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Abstract—Dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) is a powerful imaging modality to study the
pharmacokinetics in a suspected cancer/tumor tissue. The pharma-
cokinetic (PK) analysis of prostate cancer includes the estimation
of time activity curves (TACs), and thereby, the corresponding ki-
netic parameters (KPs), and plays a pivotal role in diagnosis and
prognosis of prostate cancer. In this paper, we endeavor to develop
a blind source separation algorithm, namely convex-optimization-
based KPs estimation (COKE) algorithm for PK analysis based on
compartmental modeling of DCE-MRI data, for effective prostate
tumor detection and its quantification. The COKE algorithm first
identifies the best three representative pixels in the DCE-MRI data,
corresponding to the plasma, fast-flow, and slow-flow TACs, respec-
tively. The estimation accuracy of the flux rate constants (FRCs)
of the fast-flow and slow-flow TACs directly affects the estimation
accuracy of the KPs that provide the cancer and normal tissue dis-
tribution maps in the prostate region. The COKE algorithm wisely
exploits the matrix structure (Toeplitz, lower triangular, and expo-
nential decay) of the original nonconvex FRCs estimation problem,
and reformulates it into two convex optimization problems that can
reliably estimate the FRCs. After estimation of the FRCs, the KPs
can be effectively estimated by solving a pixel-wise constrained
curve-fitting (convex) problem. Simulation results demonstrate the
efficacy of the proposed COKE algorithm. The COKE algorithm is
also evaluated with DCE-MRI data of four different patients with
prostate cancer and the obtained results are consistent with clinical
observations.

Index Terms—Cancer diagnosis, compartmental model, con-
vex optimization, dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI), kinetic parameters (KPs), pharmacokinetic
(PK) analysis, prostate cancer, time activity curve (TAC), tumor
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I. INTRODUCTION

PROSTATE cancer is the most common cancer in elderly
men and the number of patients with prostate cancer is con-

siderably increasing worldwide, and so is its mortality rate [1]–
[3]. Early detected prostate cancers can be more easily treated
with standard therapy and the death rate can be significantly
reduced [4]. Unfortunately, many patients are found to have tu-
mors that have already spread over other surrounding tissues,
by the time of their initial diagnosis of prostate cancer. There-
fore, early detection of prostate tumor plays a critical role in the
management of prostate cancer therapy.

Digital rectal examination (DRE) is the most common and
conventional method to identify prostate cancer by elevated
prostate-specific antigen levels. The major limitation of DRE
is that it is unable to detect nonpalpable tumors or tumors lo-
calized in the central and transition zones of the prostate gland
[5], [6]. Magnetic resonance (MR) imaging is a standard tech-
nique used for the evaluation of prostate cancer. However, it
also suffers from some important limitations, like, it is very dif-
ficult to identify the cancer in central and transition zones of
the prostate gland, since the tumors are visualized as weak sig-
nals with superimposed intensities on MR images [7], [8]. Dy-
namic contrast-enhanced magnetic resonance imaging (DCE-
MRI) provides a noninvasive in vivo method to evaluate tu-
mor vasculature architectures based on contrast accumulation
and washout [9], [10]. In DCE-MRI, a bolus of low molecu-
lar weight paramagnetic contrast agent (CA) is used, usually
Gadolinium (Gd-DTPA) [11]. The CA is transiently bounded
with blood plasma and rapidly diffuses into extravascular ex-
tracellular space (EES) through capillary bed, where the re-
laxation processes of surrounding protons are catalyzed, and
the relaxation time is shortened [12]–[15]. By their inherent
nature, T1-weighted DCE-MRI data are favored in the quantifi-
cation of perfusion as they produce the strong signal intensity
changes in the abnormal regions, when compared to the T2-
weighted DCE-MRI data that have longer acquisition time. In
T1-weighted DCE-MRI, instead of acquiring only one contrast-
enhanced image, a series of images is acquired with regular
interval (approximately, every 15–30 s one image will be cap-
tured), when the CA flows in and out the concerned region of
interest. Microvascular growth will be high in the cancer region;
therefore, in the cancer region, more CA passes between the
vascular system and the EES tissue. Repeated MRI scans con-
tinue until the body metabolism filters out most of the CA from
the blood plasma through the kidneys (a time period usually
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between 6 and 12 min), and hence, T1-weighted DCE-MRI
produces a time series of images of the region of interest (in
this study, the prostate region), and is the one considered in this
paper.

