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Abstract—This paper studies the coordinated beamforming
design problem for the multiple-input single-output (MISO) inter-
ference channel, assuming only channel distribution information
(CDI) known to the transmitters. Under a given requirement on
the rate outage probability for receivers, we aim to maximize the
system utility (e.g., the weighted sum rate, weighted geometric
mean rate, and the weighed harmonic mean rate) subject to the
rate outage constraints and individual power constraints. The
outage constraints, however, lead to a complicated, nonconvex
structure for the considered beamforming design problem and
render the optimization problem difficult to handle. Although this
nonconvex optimization problem can be solved in an exhaustive
search manner, this brute-force approach is only feasible when
the number of transmitter-receiver pairs is small. For a system
with a large number of transmitter-receiver pairs, computation-
ally efficient alternatives are necessary. Hence, the focus of this
paper is the design of such efficient approximation methods.
In particular, by employing semidefinite relaxation (SDR) and
first-order approximation techniques, we propose an efficient
successive convex approximation (SCA) algorithm that provides
high-quality approximate beamforming solutions via solving a
sequence of convex approximation problems. The solution thus
obtained is further shown to be a stationary point for the SDR
of the original outage constrained beamforming design problem.
Furthermore, we propose a distributed SCA algorithm where
each transmitter optimizes its own beamformer using local CDI
and information obtained from limited message exchange with the
other transmitters. Our simulation results demonstrate that the
proposed SCA algorithm and its distributed counterpart indeed
converge, and promising performance can be achieved for all the
considered system utilities.

Index Terms—Convex optimization, coordinated beamforming,
interference channel, outage probability, semidefinite relaxation.

I. INTRODUCTION

I NTER-CELL interference is known to be one of the main
bottlenecks that limit the system performance of a wireless

cellular network where all transmitters share a universal fre-
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quency band. The performance degradation caused by such in-
terference is severe especially for the users at the cell edge and
can only be alleviated when some sort of cooperation is avail-
able between base stations (BSs) [2]. According to the level of
cooperation, the coordinated transmission can be roughly di-
vided into two classes: Network multiple-input multiple-output
(MIMO) and interference coordination [3]. In network MIMO,
all BSs work as a single virtual BS using all the available an-
tennas for data transmission and reception. Each of the BSs re-
quires to know all the channel state information (CSI) and data
streams of users, demanding a large amount of message ex-
change between BSs [4]. Interference coordination, by contrast,
only needs CSI sharing between BSs; based on the shared CSI,
the BSs coordinate with each other in the design of transmis-
sion strategies, e.g., coordinated beamforming [5], [6] or power
allocation [7]. Our interest in this paper lies in the coordinated
beamforming design. To this end, we adopt the commonly used
interference channel (IFC) model [8]–[10]. Under this model,
a Pareto optimal transmission scheme is that the rate tuple of
receivers resides on the boundary of the achievable rate region
[11]. It is always desirable to have a Pareto optimal transmis-
sion scheme since, otherwise, the achievable rates of some of
the receivers can be further improved.
Consider a multiple-input single-output (MISO) IFC, where

the transmitters are equipped with multiple antennas while
the receivers, i.e., mobile users, have only single antenna. We
assume that the receivers employ single-user detection wherein
the cross-link interference is treated as noise. Under such
circumstance, analyses in [12]–[14] have shown that the Pareto
optimal transmission strategy is transmit beamforming. While
beamforming is a structurally simple transmission strategy,
finding the optimal transmit beamformers for the MISO IFC is
intrinsically difficult. More precisely, it has been proved [15]
that finding the optimal beamformers that maximize system
utilities, such as the weighted sum rate, the geometric mean
rate, or the harmonic mean rate, is NP-hard in general. As a
result, lots of efforts have focused on characterizing the op-
timal beamformer structures [12], [14], [16] in order to reduce
the search dimension for finding the optimal beamforming
vectors, or on investigating suboptimal but computationally
efficient beamforming algorithms [15]–[17]. Another approach
to studying these resource conflicts encountered in the IFC is
to use Game theory; see [11], [18], [19] for related works.
The aforementioned beamforming designs all assume that

the transmitters have the complete knowledge of CSI. To
provide the transmitters with complete CSI, the receivers
need to periodically send the CSI (e.g., for frequency division
duplexing systems) or training signals (e.g., for time division
duplexing systems) back to the transmitters. In contrast to
the CSI, channel distribution information (CDI) can remain
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unchanged over a relatively long period of time and thus the
amount of feedback information can be significantly reduced.
With CDI at the transmitters, the ergodic rate region of the
-user MISO IFC has been analyzed and the structure of the

