-
lar one is the k-means which aims to obtain k£ nonoverlapping
clusters {Ci}le, ie,CNCyr =0 Vi #£1 € [k], Uf:ICi =
{x; };1 , by minimizing the average Euclidean distance between
each cluster centroid and all the data samples within the
cluster.

From the optimization perspective, the k-means algorithm
can be viewed as an ad hoc algorithm, which handles the
following matrix factorization by alternative minimization
(AM) [41]:

min
WeR™* H
s.t. He {0, " JHG, )llo=1 V)

IX — WH| % (62)

(6b)

where W € R™*K ig a matrix consisting of the k centroids, and
H € R is an indicator matrix with only one nonzero ele-
ment (i.e., unity) in each column. Applying AM to problem (6)
gives rise to the following update rules of W and H at iteration
t+1:

HT! = argn}iln X — WH||%

st. He {0, P I HG Hlo=1 ¥ (D)

Wl —arg min [|X — WH!|2. (8)

WeRmxk

The closed-form solutions to (7) and (8) are, respectively,
given by

1,y |1, if 1= argmin, X, /) — W', w)?
HT (L)) = {O, otherwise ©)
and
1
W )= X(:, u) (10)
VA Z

ue],’

where jf = {jIH(;j) = 1}. Note that at iteration ¢ + 1, the
Ith row of H is updated according to the minimum distance
from each data sample to the Ith centroid according to W',
and then the /th centroid (i.e., the /-column of W) is updated
as the average of the data belonging to cluster / according to
the Ith row of the updated indicator matrix.
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III. PROBLEM FORMULATION

The centralized k-means may totally fail for the dataset
with complex distribution and data heterogeneity, so it is not
suitable for distributed environments, especially the FL set-
ting. The reasons are twofold. First, the nonconvex k-means
problem (6) is NP-hard due to involving binary variables, and
hence almost any algorithm (including k-means) is unable
to work well. No wonder, it is performance is quite sensi-
tive to the initial conditions, complex data distribution, and
the obtained solution easily trapped in bad local minima and
so forth [42]. Moreover, the less data samples the worse its
performance, thus further downgrading its performance in FL
scenarios, especially when the data are sensitive and under
privacy concern. Most existing FedC algorithms are based on
k-means and operate in computation-aggregation fashion, but
their performance may get seriously downgraded under FL
scenarios, including massively distributed clients and severe
client heterogeneity [43].

Inspired by the idea in [44], we replace the binary con-
straint (6b) with a norm-based equality constraint and refor-
mulate problem (6) as

. 1223 2 Hw 2
X — WH 7 + = |H[7 + =W 11
mllr; I %+ 2 IH% + > Wiz (11a)

st. H=0, [HGHIT = IHGHIZ Vel (11b)

where up, > 0 and w,, > 0 are two positive parameters.
Problem (11) is a nonconvex and nonsmooth problem and it
can be regarded as a relaxation of the k-means problem (6)
because H has been relaxed as a real k x n matrix, with
at most one nonzero entry (not equal to one) in each col-
umn, though the equality constraint (11b) is still nonconvex.
Moreover, the two regularization terms [i.e., the 2nd and
the 3rd terms in (1la)] are used to control the resulting
scaling/counter-scaling ambiguity [41].

Instead of directly solving problem (11), we consider
the following problem by dropping the equality constraint
in (11b) and adding an associated penalty term in the objective
function

1 Hh 2 Hw 2
X — WH|? + = |H W
i l Iz + 3 IHl|z + > Wil
P - 2
TH(, i P
+52<(1 HC.))) —||H(-,J)||2> (122)
]:

st. H>0 (12b)

where p > 0 is a penalty parameter. The larger the value of p,
the smaller the approximation error of the equality constraint
in (11b) and the more sparse the matrix H. It is remarkable that
problem (12) is much efficient to handle than problem (11)
for two reasons. One is that (12b) is a simple convex con-
straint; the other is that the assignment of each data sample to
an unique cluster is not reliable for problem (11) [45], [46].
Therefore, in contrast to the hard clustering performed by k-
means, solving (12) corresponds to seeking a soft clustering
solution [47] instead.
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Fig. 2. Proposed framework for FedC.

A. Federated Clustering Model

To solve problem (12) under the FL network, we first
assume that the data matrix is partitioned and distributed over
N clients. i.e., X = [X|, X3, ..., Xy]. Specifically, each client
i owns nonoverlapping data X; € R™*", where n; is the num-
ber of data samples in client i and vazl n; = n. Under the
FL scenario, N could be large, and the data X;, Xs, ..., Xy
could be unbalanced and non-i.i.d. [48], [49]. We proceed by
partitioning H in the same fashion as X, resulting in the form
H = [H;, Hy, ..., Hy]. Each column of H corresponds to a
certain data sample in X, while W is treated as shared parame-
ters that will be uploaded to the PS for information exchange.
The resulting framework for FedC is illustrated in Fig. 2,
where a central PS coordinates the N clients to accomplish
the clustering task. Then, one can reformulate problem (12)
into the FL framework as follows:

N
1
. A . .
&1’11&.’ F(W,H) = N § Fi(W, H;)

i=1,...N i=1
st. H; >0 Vie[N]

(13a)

(13b)
where
Fi(W, H)) £ X, — WH I + 2 (1e(BUm] ) - 1))

+ SIHIE + S IWI (14)
is the local objective function of each client i, and U 2117,

In contrast to the vanilla FL problem which contains only
one shared optimization variable, problem (13) involves two
variables: one is W which is the cluster centroid matrix
W shared among clients, and the other one is H; which
is local cluster indicator matrix for X; owned by client i.
This apparently brings challenges in the algorithm develop-
ment, especially in the presence of non-i.i.d. data. In parallel,
as W is shared, there certainly exist possibilities of leak-
ing clients’ privacy in the FL process. Recent work [50]
showed that the honest-but-curious server could infer clients’
private data from the uploaded information in the federated
matrix factorization framework. Consequently, it is inevitable
to develop an effective and privacy-preserving FL algorithm
for problem (13).
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IV. PROPOSED ALGORITHM FOR PROBLEM (13)

In this section, we develop a novel FedC algorithm to
solve (13), which judiciously updates W and H;, i € [N], and
adopts an amplified DP for rigorous privacy protection.