A signal intensity versus time curve is obtained for each
pixel vector (pixel, for convenience) in the image cube and it
varies in accordance with the accumulation and metabolism of
CA, within the corresponding area of the prostate region [9].
While DCE-MRI can potentially depict the intratumor hetero-
geneity of vascular permeability, the quantitative application of
DCE-MRI has been hindered by its inability to reliably dis-
sect vascular compartments with distinct pharmacokinetics. For
a cancerous region, the pharmacokinetic (PK) analysis of the
corresponding T1-weighted DCE-MRI data is to estimate the
tissue specific time activity curves (TACs) corresponding to the
plasma, fast flow (cancer), and slow flow (normal) regions, and
the associated kinetic parameter (KP) maps of the tissues (es-
pecially for the cancer and normal regions), for effective tumor
detection. However, the prime difficulty in the analysis of the
obtained T1-weighted DCE-MRI data arises due to the limited
spatial resolution of the imaging modality and the partial vol-
ume effect (PVE) in the observed images [10]. Such a problem
is formally referred to as the tissue heterogeneity problem, by
virtue of which the observed image intensity at each pixel of
DCE-MRI dataset, is a weighted composition of time activities
of more than one distinct tissue, irrespective of the spatial reso-
lution of the imaging device. This inevitable PVE in DCE-MRI
data hinders the quantitative PK analysis of the DCE-MRI data.
To investigate this issue of PVE, many model-based approaches
and algorithms have been reported for PK analysis of DCE-MRI
data. They include the classical compartmental modeling (CM)
[16], cluster component analysis (CCA) [17], convex analysis of
mixtures with CM (CAM-CM) [18], iterative maximum likeli-
hood CM (IML-CM) [19], and the iterative quadratic maximum
likelihood (IQML) estimation [20]. In addition, modern meth-
ods such as in [21] and[22] have also been suitably modified and
applied to PK analysis. However, their major limitations include
the unrealistic assumption on the compartmental model that
the tissue kinetics are statistically independent [21], intractable
computational complexity, and sensitivity to initialization of the
unknown parameters (local optimality issues) [22].

The PK analysis problem has a lot in common with blind
source separation (BSS), which is a signal processing methodol-
ogy to extract the true sources (in PK analysis, they are the TACs
and the KP maps) from the mixed observations (T1-weighted
DCE-MR images), devoid of (or with very limited) prior knowl-
edge about the sources and how those sources are mixed in the
observations. In this study, for the PK analysis of prostate can-
cer using T1-weighted DCE-MRI data, we propose an effective
BSS algorithm, namely convex-optimization-based KPs estima-
tion (COKE) algorithm, to estimate the tissues’ TACs and the
KPs associated with each slice of the DCE-MRI data, for can-
cer detection. As in [16]–[20], this study is constructed under
the premise that the prostate cancer is confirmed to be present
in the patient (through biopsy tests or other clinical means).
The proposed COKE algorithm intends to estimate the parame-
ters associated with the prostate tumor through PK analysis of

the DCE-MRI data of the patient taken over different positions
(slices), so as to analyze the seriousness level (cancer stage)
and distribution of the prostate cancer over the given region of
interest.

Precisely, the proposed COKE algorithm first identifies the
pure pixels (representative pixels) corresponding to the TACs,
with provable theoretical guarantee. This idea is motivated by
our previous work in hyperspectral image analysis (for spectral
signature identification of disparate minerals in hyperspectral
images for remote sensing applications) [23]. Since the sum-
to-one assumption1 in hyperspectral image analysis [23], [24]
is not intrinsically satisfied in DCE-MRI data, we first nor-
malize the DCE-MRI data, and then, successively estimate the
pure pixels corresponding to the TACs. Once the pure pixels
corresponding to the TACs are obtained, the COKE algorithm
then aims to estimate the flux rate constants (FRCs). In ex-
isting methods, including the state-of-the-art CAM-CM [18]
algorithm and the recently proposed TAC estimation by pro-
jection (TACE-Pro) algorithm [25], the FRCs are estimated by
attempting to solve a nonconvex optimization problem, thereby
rendering the estimated FRCs not very reliable (due to local
optimality issue) for KP estimation (cancer and normal tissue
distributions). Moreover, in existing methods, the scaling am-
biguities and some of the physical constraints are ignored [18],
[25], which may result in unreliable estimation of the FRCs.
The idea in COKE algorithm is to exploit the matrix struc-
ture (Toeplitz, lower triangular, and exponential decay) of the
nonconvex curve fitting problem, which results in solving two
convex optimization problems to effectively estimate the FRCs,
and thereby, the TACs. Finally, the estimation of the KPs using
the obtained TACs can be formulated as a pixel-by-pixel convex
constrained least-squares problem. All the convex optimization
problems in the COKE algorithm can be effectively solved by
available convex optimization solvers such as SeDuMi [26] and
CVX [27], and due to the inherent nature of convex optimization
problems, the obtained respective solutions are guaranteed to
be globally optimal solutions. The simulation and experimental
results are presented to demonstrate the efficacy of proposed
COKE algorithm.

The ensuing sections are organized as follows. The tissue
compartmental model is first presented in Section II. The trans-
formation of the tissue compartmental model into a latent vari-
able model, and the associated general and physical assumptions
are also presented in this section. The COKE algorithm for PK
analysis of DCE-MRI data is presented in Section III, where
the idea of perspective projection and successive estimation of
the pure pixel indices are presented in detail, followed by the
estimation of the tissue specific FRCs and the estimation of the
associated KPs. In Section IV, the proposed COKE algorithm
is evaluated with synthetically generated data, under different
noisy scenarios and for different stages of cancer (early stage,
moderate, and advanced). The COKE algorithm is then applied

1The sum-to-one assumption is a common assumption in some of the BSS
applications, wherein the combining coefficients (also referred to as sources)
in the linear mixing model sum to unity, for all observations. For instance, in
hyperspectral image analysis, these coefficients are called abundances, and due
to their physical constraints, they naturally sum to one.
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Fig. 1. Schematic diagram of three-tissue compartmental model.

to real DCE-MRI data of four patients, and the results and dis-
cussions are presented in Section V. Finally, Section VI provides
some conclusions and future directions.