Pareto optimal beamformers has been characterized in [20]. For
a two-user case, an efficient algorithm for finding the Pareto
boundary of the ergodic rate region was presented in [21].
Unlike the ergodic achievable rate where the packet delay is
not taken into consideration, the outage constrained achievable
rate is more suitable for delay-sensitive applications, such
as those involving voice or video data communications. For
such outage constrained achievable rate region, the authors of
[22], [23] presented a numerical method for finding the Pareto
boundary; however, the complexity of this algorithm increases
exponentially with the number of transmitter-receiver pairs.
Developing efficient beamforming design algorithms that can
approach the outage constrained Pareto boundary is therefore
important. While several efficient beamforming algorithms can
be found in [24], [25], a different power-minimization design
criterion was considered, instead of rate utility maximization.
In this paper, we investigate efficient coordinated beam-

forming design algorithms for maximizing the system utility
under rate outage constraints and individual power constraints.
Specifically, we assume that the MISO channel between each
transmitter and receiver is composed of zero-mean circularly
symmetric complex Gaussian fading coefficients where the
corresponding covariance matrix is known to the transmitter.
We formulate an outage constrained coordinated beamforming
design problem, aiming at finding the Pareto optimal beam-
formers that maximize the system utility (e.g., the weighted
sum rate) subject to a pre-assigned rate outage probability
requirement and power constraints. Due to the complicated
nonconvex outage constraints, we propose a successive convex
approximation (SCA) algorithm, where the original problem
is successively approximated by a convex problem and the
beamforming solution is refined in an iterative manner. The
convex approximation formulation is obtained by applying the
convex optimization based semidefinite relaxation (SDR) tech-
nique [26], followed by a logarithmic change of variables and
first-order approximation techniques. We analytically show that
the proposed SCA algorithm can yield a beamforming solution
that is a stationary point for the SDR of the original problem.
We further propose a round-robin-fashioned (block-coordinate)
distributed SCA algorithm where each transmitter optimizes
only its beamformer using local CDI with limited communica-
tion overhead of message exchange with the other transmitters.
It is shown by simulations that the two proposed algorithms
yield near-optimal performance with lower complexity com-
pared with those reported in [22], [23].
The remaining part of this paper is organized as follows. The

system model and the outage constrained coordinated beam-
forming problem are presented in Section II. In Section III, we
present the proposed SCA algorithm and analyze its conver-
gence property. In Section IV, the distributed SCA algorithm is
developed and analyzed. Simulation results that demonstrate the
efficacy of the proposed algorithms are presented in Section V.
Finally, the conclusions are drawn in Section VI.
Notation: The -dimensional complex vectors and complex

Hermitian matrices are denoted by and , respectively.
The identity matrix is denoted by . The superscripts

‘ ’ and ‘ ’ represent the matrix transpose and conjugate trans-
pose, respectively. We denote as the vector Euclidean norm.

and respectively mean that matrix is posi-
tive semidefinite (PSD) and vector is element-wise nonnega-
tive. The trace and rank of matrix are denoted as and

, respectively. We use the expression
if is circularly symmetric complex Gaussian distributed with
mean and covariance matrix . We denote (or simply
) as the exponential function, while and repre-

sent the natural log function and the probability function, re-
spectively. For a variable , where ,
denotes the set , denotes the set
excluding , and is defined as the set containing all pos-
sible , i.e., .

II. SIGNAL MODEL AND PROBLEM STATEMENT

We consider the -user MISO IFC where each transmitter
is equipped with antennas and each receiver with a single
antenna. It is assumed that transmitters employ transmit beam-
forming to communicate with their respective receivers. Let

denote the information signal sent from transmitter , and
let be the corresponding beamforming vector. The
received signal at receiver is given by

(1)

where denotes the channel vector from transmitter
to receiver , and is the additive white

Gaussian noise at receiver where is the noise variance.
As can be seen from (1), in addition to the noise, each receiver
suffers from the cross-link interference . We
assume that all receivers employ single-user detection where the
cross-link interference is simply treated as background noise.
Under Gaussian signaling, i.e., , the instan-
taneous achievable rate of the th transmitter-receiver pair is
known to be

In this paper, we assume that the channel coefficients
are block-faded (i.e., quasi-static), and that the transmitters
have only the statistical information of the channels, i.e., the
CDI. In particular, it is assumed that for
all , where denotes the channel
covariance matrix and is known to all the transmitters. Since
the transmission rate cannot be adapted without CSI, the
communication would be in outage whenever the transmission
rate is higher than the instantaneous capacity that the
channel can support. For a given outage probability require-
ment , the beamforming vectors must satisfy

. Following [23], we define
the corresponding -outage achievable rate region as follows.

Definition 1 [23]: Let denote the power constraint of
transmitter , for . The rate tuple
is said to be achievable if ,

, for some
where is the maximum tolerable outage probability
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of receiver and . The -outage
achievable rate region is given by

Given an outage requirement and an individual
power constraint , our goal is to optimize
such that the predefined system utility function
is maximized. To this end, we consider the following outage
constrained coordinated beamforming design problem

(2a)

(2b)

(2c)

Note that, as each user would prefer a higher transmission rate,
a sensible system utility function should be strictly increasing
with respect to the individual rate for , such
that the optimal of problem (2) would lie on the
so-called Pareto boundary of [11]. In this paper, we consider
the following system utility function which captures a tradeoff
between the system throughput and user fairness [27]

,

,
(3)

where the coefficients for with
represent the user priority, and the parameter

reflects the user fairness. For example, for being
0, 1, 2 and infinity, corresponds to the weighted sum
rate, weighted geometric mean rate, weighted harmonic mean
rate and the weighted minimal rate, respectively. Hence, for
being 0, 1, 2 and infinity, maximizing is respectively
equivalent to achieving the maximal throughput, proportional
fairness, minimal potential delay, and the max–min fairness
of users [28]. It can be verified that is concave in
for all . However, since the outage constraints (2b) have a
complicated structure as will be seen later, solving problem (2)
is still challenging.
One possible approach to solving such a nonconvex problem

is via exhaustive search [22]. In [22], each of the cross-link inter-
ference is discretized into levels, and given a set of cross-link
interference levels, the maximum achievable rate for each re-
ceiver can be computed [22]. Since there are a total of
cross-user links, one has to exhaustively search over
rate tuples. The complexity of this method thus increases ex-
ponentially with , making this approach only viable
when is small. For a simple example of and ,
this method requires searching over rate tuples, which is
computationally prohibitive in practice.