A. Update of W and H; in FL

The key of algorithmic development to problem (13) is to
specify how to perform the local update of H; and global
update of W. Inspired by [26], we follow the same spirit of
local SGD and PCP, where a subset of clients are selected to
locally update H; and the associated local copies W;’s of W,
and then upload these iterates to the PS for global aggregation
in each round. In particular, for round r =1, 2, ...
1) Client Sampling: We let the PS uniformly sample a small
and fixed-size set S’ of K clients, i.e., S" C [N], |S?| =
K, and then broadcast the global W'~! to all clients.

2) Local Update: All clients are asked to obtain an
approximate solution (W!, H) to the following local
subproblem of (13)

(Wi, H}) =arg_min  F;(W, H)). (15)
W.H;>0
After that, each client i € S’ uploads W/ to the PS.

3) Global Aggregation: After receiving W from all clients
i € &', the PS aggregates them to produce the new global
W ie.,

1
W = © > Wi (16)
ieS!

In order to specify the local iterates (W/, H}), we propose to
handle (15) by combining AM [51] and local SGD. That is, H!
is produced by applying multiple gradient descent (GD) steps
to (15) with W; fixed, and then W! is updated similarly by
fixing H;. To be more specific, we first let all clients perform
Q1 > 1 consecutive steps of projected GD with respect to H;,
ie,forr=1,...,0

- 1 -1\

o = [0 = Lvgr(wolw )] an

where y/ > 0 is the learning rate. Then, they are asked to
perform Q5 > 1 consecutive steps of SGD (no projection)

with respect to W, i.e., for r = Q1 +1,..., 0,

W= Wl #VWF,-(WE’r_l, Ho, B§~’) (18)
where Q' = Q1 + Q5 and ' > 0 is a step size, and
VWFi(Wg’r_l,Hﬁ; B") is the stochastic gradient computed
using minibatch dataset B;" with size b (|B;"| = b). Finally,
(W', H!) is obtained by setting H! = H"?" and W = W<,

1

B. Privacy Concern

Data privacy is one of primary concerns in FL systems.
To enhance data privacy, we apply the DP technique to the
proposed algorithm. Specifically, in each round ¢, we add an
artificially Gaussian noise matrix & € Rk to Wi, where all
the mk entries of &} are i.i.d. Gaussian random variables with
2 thus yielding

zero mean and variance o,

W =W + & (19)
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and then upload Wi to the PS. Then, (16) becomes

witl — % Z Wf
ieS!

The details of the proposed algorithm are summarized in
Algorithm 1. Note that, the diminishing Q; = L(@/I)J + 1
(line 12) denotes the number of iterations in updating Wﬁ’r
(lines 13-15) by (18), where @ is a given constant and the
minibatch dataset Bf’r of size b used is further discussed in
the following remark.

Remark 1: For lines 13-15 of Algorithm 1, Qtzb data sam-
ples are obtained from the dataset D; at each communication
round (i.e., the data sampling ratio g;; = Q’zb/ni), and
then divided into Q’2 minibatch datasets B;’r for each inner
1teration 7.

It is acknowledged that the DP noise matrix &} will bring
about adverse effects on algorithm convergence and learn-
ing performance. However, the performance degradation of
Algorithm 1 will get worse from round to round due to W
perturbed by the DP noise and the coupling of W and H, on
the one hand. The accumulated DP noise effects will also get
worse with ¢ on the other hand. Therefore, Algorithm 1 is
performance-sensitive to the DP noise in a complicated man-
ner, such that obtaining a satisfactory privacy—utility tradeoff
through theoretical analysis becomes more intractable.

Nevertheless, the privacy amplification presented in
Theorem 1, can be utilized to pursue the performance analysis
of Algorithm 1, in order to find the clue about the variance
reduction of the DP noise for guaranteeing (e, §)-DP privacy
protection level at each round. The details are presented in the
next section.

(20)

V. THEORETICAL ANALYSIS
A. Assumptions

We need the following assumptions to analyze the pri-
vacy guarantee and convergence performance of the proposed
algorithm.

Assumption 1: Each local cost function F; is continuously
differentiable in both W and H;. That is, Vg F;(W',) is
Lipschitz continuous with constant L’ 1 and VWF,-(-,Hf) is
Lipschitz continuous with constant L} - ie., for any X, Y

IV, Fi(W', X) — Vg, Fi(W. Y) I < L IX = Y|l (21a)

IVwF;(X, H}) = VwFi(Y. H)llr < Ly IX = Y|r.  (21b)
According to Assumption 1 and [35], VwF(-, H)
is Lipschitz continuous with a constant L, =

(vaz ](L’Wl_)2/N)1/ 2 together with upper and lower bounds
for L;,[_ and LIW'_, ie.,
Lw>Ly >Ly >0, Ly > Ly >Ly >0 Vit (22)

Assumption 2: All the local cost functions F; and their
gradients are bounded, i.e., for any i € [N] and ¢

IVwF:(W, H;; B)||% < G*> YW, H; >0
Fi(W,H) > F>—00 YW,H;>0

(23)
(24)

where G is a constant, and B; € D; denotes the minibatch
dataset.
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Algorithm 1 DP-FedC Algorithm

1: Input: initial values of W(l) =...= WIO\, = WY, initial
values of {H?}?’: 1’
SY={1,...,N}, R and O.

2: for round 1 =1 to R do

3:  Server side:

4. Compute W’ by (20).

5:  Uniformly sample a set of clients &' C [N], and

broadcast W to all clients.

6:  Client side:

7. for client i € [N] in parallel do

8

9

Set HYY = HI™! and W/0 = W,
for r=1to Q7 do

10: Update H? by (17), and set Wi" = W',
11: end for R

12: Compute Q4 = L%J + 1.