The following notations are employed in the remainder of
the paper. RM and RM

+ represent the set of real and nonnega-
tive real M × 1 vectors, respectively. 1N and IN represent the
N × 1 all-one vector, and the N × N identity matrix, respec-
tively. ⊗ represents convolution operation and ‖ · ‖p represents
the p-norm. exp(·) stands for exponential function and ln(x)
denotes natural logarithm of x. Aij denotes the (i, j)th element
of the matrix A, and qi(R) denotes the orthonormal eigenvec-
tor associated with the ith principal eigenvalue of the positive
semidefinite matrix R. AT and aT represent the transpose of
a matrix A and a vector a, respectively. P⊥

b is the projection
matrix for the subspace orthogonal to vector b.

II. SIGNAL MODEL AND PROBLEM STATEMENT

In this study, the proposed PK analysis of prostate tumor le-
sions using DCE-MRI time-series images is based on the well-
known three-tissue compartmental model [17], [18], [28], which
is a generalization of the two-tissue compartmental model pro-
posed by Tofts et al., for the analysis of T1-weighted DCE-MRI
data [16], [29]. The generalized Toft’s compartmental model
basically consists of three tissue pools, namely fast flow pools
(cancerous regions), slow flow pools (normal tissue regions),
and the vascular plasma (blood), as depicted in Fig. 1.

As mentioned in Fig. 1, the important parameters involved
in the compartmental model includes the unidirectional trans-
fer constant (K trans), the flux rate constant (kep), plasma frac-
tional volume (Kp ), and the EES. The dynamic tracer concen-
trations of the T1-weighted DCE-MR images are governed by
the following set of first-order differential equations involving
the aforementioned parameters [16], [28]:

dCf (t)
dt

+ kep,f Cf (t) = K trans
f Cp(t) (1)

dCs(t)
dt

+ kep,sCs(t) = K trans
s Cp(t) (2)

Cms(t) = KpCp(t) + Cf (t) + Cs(t) (3)

where Cf (t), Cs(t), and Cp(t) are, respectively, the tracer con-
centrations at time t, in the fast flow pool, slow flow pool, and
in arterial (plasma) space. Cms(t) is the total measured tracer
concentration at time t and is given by the T1-weighted DCE-
MR image. The unidirectional transfer coefficients from plasma
to fast- and slow-flow pools are K trans

f and K trans
s (in min−1),

respectively. The flux rate constants from fast- and slow-flow
pools to plasma are kep,f and kep,s (in min−1), respectively [9],
[10]. It is straightforward to solve (1) and (2) for Cf (t) and
Cs(t) [18]. Thus, we have

Cf (t) = K trans
f Cp(t) ⊗ exp(−kep,f t) (4)

Cs(t) = K trans
s Cp(t) ⊗ exp(−kep,s t). (5)

For ease of ensuing presentation, let us define the following:

ap(t) � Cp(t) (6)

af (t) � Cp(t) ⊗ exp(−kep,f t) (7)

as(t) � Cp(t) ⊗ exp(−kep,s t). (8)

Then, (3) becomes

Cms(t) = Kpap(t) + Ktrans
f af (t) + Ktrans

s as(t). (9)

Let the temporal resolution of the T1-weighted DCE-MR im-
ages be Δt, and the tracer concentration measured at time
tm = (m − 1)Δt in the pixel n be Cms(n, tm ). Then, by (9),
the temporal patterns of a given tissue slice, at pixel n, denoted
as [Cms(n, t1), . . . , Cms(n, tM )]T ∈ RM (where M is the to-
tal number of sampling time points), can be expressed as the
following latent variable model [17], [18], [29]2:

x[n] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Cms(n, t1)

Cms(n, t2)

...

Cms(n, tM )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ap(t1) af (t1) as(t1)

ap(t2) af (t2) as(t2)

...
...

...

ap(tM ) af (tM ) as(tM )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Kp [n]

Ktrans
f [n]

Ktrans
s [n]

⎤
⎥⎥⎦

= [ap ,af ,as ]K[n] ∈ RM ∀n = 1, ..., L (11)

where x[n] represents the pixel vector (will be sim-
ply referred to as pixel, for convenience) composed
of temporal patterns of a given tissue slice, at pixel
n, aj = [aj (t1), . . . , aj (tM )]T ∈ RM

+ , j ∈ {p, f, s} are the

2Note from (11) that unlike the original Toft’s model [16], [28] (where both
the flux rate constants and the KPs are allowed to vary from pixel to pixel,
and slice to slice), in the pixel-wise generalized model given by (11), the flux
rates are assumed to be constant for each slice of DCE-MRI data so that the
flux rate constants and pixel-wise KPs can be effectively estimated from the
associated time-series data of a slice, in the presence of measurement noise and
other uncertainties.
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TACs for tissue type j ∈ {p, f, s}, the KP vector
K[n] = [Kp [n],Ktrans

f [n],Ktrans
s [n]]T is the vector containing

the KPs in the pixel n, and L is the total number of pixels
in the region of interest (ROI) of a given tissue slice. Specifi-
cally, ap ∈ RM