III. PROPOSED CONVEX APPROXIMATION METHOD

Our goal in this section is to develop an efficient approxima-
tion algorithm that obtains near-optimal solutions of problem

(2) for any number of transmitter-receiver pairs, . To begin
with, we note from [24, Appendix I] that the outage probability
function in (2b) can actually be expressed in closed form as

(4)

So, problem (2) can be rewritten as

(5a)

(5b)

(5c)

where . Although the outage probability can now be
expressed in closed form, problem (5) is still difficult to solve,
since the constraints in (5b) are still nonconvex and compli-
cated. In the ensuing subsections, we present a convex approx-
imation method to handle problem (5) efficiently.

A. Convex Approximation Formulation

The proposed convex approximation method starts with
applying semidefinite relaxation (SDR), a convex opti-
mization based approximation technique [26]. Specifi-
cally, through SDR, we approximate the quadratic terms

in (5b) by the linear terms
, where the rank-one matrices are replaced

by the PSD matrices of arbitrary . The
approximated problem is thus given by

(6a)

(6b)

(6c)

(6d)

We should mention that SDR has been widely used in various
beamforming design problems (see [29] for a review), where, in
most cases, a convex semidefinite program (SDP) approxima-
tion formulation can be directly obtained via SDR and thus can
be efficiently solved. Problem (6), however, is still not convex
yet due to the constraints in (6b). Therefore, further approxima-
tions are needed for problem (6).
In contrast to SDR that essentially results in a larger problem

feasible set, the second approximation is restrictive, in the sense
that the obtained solution must also be feasible to problem (6).
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To illustrate this restrictive approximation, let us consider the
following change of variables:

(7)

for , where are slack variables. By
substituting (7) into (6), one can reformulate problem (6) as the
following problem

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

where , and the set is defined in
(9) below. Notice that we have replaced the equalities in (7)
with inequalities as in (8c) to (8f). It can be verified by the
monotonicity of the objective function that all the inequalities
in (8b) to (8f) would hold with equalities at the optimal points.
We also note that, for example, if the optimal solution satis-
fies in (8d), then the optimal has to be
minus infinity which is not attainable. Similar issues also occur
in and . In view of this, in (8) we have enforced

to lie in the subset

(9)
where . As long as is set to a small number, the rate loss
due to (9) would be negligible.
It is interesting to see that constraint (8b) is now convex;

constraints (8d) and (8f) are also convex. Constraints
(8c) and (8e) are not convex; nevertheless, they are rela-
tively easy to handle compared with the original (6b). Let

be a feasible point of
problem (8). Define

(10)

for . Then, , , together with

and , , are feasible to problem (8).
Here we conservatively approximate (8c) and (8e) at the point

. Since both of and are
convex, their first-order lower bounds at and are respec-
tively given by

(11)

Consequently, restrictive approximations for (8c) and (8e) are
given by

(12a)

(12b)

By replacing (8c) and (8e) with (12a) and (12b), we obtain the
following approximation of problem (5):

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

Problem (13) is a convex optimization problem; it can be effi-
ciently solved by standard convex solvers such as [30].
Let and denote the optimal

beamforming matrices and achievable rates yielded by the
approximation problem (13). Since the lower bounds in (11)
may not be exactly tight, it may hold, for and

and for some that

(14)
i.e., the rate outage probability is strictly less than and thus
the outage constraint is over satisfied. Alternatively, one can
obtain a tight rate tuple , where for all

, by solving the equations

(15)
for . Note that each equation in (15) can
be efficiently solved by simple line search. The obtained

and then serve as an approxi-
mate solution for problem (6).
In summary, the reformulation above consists of two approx-

imation steps: a) the rank relaxation of to by
SDR, and b) constraint restrictions of (8c) and (8e) by (13c)
and (13e). Note that if problem (13) yields a rank-one optimal

, a rank-one beamforming solution can be
readily obtained by rank-one decomposition of
for all . It is then straightforward to verify by
the restrictiveness of (13c) and (13e) that this rank-one beam-
forming solution is also feasible to the original
problem (5) [i.e., problem (2)], thereby satisfying the desired
rate outage requirement. In view of this, it is important to
investigate the conditions under which problem (13) can yield
rank-one optimal . The following proposition
provides one such condition:

Proposition 1: Assume that (13) is feasible. Then there ex-
ists an optimal satisfying ,

provided that the number of users is no larger than
three, i.e., .