13: for r=01+1to Q' =Q; + Q) do

14: Update W'" by (18), and set H"" = H?" ™",
15: end for

16:  end for ) )
17: Set Wi = W/¢ and H! = H/?.
18:  for client i € S’ in parallel do
19: Compute W} by (19).

20: Upload W/ to the PS for next round of aggregation.
21:  end for
22: end for

Assumption 3: For any minibatch dataset B! with size b that
are randomly sampled from dataset D;, the following equations
hold:

E[VwFi(Wi, H; B))| = VwF;(W;, H) (25)

2
B[ 1vwE (W B) - e E (WL E)IR] < 5 e6)

for any i € [N] and ¢, where ¢ is a constant.

Assumption 4: (¢-non-i.i.d. data) All the local cost func-
tions F; (cf. (14)) are ¢-non-i.i.d., namely, the following
condition holds:

VwF:(W, H;) — Vw F(W,H)||2 < ¢2 YW,H > 0(27)

where ¢ > 0 is a constant.

By following similar spirits to those in [35] and [52], an
upper bound ¢ is enforced on all the gradients of F; and F due
to the heterogeneity of local data distributions among clients.
This bound actually reflects the data’s non-i.i.d. degree, which
has been extensively utilized in the FL. community, particularly
for handling nonconvex FL problems.

B. Privacy Analysis

1) Privacy Guarantee: The £5-norm sensitivity [11] of Wf
is stated in the following lemma.

Lemma 2: For any t € [R] and i € [N], the £;-norm
sensitivity of uploaded local model W is given by

o= 20%
] nl
Proof: See Appendix B. |

(28)

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on March 20,2024 at 05:36:23 UTC from IEEE Xplore. Restrictions apply.



LI et al.: DIFFERENTIALLY PRIVATE FEDERATED CLUSTERING OVER NON-IID DATA

According to Lemmas 1 and 2, we further come up with
the following theorem, which can serve as a guideline for
determining the variance of DP noise necessary to fulfill the
associated DP-based FL.

Theorem 2: For any client i € [N], suppose that € < 1,
8§ < 1, and the data sampling ratio ¢;; = Q’zb/ni
(cf. Remark 1). Each entry of &! generated follows the
Gaussian distribution with zero mean and variance o2, where

it

o 32G2(Qf2)2q§,1n(1.25q,-,t/5). 9
(1')%€?
Then each communication round of the proposed algorithm
guarantees (€, )-DP.

Proof: In each communication round of the proposed
algorithm, each client i performs Q% steps of SGD w.r.t. W
by (18), where the minibatch dataset with size b used is ran-
domly sampled without replacement from local dataset D;.
According to Lemma 1 and Theorem 1, the Gaussian noise
with variance

2s?.1n(1.25/8)
Ui%t = 7 / (30)
€
can achieve at least (2¢; €, g;;8)-DP for client i, where g; , =
04b/n; is data sampling ratio for client i. Then, by plugging
52, given by (28) into (30), we obtain

,  4G2(0})7In(1.25/8)
T ke

By (31), one can achieve an (e, §)-DP for W, by replacing
€ and 6 in (31) with €/2qg;; and §/q;,, respectively, thereby
leading to (29). ]

2) Total Privacy Loss: As done in [3], we also use the
moments accountant method to estimate the total privacy loss
when the algorithm runs R communication rounds.

Theorem 3: Suppose that the client i is uniformly sampled
by the PS with a probability p; and the data sampling ratio
gie = Qbb/n; (cf. Remark 1), where Q% = |(Q/1)] + 1. Then,
with noise variance Uft (stated in Theorem 2) used for the
generation of the DP noise under (e, §)-DP at each commu-
nication round, an achievable total privacy loss €; for client i
after R communication rounds is given by

€ [N]. 31)

DiR
11— qit

& = coq; € Vi € [N] (32)
where cq is a constant. ]
Proof: The proof basically follows that of Theorem 1
reported in [3]. However, we further consider privacy ampli-
fication. Thus, the desired result (32) can be obtained by
replacing the € with 2¢;;e in the corresponding €; in
[3, Th. 1]. |
Theorem 3 shows that the achievable lower bound of total
privacy loss €; for the proposed DP-FedC is tighter than that
of the latest reported in [3] and [40] when p and ¢ are
appropriately chosen.
Remark 2: When clients are uniformly sampled with a
probability p;, by (32) in Theorem 3, one can infer that

6711

Algorithm 1 guarantees (O(ge+/pR), §)-DP under R commu-
nication rounds, where p and g are given by

2
qit .
q =max ———= Vi€ [N], te[R] (33)
it /1 —gqi;
p=maxp; Viel[N] (34)
l

where g;; = Q4b/n;.

C. Convergence Analysis

To find some convergence conditions, let us define the
following sequence:

o & Ties Wi when r € [0~ 1]
Y ies (W€ + &), when r = Q'

which is actually the instantaneous weighted average of local
models. Motivated by [35], let

N
—t, 2 . ,
G (W 1) & 3 () 1 - [
=
1 s +
- ?le.Fi(W”, Hﬁ*r)] |7 vrelo
l (36)

GW(W”,H”) S ||VWF(W”’,H”))||% vre [Q]\ Q1]
37

(35)

If Gg(W" H') = 0 and Gw(W',H"") = 0, then
(W”, H"") is a stationary-point solution of problem (13).
The main theoretical result for the DP-FedC is the following
theorem.