+ is the arterial input function (AIF), which is the
plasma TAC, and af ∈ RM

+ and as ∈ RM
+ are the TACs of fast

and slow flow tissues, respectively. Furthermore, by expressing
the convolution in (7) and (8) in matrix forms, af and as can be
expressed as

aj = D(kep,j )ap , j ∈ {f, s} (12)

where D(x) is an M × M lower triangular matrix whose
(m,n)th entry is

Dm,n (x) =
{Δte−(m−n)xΔt , m ≥ n

0, m < n.
(13)

As will be seen in the ensuing sections, the judicious exploitation
of the afrementioned matrix structure will be one of the vital
steps of the COKE algorithm. The COKE algorithm proposed
in this study for PK analysis of prostate cancer using DCE-MRI
data, aims to estimate the TACs (i.e., AIF, TAC of fast flow, and
TAC of slow flow) and the KPs vector associated with each pixel
n from the observed tracer concentration vectors x[1], ...,x[L],
so as to generate the KP maps (plasma map Kp , fast flow map
Ktrans

f , and slow flow map Ktrans
s ), which are defined as

Kp = [Kp [1], . . . , Kp [L]]T ∈ RL (14)

Ktrans
j = [Ktrans

j [1], . . . ,Ktrans
j [L]]T ∈ RL ,

j ∈ {f, s}. (15)

Some standard (nonstatistical) assumptions that have been con-
ventionally considered by the Toft’s compartmental modeling
are as follows [17], [25].

The components of the KPs vectors are nonnegative, i.e.,
(A1) The components of the kinetic parameters vectors are

non-negative i.e., K[n] ∈ R3
+ , for all n.

(A2) The TACs ap , af , and as are linearly independent.
(A3) (Physical assumptions): 0 ≤ Kp [n] ≤ 1,∀n, kep,f ≥

Ktrans
f [n] and kep,s ≥ Ktrans

s [n]∀n.
(A4) (Pure pixel assumption):

1) In the entire image (with the set of indices I),
there exists a pure artery pixel index lp ∈ I such
that Ktrans

f [lp ] = Ktrans
s [lp ] = 0 and Kp [lp ] 
=

0, thereby, leading to x [lp ] = Kp [lp ]ap .
2) In the prostate gland, there exists an index set

{lf , ls} (i.e., “pure pixel” indices) such that
x [lj ] = Ktrans

j [lj ]aj , for j ∈ {f, s}.
Assumptions (A1)–(A3) are the standard straightforward as-

sumptions that hold true in DCE-MRI data analysis [17], [25].
The pure pixel assumption, (A4) stems from the fact that within
the prostate gland the distributions of the fast- and slow-flow
tissues are not fully overlapped [25]. In other words, there ex-
ists at least a pixel location in the prostate gland such that it is
purely a normal (slow flow) region (or purely a cancerous (fast
flow) region). This is a practical assumption because it fails only
when the entire prostate is normal or it is entirely affected by

cancer. Since a major artery may not lie in the region of interest,
it is assumed that in the entire image there exists a pure artery
pixel, possibly corresponding to one of the major arteries such
as internal pudendal artery or inferior vesical artery or middle
rectal artery, of the prostate region.

III. COKE ALGORITHM

In this section, we propose a BSS algorithm, namely COKE
algorithm for the PK analysis of DCE-MRI data. The COKE
algorithm basically does the following: 1) Identifies the pure
pixels corresponding to the TACs, 2) Estimates the fast flow and
slow flow FRCs so as to estimate the TACs, and 3) Estimates
the KP maps corresponding to the tissues, which are presented
in the following subsections, respectively.

A. Identification of Pure Pixel Indices

In this subsection, we demonstrate how COKE algorithm can
sequentially identify the pure pixel indices corresponding to
the TACs of plasma, fast-flow, and slow-flow regions, from the
DCE-MRI data. We begin by employing a pixel-wise normal-
ization, that makes the KPs of the normalized pixels, sum to
one (for all pixels), thereby, facilitating the application of the
ideas developed in [23], [30], and [31] to estimate the pure pixel
indices. The pixel vector normalization can be represented as

x̄[n] � x[n]
1T

M x[n]
∈ RM (16)

= k̄p [n]āp + k̄f [n]āf + k̄s [n]ās , n = 1, ..., L, (by(11))

(17)

where āj = aj /(1T
M aj ), for j ∈ {p, f, s} denote the normal-

ized TACs, and k̄p [n] = Kp [n](1T
M ap)/(1T

M x[n]) and k̄j [n] =
Ktrans

j [n](1T
M aj )/(1T

M x[n]), for j ∈ {f, s} are the normalized
KPs, such that

∑
i∈{p,f ,s}

k̄i [n] = 1. (18)

In other words

x̄[n] ∈ conv{ās , āf , āp}

where conv{·} denotes the convex hull of the set of vectors, and
with θ = [θs, θf , θp ]T , it is defined as [32]

conv{ās , āf , āp} =
{
x =

∑
i∈{s,f ,p}

θi āi

∣∣∣∣θ ∈ R3
+ ,1T

3 θ = 1
}

.

The normalization procedure is visually illustrated in Fig. 2. It
can be seen from Fig. 2 that the observed data x[n] (represented
as green dots) are normalized [using (16)], so as to satisfy the
sum-to-one constraint of the normalized KPs. On account of
which, the normalized data x̄[n] (represented as red dots) are
now confined to lie within the conv{ās , āf , āp} (blue triangle
and its interior) with the three extreme points (pure pixels) being
ās , āf , and āp .