Proof: Let denote an op-
timal solution of problem (13). Consider

(16a)

(16b)
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(16c)

for all . By (9) and (13c), is also feasible to
the above problem (16). Moreover, by (13b), (13d), (13e), (13f)
and by the monotonicity of , one can show, by
contradiction, that is actually optimal to problem (16), for
all . Let be an optimal solution to (16), for

. Then, one can also verify that is op-
timal to problem (13). We hence focus on problem (16). Firstly,
since problem (16) is assumed to be feasible and the objective
is to maximize , the constraint in
(16c) is actually irrelevant and can be dropped without affecting
the optimal solution. Secondly, it is easy to observe that, for each

, it is either or
at the optimum; that

is, for either case, it is equivalent to having one equality con-
straint in (16b) at the optimum for each . As a result,
problem (16) equivalently has only constraints. According
to [31, Theorem 3.2], there always exists an optimal solution

of problem (16) satisfying

(17)

Therefore, if , there always exists a rank-one optimal
for problem (13).

We should mention that is only a sufficient condi-
tion but not a necessary condition. For , there may exist
other conditions under which a rank-one optimal solution exists
for problem (13). If the optimal is not of rank
one, then one may resort to the rank-one approximation proce-
dures such as Gaussian randomization [26], [29] to obtain an
approximate solution to (2). Note that, in that case, the utility
achieved by the randomized solution would be no larger than

. Surprisingly, in our computer simulations, we
found that problem (13) is always solved with rank-one optimal

. Some insightful analyses, which explain why problem
(16) is often solved with rank-one optimal for randomly
generated problem instances, can be found in [17].

B. Successive Convex Approximation (SCA)

Formulation (13) is obtained by approximating problem (8)
at the given feasible point , as described in
(10). This approximation can be further improved by succes-
sively approximating problem (8) based on the optimal solution

obtained by solving (13) in the previous approx-
imation. Specifically, let be the
optimal beamforming matrices obtained in the th itera-
tion, and, similar to (15), let be the
corresponding achievable rate tuple obtained by solving the fol-
lowing equations

(18)

Moreover, let

(19a)

(19b)

By replacing and in (13) with and
in (19) for , , we solve, in the th iteration,
the following convex optimization problem

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

Note that the rate obtained by (18) is no less than
for all , and thus the former is used to

compute as the point for successive approximation.
In fact, successive approximation ensures monotonic improve-
ment of the utility . Let us define

(21)

Then, by (18), (19) and (21), one can show that
is a

feasible point of (20). As a result, we have

(22)

The proposed successive convex approximation (SCA) algo-
rithm is summarized in Algorithm 1.

Algorithm 1: SCA algorithm for solving problem (2)

1: Given and that
are feasible to (6).

2: Set and for all
and set .

3: repeat
4: .
5: Obtain and by (19), and solve

problem (20) to obtain the optimal solution
.

6: Compute by solving (18).
7: until the stopping criterion is met.
8: Obtain by decomposition of for all

, if are all of rank one; otherwise perform Gaussian
randomization [29] to obtain a rank-one approximate
solution of (2).

C. Convergence Analysis

Convergence properties of Algorithm 1 are given in the fol-
lowing theorem:
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Theorem 1: Suppose that the utility is
differentiable and strictly increasing with respect to , for

. Then, the sequence,
generated by Algorithm 1, converges, and any limit point of
the sequence
is a stationary point of problem (8) as well as a stationary
point of problem (6) with extra constraints for

(see (9)).

Proof: As discussed earlier, the utility
is nondecreasing with . Moreover, due to the individual power
constraints, the sequence
is bounded, which implies the convergence of

.

Let ,
denote the optimal solution of (20). To prove that any limit point
of is a stationary point of (8), two key observations are
needed. Firstly, we note that the proposed SCA algorithm is in
fact an inner approximation algorithm in the nonconvex opti-
mization literature [32]. In particular, the nonconvex constraints
in (8c) and (8e), i.e.,

are respectively replaced by

(23)

(24)

for all , . One can verify that
and satisfy

(25)

(26)

(27)

(28)

(29)

(30)

for all and .

Secondly, the restrictive approximations made in (20c) and
(20e) are asymptotically tight as as stated in the fol-
lowing claim:

Claim 1: It holds true that

(31)

(32)

for all , .

Claim 1 is proved in Appendix A. Moreover, by the mono-
tonicity of and due to (9), it is not difficult to
verify that:

Claim 2: The sequence generated by Algorithm 1
is bounded.

Now let us consider the KKT conditions of (20). Denote
as the La-

grangian of (20). For ease of explanation, let

denote the constraint function in (20b), and consider the fol-
lowing Lagrangian-stationarity condition:

(33)

where
are dual variables associated with

constraints (20b)–(20f), the transmit power constraint and
. Since problem (20) satisfies the Slater’s

condition, the dual variables are bounded [33]. Moreover,
is bounded as well by Claim 2. Therefore, there exists a subse-
quence and a primal-dual

limit point, denoted by

and
such that

(34)

where is primal-dual feasible to (20). Consider (33)
over the subsequence . By taking in
(33), and by (27), (31) and (34), we obtain

which is the Lagrangian-stationarity condition of (8) corre-
sponding to . By applying similar arguments above to all
the other KKT conditions of (20) and by Claims 1 and 2, we
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end up with the conclusion that satisfies the KKT conditions
of problem (8) and thus is a stationary point.
According to (32), is also the limit point of

for all . Thus, what remains is to show that any
stationary point of (8) is also a stationary point of (6) if the
constraint set (9) is added in (6). This can be proved by carefully
examining the equivalence of the KKT conditions of the two
problems. Due to the space limitation, the detailed derivations
are omitted here.
As the SCA algorithm only guarantees to provide a stationary

point, the approximation accuracy depends on the initial point
. A possible choice is to initialize Algorithm