Theorem 4: Let R be the total number of communication
rounds and T = RQ; + Zf: 1 Q’2 be the total num‘tzs:r of gra-
dient evaluations per client. Moreover, let Q’2 = [(Q/D] + 1,
v/ = aiLy/2 and n' = apLy,, where o > 1 and ap >
0Y(3(1 + Ly/L3,))"/%. Then, under Assumptions 14, the
sequence {(V_V”, H"")} yielded by Algorithm 1 satisfies

R O

55 sfon )

t=1 r=1

+XR: i E[Gw (W 1]

=1 r=0;+1

2(2Lp +1 o
< —( ) <a2ZW(F(W1’°, Hl'o) —F)
3 —
N 16mkG? In(1.25/8) Y8 (04)”  Lwe> YR, 0}
o€’ 202 KbLy,
R t R t
2 Zt:l Q2 4N ZZ:I Cl
38
+¢ ( [T (38)
where
Ci = 05(05 —1)(205 — 1). (39)
Proof: See Appendix C. |
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Theorem 4 provides an upper bound of the average total
local SGDs over R communication rounds; the smaller its
value, the higher convergence rate and the smaller of the
cost function in (13) achieved by Algorithm 1. Based on
Theorem 4, we have the following remarks.

Remark 3 (Convergence Rate Analysis): Since Q’2 =
L(@/n] + 1, we have 330, Cf. o, 05 and YoF,(0))°
all in O(R). According to (38), by setting Q1 = O(V/R),
the proposed algorithm converges at a rate of O(1/+/R).
Furthermore, substituting 7 = RQ1 + Zle Q’2 into the bound
on the right-hand side of (38), one can infer that the bound
decreases with Q| rather than Q, due to Q’2 — 1 as t increases,
implying faster convergence rate for larger Q1 on the one
hand, and the required DP noise variance crft given by (29) is
insensitive to Q% on the other hand.

Remark 4 (Impact of DP): The larger value of € (or €), the
smaller the upper bound in (38), implying that the better learn-
ing performance (convergence rate and the loss function F)
and the weaker required privacy protection level, namely, a
privacy—utility tradeoff.

Remark 5 (Impact of Non-i.id. Data and PCP): The
smaller the value of ¢ or the larger the value of K, the
smaller the upper bound in (38), implying the smaller degree
of non-i.i.d. data or the more clients in PCP, and the better
learning performance (faster convergence rate and smaller loss
function F).

Remark 6 (Complexity Comparison With Existing FedC
Methods): Suppose that all clients participate the model
training (N clients), the complexity of federated k-means
(FKM) for each local iteration at the client side is
O(mnkN 4+ mnN (log N)?2), and the complexity at the PS side is
O(mnk) [5]. It can be verified that the per-iteration complexity
for the proposed DP-FedC algorithm is O((mN +n)k2 +mnk))
at the client side, and a complexity order of O(mkN) at the
PS side (shown in Appendix E). As a result, the complexity of
the proposed DP-FedC algorithm is smaller than that of FKM
since k < N < n is true in general. However, the DP-FedC
and the FZKM [13] have comparable complexity at both client
side and the PS side, simply because they have similar com-
puting procedure, in spite of no complexity analysis reported
in [13].

VI. EXPERIMENT RESULTS

In this section, in terms of the cost function (i.e., the
objective value) in (13) and clustering accuracy, some experi-
mental results are presented to evaluate the performance of
the proposed DP-FedC algorithm (Algorithm 1) including
comparison with some state-of-the-art FedC algorithms. The
experiment is performed using two real datasets and each
obtained result is the average over five independent runs with
the same randomly generated initial feasible points for all the
algorithms under test.

A. Experiment Setup

Datasets: The two real datasets used in the experiment are
TCGA [38] and MNIST datasets. Specifically, TCGA dataset
was obtained from the Cancer Genome Atlas database which
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contains the gene expression data of 5314 cancer samples
belonging to 20 cancer types. Each data sample in TCGA
dataset is a real column vector containing the top-ranked 5000
features selected through Pearson’s Chi-Squares Test [35].
The MNIST database contains 60000 training images of
ten handwritten digits and 10000 test ones. We randomly
select 10000 images from the 60000 training images as
the dataset in our experiment, where each data sample is
a real column vector containing 784 features. These two
datasets are representative, i.e., one (the other) with large
(small) data size but small (large) feature size, also implying
challenging unsupervised clustering for both datasets in our
experiment.

In the experiment, we distribute the samples of each dataset

to N = 100 clients in the following two ways.

1) IID Case: We follow the data partition method in [30]
to obtain balanced and i.i.d. distributed data for the two
datasets. To be specific, the i.i.d. distributed data are
generated by randomly assigning the data samples to all
clients.

2) Non-IID Case: For the TCGA dataset, we apply the k-
means algorithm to cluster the dataset into 100 clusters,
and the data samples belonging to the same cluster is
assigned to one client. For the MNIST dataset, we follow
the partition method in [26] to obtain distributed data
such that each client’s dataset only contains two digits,
thus yielding a highly unbalanced and non-i.i.d. dataset.

Parameter Setting: In problem (13), if not mentioned specif-

ically, we set the parameters as follows: k = 10 for MNIST
and k = 20 for TCGA, pn, = 0, p = 1077 x (|X[[3/N),
and up = 10710 x (||X||12,,/N). As for the parameters in
Algorithm 1, the step size y/ = (1/2)Ly where Ly is
estimated as kmax((WE’o)TW?O). Analogously, the step size
n' = 5L, where L, is estimated as Amax(H"C'(H*¢1)T). In
all experiments, we assume all clients have the same privacy
protection level (i.e., €; = €, for all i) and the same total pri-
vacy loss budget (i.e., €; = € for all i). Then, given the total
privacy loss €, the privacy protection level € at each commu-
nication round is obtained by Theorem 3 for R = 100 and
8 = 10™*. The minibatch dataset size b is set to 50. Other
parameters are empirically chosen to our best. All the algo-
rithms under test run until R = 100 is reached. Then, the
clustering accuracy is calculated as the ratio of the number
of correct classifications (no. of columns of all the estimated
H;, i € [N], i.e., their maximum column entries falling in the
correct cluster) to the total number of data (i.e., n).

B. Impact of DP

Fig. 3 depicts the objective value for simplicity [i.e., the
value of F(W, H) in (13)] and the clustering accuracy versus
communication round with different values of € for both IID
case and non-IID case, where K = 30, Q; = 10, and Q’2 =
L(10/1)] + 1. Some observations from Fig. 3(a)—(d), are as
follows.