So far, the signal model considered in (11) [and therefore, also
in (17)] does not account for the noise, which is inevitable in
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Fig. 2. Illustration of the pixel-wise normalization procedure. The pixel-wise
normalization projects the original data x[n] (shown as green dots) on the
conv{ās , āf , āp }. The projected pixels x̄[n] are represented as red dots.

reality. Assuming an additive white Gaussian noise (which is the
most commonly used noise distribution in PK analysis, [18]),
a dimension-reduction procedure can be employed to mitigate
the noise effect and speed up the ensuing analysis. In this study,
we employ the affine set fitting procedure [33], by which the
dimension-reduced normalized observations x̄[n]∀n are given
by

x̄[n] = CT (x̄[n] − d) ∈ R2 (19)

where C = [q1(UUT ), q2(UUT )], and d = 1
L

∑L
n=1 x̄[n],

in which U = [x̄[1] − d, . . . , x̄[L] − d] ∈ RM ×L . With the
dimension-reduced normalized data [given by (19)], under (A1),
(A2), and (A4), it has been theoretically proven in [23] that the
first pure pixel index l1 can be identified by

l̂1 ∈ arg max
n∈I

‖x̄[n]‖2 (20)

where I is the set of pixel indices over the entire image. How-
ever, following the findings in [34] (where it has been shown
that the AIF has the maximum purity among all the time-series
pixels in a given DCE-MRI image), it can be concluded that the
so-identified pure pixel corresponds to the normalized AIF, i.e.,
l̂p = l̂1 . Having identified a pure pixel index corresponding to
the AIF from the entire image, we now proceed to identify the
pure pixel indices corresponding to the fast-flow (lf ) and slow-
flow (ls) TACs from the prostate region of interest. Following
the footsteps of the procedure3 in [23] and [25], the pure pixel

3In this study, the reliable (with theoretical guarantee for perfect identifia-
bility), reproducible (insensitive to initializations), simplex estimation by pro-
jection (SIMPLE-Pro) algorithm introduced in [23] is used to identify the pure
pixel indices. Other effective algorithms for pure pixel identification include p-
norm based pure pixel identification algorithm (TRI-P) [23], [35], and volume
maximization algorithms [30].

indices {l̂2 , l̂3} = {l̂f , l̂s} can be sequentially obtained as

l̂2 ∈ arg min
n=1,...,L

x̄T [n]x̄[l̂p ] (21)

l̂3 ∈ arg min
n=1,...,L

x̄T [n]d� (22)

where d� = P⊥
b x̄[l̂2 ], in which

P⊥
b = I2 − b(bT b)−1bT (23)

and b = x̄[l̂p ] − x̄[l̂2 ]. The aforementioned procedure has been
theoretically proved to perfectly identify the pure pixel indices
[23], [25].

From the estimated pure pixel indices {l̂2 , l̂3} = {l̂f , l̂s}, the
characteristics of the TACs of fast-flow and slow-flow pools can
be used to identify l̂f and l̂s . It is well known that the TAC for
fast flow has a sharp peak, and then, a sudden decay, whereas
the TAC of the slow flow has a gradual but steady increase in
activity level [18], [29]. Let ρj of x[l̂j ], j ∈ {2, 3} be defined as

ρj =

∥∥∥x[l̂j ]
∥∥∥

2∥∥∥x[l̂j ]
∥∥∥

1

, j ∈ {2, 3}. (24)

Then, based on the arguments in [34], if ρ2 > ρ3 , then l̂f = l̂2
and l̂s = l̂3 , else l̂f = l̂3 and l̂s = l̂2 . Thus, the pure pixel indices
corresponding to the AIF, fast-flow TAC, and slow-flow TAC
have been identified as l̂p , l̂f , and l̂s , respectively.

B. Estimation of kep,f and kep,s

Given the pure pixel indices {l̂p , l̂f , l̂s} estimated previously,
by (11), (12), and (A4), we have

âp =
x[l̂p ]

Kp [l̂p ]
(25)

x[l̂f ] = K trans
f [l̂f ]âf = K trans

f [l̂f ]D(kep,f )âp (26)

x[l̂s ] = K trans
s [l̂s ]âs = K trans

s [l̂s ]D(kep,s)âp . (27)

Substituting (25) into (26) and (27) yields

x[l̂j ] =
K trans

j [l̂j ]

Kp [l̂p ]
D(kep,j )x[l̂p ], j ∈ {f, s} (28)

where x[l̂p ], x[l̂f ], and x[l̂s ] are known. Let us emphasize that
(28) holds true only when x[l̂p ], x[l̂f ], and x[l̂s ] are noise-free
measurements and the observations follow the underlying signal
model in (11). In practice, the unknown KPs can be estimated
by solving the following least-squares fitting problem:

min
K p [̂ l p ] ,

K trans
f

[̂ l f ] , K trans
s [̂ l s ] ,

k e p , f , k e p , s

∑
j∈{f ,s}

∥∥∥∥∥x[l̂j ] −
K trans

j [l̂j ]

Kp [l̂p ]
D(kep,j )x[l̂p ]

∥∥∥∥∥
2

2

subject to (s.t.) 0 ≤ Kp [l̂p ] ≤ 1

0 ≤ K trans
j [l̂j ] ≤ kep,j , j ∈ {f, s}. (29)