1 via some heuristic transmission strategies. For example, one
can obtain an initial point of problem (5) through
the simple maximum-ratio transmission (MRT) strategy. In this
strategy, the beamforming vectors are simply set to

where is the principal eigenvector of for
, with . The corresponding rate can be

obtained by solving (15) with . Analogously,
one can also obtain an initial point by the zero-forcing (ZF)
transmission strategy, provided that the column space of is
not subsumed by the column space of , for all

.

IV. DISTRIBUTED IMPLEMENTATION

For Algorithm 1, we have implicitly assumed that there ex-
ists a control center in the network, collecting all the CDI of
users and computing the beamforming solution in a centralized
manner. In this section, we propose a distributed version for Al-
gorithm 1, where each transmitter only needs to optimize its
own beamformer, using only its local CDI, i.e., , and
some information obtained from the other transmitters. Since
each of the subproblems involved has a much smaller problem
size than the original problem (8), even for a centralized im-
plementation, the proposed distributed optimization algorithm
can be used to reduce the computation overhead of the control
center.
The idea of the proposed distributed algorithm is to solve

problem (8) from one transmitter to another, in a round-robin
fashion (i.e., the Gauss-Seidel fashion). Suppose that transmitter
1 optimizes its beamformer first, followed by transmitter 2 and
so on, and let denote the index of the current round. Then, in
the th round, transmitter solves the following problem

(35a)

(35b)

(35c)

where , and
is equal to one if and zero otherwise.
Note that for (35), only is optimized while

are given. Once the beamforming so-
lution of (35) is obtained, are updated according to
the optimal and then passed to all the other transmitters
for their subsequent beamforming optimization.1 There are two
interesting points to note here. Firstly, as can be seen from
(35b) and (35c), transmitter not only optimizes its rate , but
also takes into account the rate outage constraints for all the
other users. The constraints in (35c) indicate that transmitter
needs to regulate its own transmission in order not to violate
the outage requirement of the other users. Secondly, to solve
(35), transmitter only needs the local CDI, i.e., .
Similar difficulties arise here as in problem (5) since problem

(35) is not convex. We hence apply the same approximation
techniques in Section III-A to approximate (35). In particular,
we first apply SDR, followed by the reformulation as described
by (7), and the first-order approximations in (12). The resulting
convex optimization problem is given by

(36a)

(36b)

(36c)

(36d)

(36e)

(36f)

(36g)

where
,

(37)

(38)

for . Similar to (18), is
obtained by solving the following equations

(39)

1In this paper, we assume that the communication between transmitters for
message exchange is error-free.
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for It is worth mentioning that problem (36)
is only solved once and successive approximation is not per-
formed as in Algorithm 1. As long as problem (36) is solved by
transmitter , the algorithm directly goes to the next optimiza-
tion problem performed by transmitter . Successive ap-
proximation is now performed implicitly from one transmitter
to another in a round-robin fashion.We summarize the proposed
distributed SCA algorithm in Algorithm 2.

Algorithm 2: Distributed SCA algorithm for solving problem
(2)

1: Given an initial beamforming matrix at transmitter
, for .

2: For all , transmitter computes by
(37), and pass them to the other transmitters.

3: Set
4: repeat
5:
6: for do
7: User solves (39) to obtain and

compute , followed by solving (36)

to obtain the solution
.

8: User computes by (37) and passes them
to all the other transmitters.

9: end for
10: until the predefined stopping criterion is met.
11: For , each transmitter decomposes

, if is of rank one; otherwise perform
Gaussian randomization to obtain a rank-one approximate
solution.

Analogous to Algorithm 1, we can show that Algorithm 2
generates a stationary point of problem (8) as stated in the fol-
lowing theorem.

Theorem 2: Suppose that is differentiable
and is strictly increasing with respect to , for .
Then, the sequence gener-
ated by Algorithm 2 converges to a common value for all

. Moreover, for all , any limit point of the se-
quence is a
stationary point of problem (8) as well as a stationary point of
problem (6) (with the extra constraints in (9)).

Different from the proof for Theorem 1, the proof for The-
orem 2 is more involved, since the beamforming vectors of
transmitters are not simultaneously optimized as in Algorithm
1 but are individually optimized in a round-robin manner. The
detailed proof of Theorem 2 is presented in Appendix B.