1) The larger the value of € where the results without DP

conceptually corresponds to € — oo, the smaller the
objective value and the higher the clustering accuracy
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Fig. 3. Objective value and clustering accuracy versus communication rounds of the proposed DP-FedC algorithm for /ID case and non-IID case, where

(a)—(d), and (e) and (f), are obtained using the MNIST dataset and TCGA dataset, respectively, for the cases of without DP, and € € {2, 20}.
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Fig. 4. Objective value and clustering accuracy versus communication rounds of the proposed DP-FedC algorithm for the /ID case and non-IID case, where
(a)—(d), and (e) and (f), are obtained using the MNIST dataset and TCGA dataset, respectively, for € = 20 and K € {10, 30, 100}.

and convergence rate for both IID case and non-1ID
case.

2) The objective value is smaller and the clustering accu-
racy is higher for the IID case than for non-IID case,
and the performance gap between the two cases seems
more appreciable in clustering accuracy.

The above two observations also apply to Fig. 3(e)—(h).
Moreover, the impact of non-i.i.d. data is more serious on the
TCGA dataset. These results are consistent with Remarks 4
and 5, so a proper choice of € value is needed to achieve a
good privacy—utility tradeoff.

C. Impact of the Number of Participated Clients (K)

Fig. 4 depicts the convergence performance of DP-FedC
versus communication rounds under different values of K with
€ =20, Q1 = 10, and Q’2 = [(10/8)] + 1. It can be seen from

Fig. 4(a), (b), (e), and (f), that the objective value is smaller
together with faster convergence rate either for larger K or
for the IID case. This is also true for the clustering accuracy,
though the convergence rate on TCGA for the /ID case is only
slightly better than for the non-IID case. These results are also
consistent with Remark 5.

D. Comparison With Existing Distributed Clustering
Methods

We here compare the proposed DP-FedC algorithm with
four benchmark algorithms in terms of clustering performance.
These algorithms include FKM [5], federated fuzzy k-means
(FZKM) [13], distributed k-means++ (DK++) [27], and
distributed k-median (DKM) [30]. The first two are state-of-
the-art FedC algorithms while the latter two are traditional
distributed clustering methods. As mentioned previously, they
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TABLE I
PERFORMANCE COMPARISON OF FIVE ALGORITHMS IN TERMS OF CLUSTERING ACCURACY (%)

Dataset TCGA MNIST TCGA MNIST

Method (without DP) (without DP) (€ = 20) (€ = 20)
DK++ [27] 65.4 42.6 50.1 26.8
DKM [30] 38.7 433 31.0 26.1
FKM [5] 70.2 43.2 58.4 31.8
FZKM [13] 72.8 47.1 66.9 36.4
DP-FedC 76.7 50.5 72.2 43.1

were basically developed by extending the k-means algorithm
and its variants. We add the artificial noise to DP noise that
guarantees the (e, §)-DP at each communication round in the
implementation of the above four existing algorithms in our
experiment. Then, we apply the proposed algorithm to process
the given dataset with parameters K = 30, O = 10, Q’2 =35,
and € = 20 under the i.i.d. data case. However, the param-
eters used for the other four algorithms are taken from the
associated references together with K = 30 and € = 20.

The obtained experimental results (for the clustering accu-
racy) are listed in Table I. It can be seen from this table that the
clustering accuracy performances of all the algorithms under
test for the case of without DP noise are better than with DP
noise used. The performance gap between the two cases for our
DP-FedC algorithm is much smaller than for the other algo-
rithms, implying that the proposed algorithm is more robust
again DP noise thanks to the privacy amplification strategy
applied.

VII. CONCLUSION

We have presented a novel FedC algorithm called DP-
FedC (Algorithm 1), which is based on the traditional
clustering algorithm k-means and operates according to the
computation-aggregation protocol. Specifically, the proposed
DP-FedC employs DP-based privacy protection, along with
the policies of PCP and multiple local SGD updating steps
implemented in the algorithm design. Various characteris-
tics and insights of Algorithm 1 were discovered through
theoretical analyses, including the impact of system param-
eters on privacy amplification, convergence rate, and the
impact of data heterogeneity (e.g., non-i.i.d. data) on learning
performance. These analytical results can serve as valu-
able guidelines for practical FL algorithm design, especially
when considering the preferred tradeoff between learning
performance and the required level of privacy protection.
Finally, we provided experimental results on two real datasets
to demonstrate the efficacy of the proposed method, along
with its superior performance over state-of-the-art FedC algo-
rithms, and its consistency with all the presented analytical
results.

APPENDIX A
PROOF OF THEOREM 1

The proof mainly follows the work [23] by considering
both data sampling with replacement case and that without
replacement case.

Suppose that data subsampling mechanism yields (¢, §')-
DP, when € < 1 and data are uniformly sampled with
replacement, the data subsampling mechanism guarantees
(In(1 + g(exp(e) — 1), g8)-DP [23], then, we have §' = ¢
and

¢’ = In(1 + g(exp(e) — 1)
(a) )
= q(exp(e) — 1) = 2qe (40)

where (a) and (b) hold because In(1+x) < x and exp(x) —1 <
2x when 0 < x <1 [53].

When data are uniformly sampled without replacement, we
still have 8’ = ¢& and €’ becomes [23]

1 b
€ =In(l1+ (1 — (1 - ;)> (exp(e) — 1))

(@) (b)
< In (1 + g(exp(e) — 1)) < 2qe 1)
where (b) follows because of (40), and (a) holds since:
b
1 b
(1-(1-1)) =t=q 42)

By combining (41) and (42), we obtain € < 2ge for data
sampling without replacement.