712 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 63, NO. 4, APRIL 2016

However, the aforementioned problem is a nonconvex
curve fitting problem due to the fact that the unknowns
{Kp [l̂p ],K trans

f [l̂f ],K trans
s [l̂s ], kep,f , kep,s} are nonlinearly com-

bined in the objective function. Existing algorithms for KPs
estimation such as CAM-CM [18], [29] and TACE-Pro [25],
attempt to solve (29) using available sequential quadratic pro-
gramming solvers, and hence, suffer from local optimality issues
in the estimation of FRCs and the ensuing KP maps. Moreover,
it is also true that the methods such as CAM-CM [18], [29],
simply ignore the constant Kp [l̂p ] in solving (29), which may
result in inaccurate estimation of FRCs and KP maps (caused
due to scaling ambiguities).

Next, we will present a convex-optimization-based frame-
work to estimate the FRCs and KP maps. Basically, we will
exploit the structure of D(kep,j ) in the following. Let D̃j �
cjD(kep,j ), j ∈ {f, s}, where cj = K trans

j [l̂j ]/Kp [l̂p ]. Since D̃j

is a lower triangle Toeplitz matrix, it has the following structure:

D̃j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̃j
0 0 0 · · · 0

d̃j
1 d̃j

0 0 · · · 0

d̃j
2 d̃j

1 d̃j
0 · · · 0

...
...

...
. . . 0

d̃j
M −1 d̃j

M −2 d̃j
M −3 · · · d̃j

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ RM ×M . (30)

D̃j can be expressed as in (31) shown at the bottom of the
page and based on (30), the elements of D̃j have the following
relationship:

D̃j
m,n = D̃j

m+1,n+1

� d̃j
m−n =

{
d̃j

r , 0 ≤ r = m − n ≤ M − 1

0, otherwise.

Then, the PK model fitting problem in (29) can be rewritten as
the following least-squares problem, which is convex in D̃j :

min
d̃j

r ,j∈{f ,s},r=0,...,M −1

∑
j∈{f ,s}

∥∥∥x[l̂j ] − D̃jx[l̂p ]
∥∥∥

2

2

s.t. d̃j
r = 0, j ∈ {f, s}∀r < 0

0 ≤ d̃j
r , d̃

j
r+1 ≤ d̃j

r , j ∈ {f, s}
r = 0, ...,M − 1. (32)

Problem (32) can be solved for D̃j , j ∈ {f, s} by using available
convex optimization solvers such as SeDuMi [26] or CVX [27].
Let the optimal solution of (32) be D̃j∗ Further, to estimate
kep,f and kep,s from the obtained D̃f ∗ and D̃s∗ respectively, we
perform the following.

Step 1: Obtain the scaling factor

cj = d̃j∗
0 /Δt, j ∈ {f, s}. (33)

Step 2: Obtain the estimate of D(kep,j ) by removing the
scaling factor cj

D̂j � (1/cj )D̃j∗, j ∈ {f, s}. (34)

Then, from (11), (12), and (A4), the AIF and other TACs are
estimated as

apKp [l̂p ] = x[l̂p ] ≈ âp (35)

âj = D̂j âp , j ∈ {f, s}. (36)

Note that the aforementioned estimated AIF (i.e., the plasma
TAC) still has a scaling ambiguity, as Kp [l̂p ] is still unknown.
This scaling ambiguity also propagates to âf and âs . However,
this issue of scaling ambiguity will be appropriately handled
while estimating the KP maps, which is discussed in the next
subsection.

Since from (13), ln Dj
m,1 = ln Δt − kep,j (m − 1)Δt,m =

1, ...,M, j ∈ {f, s}, from the estimated D̂j , the flux rate con-
stants (kep,f and kep,s) can be obtained by using available convex
optimization solvers [26], [27], to solve the following convex
problem:

min
kep, f ,kep, s

M∑
m=1

∑
j∈{f ,s}

∥∥∥ln D̂j
m,1 − ln Δt + kep,j (m − 1)Δt

∥∥∥
2

2

s.t. 0 ≤ kep,j , j ∈ {f, s},
kep,s ≤ kep,f . (37)

Once, the AIF estimate (âp ), TAC estimates (âf , and âs), and
FRC estimates (k̂ep,f and k̂ep,s) are estimated, the KP maps can
be estimated as discussed next.

C. Estimation of KP Maps

Finally, the estimation of tissue distribution maps (i.e., KP
maps), based on (11) boils down to the following convex

D̃j = cj

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δt 0 0 · · · 0

Δte−kep, j Δt Δt 0 · · · 0

Δte−kep, j 2Δt Δte−ke p , j Δt Δt · · · 0

...
...

...
. . . 0

Δte−kep, j (M −1)Δt Δte−kep, j (M −2)Δt Δte−kep, j (M −3)Δt · · · Δt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
D(kep,j ) defined by (13)

(31)
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TABLE I
PSEUDOCODE FOR COKE ALGORITHM

Given. Observed DCE-MRI data x[n ] ∈ RM , n = 1 . . . , L , the temporal resolution of the T1-weighted DCE-MR images Δt, and a scaling factor α (say
α = 100).