Remark 1: An important issue concerning distributed opti-
mization algorithms is the communication overhead introduced
by message exchange between transmitters. To address this,
we compare the communication overhead of the proposed
Algorithm 2 with the following two schemes. Scheme 1: All
the transmitters directly exchange their CDI so that the design
problem (2) can be handled independently by each transmitter.
Scheme 2: A control center gathers the CDI from all transmit-
ters, optimizes the beamforming vectors, and distributes the
beamforming solutions to the transmitters. We consider a cel-
lular system where all the transmitters (i.e., BSs) are connected
by dedicated backhaul links (e.g., optical fibers) and the BSs

exchange messages in a point-to-point fashion. Since, in Algo-
rithm 2, transmitter needs to inform ( real values)
to all the other transmitters in each round, the communi-
cation overhead due to transmitter is quantified by the amount
of real values. Hence, the total communication over-
head of Algorithm 2 is
real values, where is the number of rounds run by Algorithm
2. For scheme 1, each transmitter needs to send covariance
matrices (which contain real values) to all the other
transmitters. Therefore, the associated total communication
overhead is given by
real values. Therefore, for scheme 1, if , then the
proposed Algorithm 2 has a smaller amount of communication
overhead. For scheme 2, there are covariance matrices sent
from the transmitters to the control center, and the optimal
solution passed from the control center to transmitter
for , respectively. Hence, the communication
overhead is real values. Therefore, for
scheme 2, the proposed Algorithm 2 has a smaller amount of
communication overhead if . As we
show in the simulation section, Algorithm 2 in general can
converge in less than 15 rounds for a system with and

.

Remark 2: It should be noticed that, while in general Algo-
rithm 2 is more efficient in terms of computation and communi-
cation overhead, it may result in larger transmission delays and
thus reduced throughput (due to the round-robin optimization
in Algorithm 2) compared to the centralized schemes. Nonethe-
less, since the proposed beamforming design is based on the
users’ statistical channel information, which usually changes
much more slowly compared to the instantaneous CSI, beam-
forming optimization needs not be performed frequently. As
a result, the induced throughput loss should not be a serious
concern.

V. SIMULATION RESULTS

In the section, we demonstrate the performance of the pro-
posed Algorithm 1 and Algorithm 2 for solving the outage con-
strained coordinated beamforming problem in (2). In the simu-
lations, we consider , , and for the objective
function , corresponding to maximization of
the weighted sum rate, the weighted geometric mean rate, and
the weighted harmonic mean rate, respectively. All receivers are
assumed to have the same noise power, i.e.,
, and all power constraints are set to one, i.e.,

. The parameter in (9) is set to . The channel co-
variance matrices are randomly generated. We normalize
the maximum eigenvalue of , i.e., , to one for all
, and normalize to a value for all ,

. The parameter , thereby, represents the relative
cross-link interference level. If not mentioned specifically, all

are of full rank, and the outage probability requirements
are set to the same value, i.e., , indicating
a 10% outage probability. The stopping criterion of Algorithm
1 is



LI et al.: COORDINATED BEAMFORMING FOR MULTIUSER MISO 1095

Fig. 1. Simulation results of the proposed SCA algorithm (Algorithm 1), for , , and ; (a) weighted sum rate versus ,
(b) weighted harmonic mean rate versus . Each of the results is obtained by averaging over 500 realizations of .

Fig. 2. Converge trajectories of the proposed SCA algorithm. , , ; (a) , (b) . The results are
obtained using a typical set of randomly generated .

That is, Algorithm 1 stops if the improvement in system utility
is less than 1% of the system utility achieved in the previous
iteration. The simple MRT solution is used to initialize both
Algorithm 1 and Algorithm 2. The convex solver [30] is
used to solve the convex problems (20) and (36).
Example 1: We first examine the approximation performance

of the proposed SCA algorithm, by comparing it with the ex-
haustive search method in [22]. In view of the tremendous com-
plexity overheads of this exhaustive search method, we con-
sider a simple case where only two transmitter-receiver pairs are
present, i.e. , and set . Fig. 1(a) shows the sim-
ulation results for the comparison of the achievable weighted
sum rate between the proposed SCA algorithm and the exhaus-
tive search method against the cross-link interference level ,
where the weights are given by . Each sim-
ulation curve is obtained by averaging over 500 realizations of
randomly generated . From this figure, we can observe
that, for and , the proposed SCA algo-
rithm can attain almost the same average sum rate performance

as the exhaustive search method, indicating that the proposed
SCA algorithm yields near-optimal solutions for the outage con-
strained beamforming design problem (2). For ,
it can be observed that there is a small gap between the rate
achieved by the proposed SCA algorithm and that by the ex-
haustive searchmethod. Nonetheless, this gap is relatively small
and is within 2% of the sum rate achieved by the exhaustive
search method. Fig. 1(b) displays the simulation results under
the same setting as in Fig. 1(a) except that the objective func-
tion is now the average harmonic mean rate. As the mean rate
performance of SCA algorithm is almost the same as that of
the exhaustive search method, its solution is nearly optimal for
problem (2).
To examine how the proposed SCA algorithm converges, we

illustrate in Fig. 2(a) the trajectories of the optimal rate tuple
of problem (20) in each iteration of Algorithm 1, where the
weighted sum rate, the geometric mean rate, and the harmonic
mean rate are all considered. The user priority weights are set
to , and the Pareto boundary is obtained by
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Fig. 3. Simulation results of average achievable sum rate versus ; (a) , and full rank , (b) , and for all
. The priority weights are set to . The results are obtained by averaging over 500 realizations of .