Then, when ¢ > 1/2 (i.e., 2qe¢ > €), there is no privacy
amplification. In this case, we have

¢ =e. (43)

Therefore, by combining (40), (41), and (43), we have

€/ = min(2ge, €). Thus, we complete the proof. ]
APPENDIX B

PROOF OF LEMMA 2

Assume D; and D) are the neighboring datasets that differ
in only one data sample. Without loss of generality, let u; be
the unique different element between D; and D, i.e., D; U
{u;} = D; U {;}. For clarity of the following proof, let us
make the following notational correspondences: W;’r <~ Wtbr,- ,
H' < H’b’i, and B;" < B;;l_. Then, for any r € [Q']\ [Q1],
the £,-sensitivity [11] of Wi is calculated by

= max [Wh, W,
13

4
i

t,r—1 t,r—1, pat,r
v (Wi B By

Ql
> i

= max/ 7
D;,D; =041 n
o v F'(Wt’r,il Ht,rfl' Bl,r)
fr—1 Wi D Dl( s Dl(
N Z Wo
i n!
r=01+1
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. 1,01 t01. t.01+1
Vi (Wi G2 B

D;. D} i n'

£,0"—1 14t,0'—1, 11,0
vk (Wil = )

77[

. 1,01 t01. t.01+1
ViF (WD; H: By )

i n!

1.0'-1, pt.0"

nt

VwF; (W%Q{t_l

(i) 2GQ,
=
where (a) holds because of Assumption 2, and WIDQ] = WtDQI
always holds. [}

(44)

APPENDIX C
PROOF OF THEOREM 4

According to (35) and (18), we have

t,r —t,r—1

W Vs VwE (WL T B,
(45)

Objective Descent w.r.t. H: According to [54, Lemma 3.2]
and setting y; = o1 L};/2 < 1Ly /2 where o > 1, we have

F; (W“, H) — F; (W”—‘, H;»H)
o] — 1

w

< - Lyl —HY 12 vre [0l (46)

Taking expectation over two sides of (46) and then summing
up from » =1 to Q; yields

E[F; (V_V"Q1 , Hf‘Ql)] — E[F; (W”O, Hf'o)]
01
o —1- _
< 12 Ly Y E[IH;™" —H"Z] VrelQil. (47)

r=1

By taking the summation over two sides of (47) from i = 1
to N, the objective function F descends with local updates of
H is given by

IE:[F(W”Q1 JHYO )] - E[F(W”O, H”°>]

01 N
o — 1 _
= ———Lu)_ > E[IH’ '—H|2] vreloil
r=1 i=1
(43)
Objective Descent w.rt. W: Since H}" = HE’FI

(cf. line 14 in Algorithm 1) and VyF (-, H"9) is Lipschitz
continuous under Assumption 1. Then, by the descent
lemma [54, Lemma 3.1], when r € [0 — 1]\ [Q1], we have

o9} =5[]
L — —tr—
+ SE[IW - W]

+ E[(VWF<W""1, H”—l), W - W”"l)]. (49)
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When r = Q', by Algorithm 1, (49) becomes
S )] <l (e
L’ it —0'—1
+ E[IW - W g7
£(8.1)
O N I
+E[(VwF(W T B ) W W
(50)

where & = (1/K) YK £ The (S.1) can be further bounded
by

L .0 t,0'—1
E[IW - WO 7]
t 1
<101 =10 L
WE[IW T - W]+ e[l ]
t
.0 -1 1.0
WE[IW T - W]

S.1) =

h

h

(@)
=

16mkG? In(1.25/8)(04)
arnte?

+

(51)
where (a) holds from 5’ = agL’W and

mk & 32G%(04) 62, 1n(1.25¢;,/9)
Na 2
K = ()€
) 32mkG2(Q5) In(1.25/5)
(n")?e> '
In (52), (a) follows from (29). (b) holds because of g; ; < 1.
By (49)—(51), for r € [Q'] \ [Q1], we have

E[F(V_V”, H’*’)] < E[F(W””‘ , H“‘l)]

L%,V —t,r e )
+ L E[IW - W]

E[)E 3] ¥

INS

(52)

£(s2)
" E[<VWF<W1,F]’ H’*r_l), W Wt,r71>:|

£(8.3)
N 16mkG2(Qt2)21n(1.25/8)
arnle? '

(53)

The terms (S.2) and (S.3) can be bounded by the following
Lemma 3 (proved in Appendix D-A) and Lemma 4 (proved
in Appendix D-B), respectively.

Lemma 3: For any t and r € [Q' — 1]\ [Q1], we have

—t.r J— 2
g[[w W) = s

1
E Z VwFi(W?r_l, H;,r—l)
ieS!

2
1

(nt)zE

(54)
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Lemma 4: For any t and r € [Q" — 1]\ [Q1], we have
E[(VWF(W""‘, B, WY W 1>]

1 Ht,r71> 2

1
=—57E ”F

2nt

1

S
ieS?

2 . 2 1

ol — r—1,2
xR o) B[V W] s9)
i=1

[|| wF(W

Thus, substituting (54) and (55) into (53) gives rise to

el ()] 2w )

2 t 42 2

1 ——f— L
S —7]E HVWF<WIJ 1’ Hl,r—l) + W¢ 5 + L
2y r| 2Kb(H)?  Kn'

+<LZW _L) ZVF trlHtr1>2
207 21 v

eS’

N
1 —tr—
e (Lt
i=1

. 16mkG2(Q4)* In(1.25/8)
arnle?

@ _lg v F(W )
2nt

2 pa—
Ly¢? ¢?
+ 7t
F 2Kb(n") Kn

t,r—1,2
— W]

N
1 2 [ oot r—1
+ % EI(L’W,.) E[IW"

16mkG2(Q2) In(1.25/8)

asn'e?

(56)

where (a) follows due to 1" = ayLy, > Ly, and Ly, < Ly.

Then, rearranging the two sides of (56) yields

[ [vur (W ) ]
< 2/ (B[r(W 1) |- [ (W) )

N T2
2 t t,r—1 t,r—1,2 LW¢
+ g L) B[ Wi+
32mkG2(04) In(1.25/8)  2¢2
+ (2) In(1.25/ )+ (57)

05262 7
Summing (57) up from r = Q1 + 1 to Q' yields

Qt
> E[|vwr(W ) 7]
r=01+1
)] - E[F(W,

(oW we))

o N
2 2 —t.r—1 _
tr 2 D) EIWT - Wi
r=01+1 i=1
£(5.4)
32mkG2(Q2) In(1.25/8) 2§2Q’2 N O, Ly >
ap€? K Kbnt

(58)
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The term (S.4) can be bounded with the following lemma,
which is proved in Appendix D-C.