Step 1. Compute the normalized data, x̄[n ] for each n = 1 . . . , L by using (16).
Step 2. Obtain the dimension-reduced data x̄[n ] from the normalized data x̄[n ] by using

x̄[n ] = CT (x̄[n ] − d) ∈ R2

where C and d are defined along with (19).
Step 3. Identify the pure pixel index corresponding to the normalized AIF by

l̂p ∈ arg max
n ∈I

‖x̄[n ]‖2

where I is the set of pixel indices over the entire image.
Step 4. Identify the pure pixel indices l̂2 and l̂3 by

l̂2 ∈ arg min
n = 1 , . . . , L

x̄T [n ]x̄[ l̂p ]

l̂3 ∈ arg min
n = 1 , . . . , L

x̄T [n ]d�

where d� = P⊥
b x̄[ l̂2 ], in which P⊥

b is given by (23).
Step 5. Compute ρ2 and ρ3 given by (24). Assign l̂f = l̂2 and l̂s = l̂3 , if ρ2 > ρ3 ; else, l̂f = l̂3 and l̂s = l̂2 .
Step 6. Define the latent matrix D̃ j ∈ RM ×M by specifying its elements as following, for each j ∈ {f , s}:

D̃ j
m , n = D̃ j

m + 1 , n + 1

� d̃j
m −n =

{
d̃j

r , 0 ≤ r = m − n ≤ M − 1

0, otherwise
.

Then, solve the convex problem given by (32) and obtain the optimal D̃f ∗ and D̃ s ∗. Compute cj = d̃j ∗
0 /Δt and D̂ j = (1/cj ) · D̃ j ∗, for each j ∈ {f , s}.

Step 7. Compute the TACs: âp ≈ x( l̂p ) and âj = D̂ j âp , for each j ∈ {f , s}.
Step 8. Solve the convex problem in (37) and obtain the flux rate constants {k̂ep, s , k̂ep, f }.
Step 9. Obtain K̂ [n ] by solving the least-squares (convex) fitting problem given in (38), for each n = 1, ..., L .
Output. The TACs (given by Step 7), the FRCs (given by Step 8), and the KP maps (K̂p , K̂ trans

f , K̂ trans
s ) (defined by (14) and (15), and given by Step 9).

least-squares fitting problem, for n = 1, 2, . . . , L:

K̂[n] = arg min
K [n ]

∥∥∥∥ x[n] − α[âp , âf , âs ]K[n]
∥∥∥∥

2

2

s.t. 0 ≤ Kp [n] ≤ 1

K trans
f [n] ≥ 0,K trans

s [n] ≥ 0

K trans
s [n] ≤ k̂ep,s ,K

trans
f [n] ≤ k̂ep,f .(38)

The scaling parameter α in (38) is used to alleviate the scal-
ing ambiguity caused due to the unknown Kp [l̂p ]. Setting a
suitable scaling factor α (say α = 100), (38) can be solved by
using available convex optimization solvers like SeDuMi [26]
and CVX [27]. If this scaling is not appropriately taken into
account, the KP maps estimated by (38) will be an overesti-
mation of the true KP maps, as the estimated KP vectors may
reach their respective upper bounds (i.e., saturation levels) ow-
ing to the constraints of (38), thus violating the relationship
among Kp [n], K trans

f [n], and K trans
s [n]. It should be noted that

the Kp [n], K trans
f [n], and K trans

s [n], estimated are relative values
of their respective true values, however, their relationships are
maintained, by preventing them from reaching the saturation
level. The only condition on choosing the value of α is that it
should be larger than the inverse of Kp [lp ]. More importantly,
such a value of α will not affect the distribution of the estimated
KP maps, as will also be addressed in Sections IV and V, later.
Also, it is worth mentioning that unlike in [18], the estimation
of K trans

s [n] and K trans
f [n] are, respectively, upper bounded by

k̂ep,s and k̂ep,f , thereby, avoiding the possible over estimation
of the transfer constants (and thereby, the KP maps). Thus, all
the KPs are estimated with low sensitivity to the over estima-
tion (saturation) issue. It should be noted that the optimization
problems (32), (37), and (38) involved in estimating the KPs are
all convex optimization problems for which the solutions are
guaranteed to be global optimal [32]. The pseudocode for the
entire COKE algorithm is given in Table I.

IV. SIMULATIONS

In this section, we study the performance of the proposed
COKE algorithm on synthetically generated DCE-MRI data.
This way of performance evaluation on synthetic data is very
important to study the validity of the estimates obtained by an
algorithm under test, as it may be the only means to verify the
effectiveness of an PK analysis algorithm, since exact ground
truths are not available for real DCE-MRI data. It has been
recently shown that the CAM-CM algorithm [18] has better
performance when compared to several existing PK analysis
algorithms. Moreover, unlike COKE and CAM-CM, other al-
gorithms such as IML-CM [19], and IQML [20], assume tis-
sue homogeneity, which is seldom true in reality. Hence, in
this section, the performance of the proposed COKE algorithm
will be solitarily compared with the performance of CAM-CM
algorithm. The two algorithms are evaluated for their accura-
cies in estimating the flux rate constants (kep,f and kep,s). The
mean±standard deviation of the flux rate constants estimated
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Fig. 3. Fast-flow, slow-flow, plasma, and the tumor ROI (comprising fast flow,
slow flow, and plasma) regions, used in the simulations [18].

by the algorithms under test, over 50 independent runs, for each
of the different scenarios is used as the performance measure
for the estimated flux rate constants.