Fig. 4. Simulation results of the proposed SCA algorithm (Algorithm 1), for and ; (a) weighted geometric mean
rate versus , (b) weighted harmonic mean rate versus . Each of the results is obtained by averaging over 500 realizations of .

the exhaustive search method in [22]. One can see from this
figure that, for all rate utility functions, the proposed SCA algo-
rithm first approaches the Pareto boundary and then converges
to the corresponding optimal rate tuple along the boundary. In
Fig. 2(b), we display similar results with an asymmetric user pri-
ority, i.e., . It can be observed that the SCA
algorithm still converges to the optimal rate tuples in a similar
fashion.
Example 2: To further demonstrate the effectiveness of the

proposed SCA algorithm, we evaluate the performance of the
SCA algorithm for the case of in this example.
(Since under this setting, the exhaustive search method in [22]
is too complex to implement, and, to the best of our knowl-
edge, there is no existing method for comparison, we can only
compare the proposed SCA algorithm with the heuristic MRT
and ZF schemes.) Fig. 3(a) shows the simulation results of the
average achievable sum rate versus . From this figure, one
can observe that the proposed SCA algorithm yields better sum
rate performance than the MRT scheme, especially when

. For , the two methods exhibit comparable per-

formance. In Fig. 3(b), we have shown the simulation results
for , and for all . Under
this setting, the ZF scheme is feasible and its average sum rate
performance is also shown in Fig. 3(b). It can be observed from
this figure that the ZF scheme outperforms the MRT scheme for
high or when the cross-link interference is strong .
Nevertheless, as can be seen from Fig. 3(b), the proposed SCA
algorithm still outperforms both the MRT and the ZF schemes.
Fig. 4 demonstrates the simulation results for the weighted

geometric mean rate and the weighted harmonic mean
rate, for and for an asymmetric weighting

. Performance comparison
results similar to those in Fig. 3 can also be observed in this
figure. In addition, it is interesting to note from Fig. 4 that, in
contrast to the sum rate performance as shown in Fig. 3, the
weighted geometric mean rates and weighted harmonic mean
rates achieved by the proposed SCA algorithm in Fig. 4(a) and
Fig. 4(b) saturate for high . These phenomena might result
from the fact that user fairness plays a more prominent role
in the geometric mean rate and the harmonic mean rate; and
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Fig. 5. Performance of Algorithm 2, for and ; (a) convergence curves versus round number for , , and for ,
, averaged over 500 sets of randomly generated , (b) comparison with Algorithm 1 for , over 30 sets of randomly generated .

thereby in the interference dominated region (i.e., when or
is large), the geometric mean rate and the harmonic mean rate
cannot increase as fast as the weighted sum rate.
Example 3: In this example, we examine the performance of

the proposed distributed SCA algorithm (Algorithm 2). Fig. 5(a)
shows the convergence behaviors (the evolution of sum rate
at each round) of the distributed SCA algorithm for ,

, and for , , where ,
. Each curve in Fig. 5(a) is obtained by averaging over

500 sets of randomly generated . It can be observed from
Fig. 5(a) that the sum rate performance of the distributed SCA
algorithm is almost the same as its centralized counterpart for

, ; whereas there is a gap between the sum rates
achieved by the centralized and distributed SCA algorithms for

, . One explanation for this gap is that, when the
system is nearly fully loaded (i.e., when is close to ), the
distributed SCA algorithm, which updates only the variables as-
sociated with one transmitter at a time, is more likely to get stuck
at a stationary point that is not as good as that achieved by the
centralized SCA algorithm which optimizes all the variables in
each iteration. As also shown in Fig. 5(a), when we increase
to 12, the decentralized algorithm again converges to the cen-
tralized solution. Fig. 5(b) shows that, for , the
distributed SCA algorithm yields performance similar to that
achieved by its centralized counterpart for almost all of the 30
tested problem instances within 10 round-robin iterations.

VI. CONCLUSIONS
In this paper, we have presented two efficient approximation

algorithms for solving the rate outage constrained coordinated
beamforming design problem in (2). In view of the fact that
the original design problem involves complicated nonconvex
constraints, we first presented an efficient SCA algorithm
(Algorithm 1) based on SDR and first-order approximation
techniques. We have shown that the proposed SCA algorithm,
which involves solving convex problem (20) iteratively, can
yield a stationary point of the outage constrained beamforming
design problem, provided that problem (20) can yield a rank-one
beamforming solution. We further presented a distributed SCA
algorithm (Algorithm 2) that can yield approximate beam-
forming solutions of problem (2) in a distributed, round-robin

fashion, using only local CDI and a small amount of messages
exchanged among the transmitters. The distributed SCA al-
gorithm was also shown to provide a stationary point of (2)
provided that problem (36) can yield a rank-one beamforming
solution. Finally, our simulation results demonstrated that the
proposed SCA algorithm yields near-optimal performance for

, and significantly outperforms the heuristic MRT and
ZF schemes. Furthermore, the distributed SCA algorithm was
also shown to exhibit performance comparable to its centralized
counterpart within 10 rounds of round-robin iterations for most
of the problem instances.