Lemma 5: Let ap > QZ\/S(I +LW/L ). For any ¢t and r €

[Q'1\ [Q1], it holds that
o N 5
- 4NZEC
> ) EW T —wr ] < T (s
r=0;+1 i=1 Koy

where C| £ 05(0, — D(2Q, — 1).
By applying Lemma 5 and plugging (59) into (58), we have

12

> el v (W) ]

r=01+1
gR— R s
< 2nf(1E[F(W”Q1 Ht*Ql)] _ E[F(W”Q :

)

32mkG2(Q2) In(1.25/8) 2§2Q’2
ane? K
OSLwe*  8N¢2CH
+ Kbn' K23 (60)
Combining (48) and (60) yields
01 N
S R[]
r=1 i=1
.S [ [ vwr (W ) ]
r= Q]-‘r]
(v 07) - (7 )
32mkG2(Q2) In(1.25/8) 2;2Qf2
ase? K
O5Lw¢*>  8NGC
+ o Koal ©61)

where (a) holds because of n > 1/((a; — 1) Ly).

Derivation of the Main Result: We next derive the con-
vergence in terms of the optimal gap functions in (36)
and (37). From (61) and y/ = «iL}/2 and ' = asLj,
we have

3 E[G W'
2 el

1 Hl,r—l):l
01 N

=Y Y ) E[ I -

r=1 i=l1

1,r2
B 7]

@ o
2 20 ([ (. 18)] - (.10

16mkG2(Q2) In(1.25/8) §2Q’2
on€? K
[ Lwe>  4ANC2C!
i Q2 wo ¢-Cy (62)
2KbLyar  K2a3
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where (a) follows because y/ < a1Ly/2 and oLy < 1’ <
arLyw. Then, summing (62) up from ¢ = 1 to R yields

>3 efou(W e )]
t=1 r=1
<227, (aQZW(F(WI’O, H'?) - F)

3
16mkG?In(1.25/8) Y1 1 (04)” 23R, 0}
+ N +
o€ K
Ly¢? Zf:l o, " 4Ng? Zf:l Ci
2KbLy0 Kzag '

(63)

Similarly, from (61), we have

R o 2
S )
t=1 r=0;+1 F

13

)

=1 r=0;+1

32mk62 In(1.25/8) YR (04)° 2€2 YR, 0
ane€? K
Ly¢? Zf=1 0, 8N¢2 Zf:l C

: 64
T T KbLyar K2a3 ©y

By combining (63) and (64), and then dividing two sides
of summation result by 7 = RQ1 + Zle Q’2 yields

l’Hl,r—l)iI
R o
+>° Y E[ew(W )]
t=1 r=01+1

-2
w <a2ZW(F<W1’O, H'0) - F)

+ ¢? Zf:l 05

R 0O

7| 2 Lo (W

=1 r=1

| 16mkG?In(1.25/5) YR ()

age? K
ZW¢2 Zf:l QZZ + 4N§2 ZtRZI Ctl (65)
2KbLyorr K%g% '
This completes the proof. |
APPENDIX D

PROOFS OF KEY LEMMAS FOR THEOREM 4
A. Proof of Lemma 3
According to (45), we have

EI:”WIJ . Wt,r—l ”%]

1 t,r—1 t,r—1 t,
E[\\E§W,.<w,.r )
ieS!

J

T )

6717

(a) VWFi (Wg,r—l i

ieS!
2
t,r—1 t,r—1
()]

| [ ()|
n

) 1 tor—1 yyt,r—1. 4ot,
2 et X e ()
ieS?t

= vwF(Wy L) P
uy[szwWHw~w}
(c) |:H ZVWF (Wl r—1 H’ r— )H :| Kbq(s;,)z

(n’)
(66)

(’7')2 [H K ! Bt r)

where (a) follows because E[||Z]|?] = E[|Z — E[Z]|?] +
IELZ]]|%; (b) follows because Vi F;(W: ' HE™' BIT) —
VWFi(W;f’r_l, H"™') is independent across the clients; and
(¢) holds due to Assumptlon 3. [ |

B. Proof of Lemma 4

t,r—1

E[(VWF(W
@ s (wW
L Z vwF (W B B

163’
@ ——tIE[<VWF<Wt’r_1, Ho)

%ZVWF< r—1 Htr—l))]

ieSt
1 —
5B Ivwr (W e ]

1 1 t,r—1 t,r—1 2
5Bl & 2 vwE (Wi )
ieS!
1 o
+ —E[H VWF(W"’ ' H”’*‘)
2nt

1 t,.r—1 tr—1Y 2
K ZVWFi(Wir o )”F]
ieS!
where (a) holds due to (18); (b) follows from Assumption 3;
and (c¢) follows from the basic identity (Zi,Z;) =
/DU Z1|1* + 1 Z211* = 1 Z1 = Za|?).
The last term in (67) can be further bounded by

]E|:H VWF(W”"I, H)
1 t,r—1 t,r—1 2
ey ()]
ieS!

1 S S
- E|:H = Z(VWF(W”’ " H””l) - VWF,-(W”’ " H"”l>
ieS!

, Ht,r—l)’ W

W

HI,}’—])

=

(67)
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——t — 2
+ VwF (W) - vy R (WL R) HF}

o] (o)

ieS!

(W)
£ | (o (

ieS!

(W)

r—1 Hl,r—l)

(U) 2c2 2 —tr—1 —
=% " E[Z(Uw,) W Wi ‘n%}
ieS!
202 2 Al t 2| et tr—1 68
=% T r L) E[IW" - Wi (68)
1=

where the first term in the RHS of (a) comes from
Assumption 4, and the second term in the RHS of (73) fol-
lows because of Assumption 1. Then, plugging (68) into (67)
yields

I[-E[(VWF(W””1 , H’*"1>, W W 1)]

= —5 B[ (W) ]
——U%2meHw“w}
¢? 1 r N2
K Kt ;(LW,)

Thus, we complete the proof. |

it r—1 —
E[IW - W] 69)

C. Proof of Lemma 5

According to the definition of Wt’ril, for Vr € [Q']\ [01],

we have
—tr 1 _ L Zwtr 1
zeS’
@ 1 .1 — ti—1 yati—1. ot
= EZ<W - = ZVWFi(W," ’Hi’ ;Bl-’))
ieS! 1 J=01

ZZV F(w L E ) ao)
J 0 ieS!

where (a) is obtained by applying (18), that is

Wl W va( LA | ”) (71)
J=01
As a result, by (70) and (71), we have
E[IW" W?’“n%]
—E HW’——ZZVWF< wil g B”)
J=01 ieS*
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_(W__ZVWF(WtJlHtjl t/) H
=01

et IS 9 ETICHRNUIRTY

(’7) =0 ieS!

r-1 . . N 112
-5 ()

J=01

e

. . 2
]

) = 0D T L
(n")? j:ZQI HKZS

. . 2
ar ()|

2 B e

j=01 i=1
. . 2
t,j—1 t,j—1
- vk (Wi [

holds since
t] 1 l])

IS

t,j—1 t,j—1
(vWF(Wf JHYY )

(72)

where (b)
J-1

VwF (W™ Hy

the clients; (¢)

. N

ity Izl <

VwF(W, T B
is independent
follows by wusing the

N Zfil lzi|> for any vectors
z; and any positive integer N. Then, the term

t,j—1 t] 1 t,j—1 t,j—] 2 .

IVwFi(W;" ) — VwFr(W" " H)” )llE in (72) can
be bounded by

across
inequal-

[ () = wwr (W )
< [ (W) ()
+ VwF; (Wt’j_l, H;’j_1> — VwF (Wt’j_l, H"-j_1>
—i—VWF(Wt’jil,HfJ*l) (VWFk( Whi™ 1 lj 1)
= V(W) v (W
) () )
= [ Fur (W) v (W )|

T

4

. . S . 2
+4HVWF;<<W;(”_1, H,’j‘l) _ VWFk<W”’ I,Hjj‘l)HF

S . i . 2
+4HVWFk<Wt’] ' 1) —VWF(W”’ ! H’J*l)HF
7w
Wi i F
t 2|t rj—1]? 2
+4(Liy,) W — W, LT8¢ (73)
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where (d) follows from Assumption 4. Then, substituting (73)
into (72) gives rise to

F

o N T
Z Z(L’W,)Z]E[HWLP

r=01+1 i=l

ZZW,

r=01+1 i=1

— Wi H2i|

r=2 N

(5222 S -

2

IA

W

F
Jj=01 i=1

il 2
- )
_ _1 L 2
(r 01 ) Z Z L’, ”Wt,./ I_WE,_] IH
t/Lt =01 i=1 F

8(r—01 —1)? ,
(n'/L4y)?

@N
K

r=2 N

(”—Ql—l)ZZ W

(n'/Ly)” =i S

o -
— W2
’ N
*1 LW ' -1 f/ 1]
REOD (1) S S| e,
2 = r=01+1 i=1

| 4NGL(Q — 1) (20}~ 1)

3Ka? 74)

where (e) follows since (Li,)? = (1/N) SNy, )2' (f) fol-

lows due to [(L’ ) /(L 2] < [(LW)/(L )] and 5’ = azLW,
and:

o' r—2
Yoor—1-01D) g

r=Qi+1 J=01
o' ‘(O _
< > %a%l Vaj > 0 (75)
r=01+1
and
o t (Ot _ r_
> r-1-0y =22 16)(2Q2 D ae

r=01+1

Since ax = Q54/3(1 +LW/L ), implies a3 > 205(Q) —

DA+ I_Jév/é%v). After rearranging (74), we obtain

Z Z (L) E[IW" ™ — Wi 2]
r=01+1 i=1
4NQY (05 — 1)(205 — 1)¢?

=<
3K (e —204(0 — 1) (1 +Liy/L3y )
® 4NQ2(Q2 —1)(20, — 1)¢?

Kot2
4NC g
)
Kot2
where C! = Q’z(g’ — DO, — 1), (g) follows since a3 —
20505 — D(1 + Ly, /L3) > o3/3. [
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APPENDIX E
PER-ITERATION COMPLEXITY OF ALGORITHM 1

According to (17) and (18), let us revisit H;" and W' as
follows:

1 +
B = [0 - v r(w B )] o)
Vi
I _ |
Wi = Wil ;VWFi(Wf" I,HE’Q’;BE”). (79)

For simplicity, we omit the outer iteration number ¢ and inner
iteration number r. By the definition of F;(W, H;) in (14),

Vu,Fi(W;, H;) and Vi F;(W;, H;; B;) can be computed as
Vu,Fi(W;, Hy) = 2W!WH; — 2W!X;
+2p11"H; + (un — pH;  (80)
VwF;(W;, Hi; B)) = 2WHH! — 2X;H! + 10, W;. (81)

Thus, the complexity order of computing Hf’r
to (80)] at each client i can be estimated as

[mainly due

(mk2 + K2 + kni) & (mkn; + nik) + nik? + 2nk

= (’)((m + np)k* + mn,-k) (82)
and that of computing Wﬁ’r [mainly due to (81)] as
(mkb + mkb + mk) + (mkb + mk) + mk =—> O(mkb). (83)

Because the complexity of Wﬁ’r is much smaller than that of
H?’ (duetob = |Bj| <n«Kn= ZN n;), the total complexity

1

order of updating Hﬁ’r and Wf’r can be approximated by that
of updating H;*r. As a result, provided that all the N clients
(the worst case) join the learning process, one can obtain the
total complexity order as O((mN + n)k? + mnk) at the client
side. Moreover, the complexity order at the PS side is simply
O(mkN).
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