APPENDIX A
PROOF OF CLAIM 1

Since constraint (20e) holds with equality at the optimal
point, we have

(A.1)

similarly, from (20c), we have

(A.2)

for all , . We also note from (20d) and (19)
that for all . On the other hand, by (18), the
definition of , in (19), and the fact that (20b), (20f)
hold with equality at the optimum, we can obtain

(A.3)
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Combining the above observations, i.e., (A.2), (A.3) and
, and by the monotonicity of the exponential

function, we obtain that , which implies

(A.4)
Suppose that does not converge to zero for

some and . Then there exists an such that,
for all , for some . From
(A.1) to (A.4), we must have and thus

, where , which, together with
(22), implies that the utility diverges as
goes to infinity however. Therefore, we must have

(A.5)

(A.6)

Now we use (A.5) to prove (31). It follows from (A.2) and (A.5)
that

(A.7)
for all and . Consider the 2nd-order Taylor series ex-
pansion [34] of at , i.e.,

where for all . Substituting it into (A.7)
gives rise to

Since both and are bounded by Claim 2, we con-
clude that (31) is true.
To show (32), we note from (A.1), (A.4) and (A.6) that

(A.8)

Analogously, by considering the 2nd-order Taylor series expan-
sion of at , i.e.,

where for all , and substituting it into (A.8),
we obtain

Again, since and are bounded by Claim 2, we obtain
(32).

APPENDIX B
PROOF OF THEOREM 2

Define for all
. Then it can be shown that

is a feasible point of (36). Hence,

for all . In addition, analogous to (15), we have
for all , and thus

for all , which implies that the sequence

is nondecreasing. Since it
is also bounded, , ,
converge as .
Now let us look at the KKT conditions of problem (36). Re-

call the definitions of and in (23) and (24) and their
inner approximation properties in (25) to (30). Let

(A.9)

(A.10)

Moreover, let

be the optimal solution of (36), and let

where , , , ,
, , denote the dual vari-

ables associated with constraints in (36b) to (36g), and
, , denote the dual variables associated with

constraint and , respectively.
Let be the Lagrangian function. The KKT
conditions of (36) are given by (A.11) and (A.12) shown on the
the next page. Note that we have omitted the complementary
slackness conditions for constraints (36b)–(36g) since they are
trivially satisfied at .
To show the desired results, we also need the following two

claims:
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(A.11a)

(A.11b)

(A.11c)

(A.11d)

(A.11e)

(A.11f)

(A11.g)

(A.11h)

(A.12a)

(A.12b)
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Claim 3: It holds true that

(A.13a)

(A.13b)

(A.13c)

(A.13d)

(A.13e)

(A.13f)

Claim 4: For each , generated by Algorithm 2 is
bounded for all .

The proof of Claim 3 is presented in Appendix C. Similar
to Claim 1, (A.13a) to (A.13d) imply that the restrictive ap-
proximations in (36e) and (36f) are asymptotically tight as

. Since problem (36) satisfies the Slater’s condition,
the dual variable vector is bounded [33]. Moreover,

is also bounded by Claim 4. Now let us consider the
primal-dual solution pair for all .
Since they are all bounded, there exists a subsequence

and limit points

and

for all , such that

(A.14)

for . By (A.13e) and (A.13f), we see that both
and converge to the same limit point, and

they are the same for all , i.e.,

(A.15)

Analogously, by (A.13a) to (A.13d), we have that

(A.16)

(A.17)

Then, it follows from the inner approximation properties in
(25) to (30), (A.13a), (A.13c), and (A.14) to (A.17) that the KKT
conditions in (A.11) and (A.12) converge along the subsequence

to

(A.18a)

(A.18b)

(A.18c)

(A.18d)

(A.18e)

(A.18f)

and

(A.19a)

(A.19b)

(A.19c)

(A.19d)

It can be observed from (39) that, for , is strictly
greater than zero for all ; therefore, for all ,

which indicates that for all by (A.19b).
Substituting this into (A.18b) for all , gives rise to

(A.20)
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In addition, one can verify that

which, together with (A.18e) (A.18f) and (A.20), lead to

(A.21a)

(A.21b)

Finally, by (A.18), (A.19), (A.20) and (A.21), we conclude
that and

satisfy the
KKT conditions of problem (8). The proof is completed.

APPENDIX C
PROOF OF CLAIM 3

The ideas of the proof are similar to that of Claim 1. Because
constraints (36e) and (36f) hold with equality at the optimum,
we have

(A.22)

for all , . Also by (36c), (36g) and (39), we
have

for all . Using the above equation and (A.22)
and the monotonicity of exponential function, we obtain

. Thus,

(A.23)

Similarly, by (36b), (36g) and (39), we have

(A.24)

Using the same arguments as in obtaining (A.3) to (A.6) in
Appendix A, we can show that (A.13f), (A.13b), (A.13d),
(A.13c) and

(A.25)

which is (A.13a) for , are true. What remains is to prove
(A.13e) and .

It follows from (A.13c), (A.13d) and the triangle inequality
that

which, by the definition in (38), is equivalent to (A.13e). By
considering (39) for transmitter , and the fact that (36b)
holds with equality at the optimal point for transmitter , we can
obtain

Since both and are bounded,
and by (A.13c), we obtain from the above equation that

Thus the proof of Claim 3 is complete.
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