The simulation settings for generating the synthetic data are
as follows: The AIF ap is generated based on the population
average model4 [36], with a temporal resolution Δt = 4 s for
7-min period (M = 105). Since the fast flow and the slow flow
TACs [given by (12)] are characterized by kep,f and kep,s , re-
spectively, they are generated based on the values of kep,f and
kep,s in each scenario. In this section, for the sake of simulat-
ing different stages of prostate cancer, there are three scenarios
under consideration. Note that in the following scenarios, the
range for generating the KPs are chosen such that the assump-
tions (A1) and (A3) hold true for the generated dataset. The
three scenarios under consideration are:

Scenario 1: Early-stage tumor with parameters kep,f = 1.625,
and {K trans

f [n]}L
n=1 randomly generated following a uniform

distribution over the interval [0.4, 0.6].
Scenario 2: Moderate-stage tumor with parameters kep,f =

3.25, and {K trans
f [n]}L

n=1 randomly generated following a uni-
form distribution over the interval [0.8, 1.2].

Scenario 3: Advanced-stage tumor with parameters kep,f =
6.5, and {K trans

f [n]}L
n=1 randomly generated following a uni-

form distribution over the interval [1.7, 2.3].
In all the scenarios kep,s = 0.33, is set to be a constant.

The fast-flow, slow-flow, and the plasma regions are chosen
as in [18] and are shown in Fig. 3. The tissue regions for
fast flow, slow flow, and plasma are not fully overlapped, and
hence, meet the pure pixel assumption (A4). The parameters
{K trans

s [n]}L
n=1 and {Kp [n]}L

n=1 are uniformly generated over
the interval [0.08, 0.12] and [0.04, 0.06], respectively. Finally,
the synthetic dataset x[n] for all n = 1, . . . , L, is obtained fol-
lowing the linear mixing model in (11). For each dataset gener-
ated using the regions used in [18], the number of pixels within
the ROI is around 5000, i.e., L ≈ 5000. The typical TAC curves
are shown in Fig. 4 for reference, and will be handy in compar-
ing the results of real data experiments that will be presented in
Section V.

Then, the synthetically generated pixel vectors x[n] are added
with Gaussian white noise with zero mean and covariance matrix
σ2IM based on a given signal-to-noise ratio (SNR), which is

4The population average model is a well-known model used for artificially
generating the AIF. It is primarily used to synthesize the AIF (using candidate
TACs in two reference tissues) for PK analysis, in cases where the AIF cannot
be directly obtained from the DCE-MR images.

Fig. 4. Typical TAC curves for fast flow (for different kep,f values), slow flow
and plasma (AIF).

defined as

SNR �
∑L

n=1 ‖x[n]‖2
2

σ2ML
. (39)

The SNR levels considered are 20 dB, 25 dB, 30 dB, 35 dB, 40
dB, and ∞ (noise-free case).

The mean±standard deviation of the estimated FRCs (k̂ep,f

and k̂ep,s) obtained by the algorithms under test are tabulated
in Table II. It can be seen from Table II that in all the three sce-
narios, especially for lower SNR cases (high noise cases), the
COKE algorithm outperforms the state-of-the-art CAM-CM al-
gorithm (employed with the best possible parameter set). Also,
as the SNR increases, the mean values of the estimates (ob-
tained by COKE and CAM-CM) get closer to the true values
of the respective flux rate constants, and the standard deviation
approaches to zero. However, the CAM-CM algorithm fails un-
der the noise-free scenario, as the algorithm is built under the
premise of noise presence in the observed DCE-MRI data. Thus,
Table II demonstrates the validity and superior efficacy of the
proposed COKE algorithm over the benchmark and state-of-
the-art CAM-CM algorithm. The performance of the proposed
COKE algorithm using real data will be demonstrated in the
ensuing section.

V. EXPERIMENTAL RESULTS

Having demonstrated the efficacy of the COKE algorithm
using synthetic datasets, in this section, we apply the COKE al-
gorithm to four real DCE-MRI data obtained from four different
patients suffering from prostate cancer. The DCE-MRI datasets
were provided by Mackay Memorial Hospital, Taipei, Taiwan
and were acquired by using Philips Achieva with a 3-T magnetic
field strength. The acquired 3-D dataset with 4-mm slice thick-
ness, 0.45-mm pixel spacing, 10◦ field of view, and in-plane
matrix size 256 × 256, was taken every 30 s for a total of 10
min after the injection of Gadolinium DTPA, for each patient.
The four male patients referenced as Patients A, B, C, and D are
aged 72, 75, 68, and 87, respectively. For all the four datasets,
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TABLE II
MEAN±STANDARD DEVIATION OF THE ESTIMATED FLUX RATE CONSTANTS (̂kep ,f , k̂ep ,s ) OBTAINED BY COKE AND CAM-CM OVER 50 INDEPENDENT RUNS,

FOR DIFFERENT RANDOM TISSUE MAPS AND DIFFERENT SNRS

SNR (dB) k̂e p Early-Stage Tumor Moderate Tumor Advanced Tumor

ke p , f = 1.625 ke p , f = 3.25 ke p , f = 6.5

COKE CAM-CM COKE CAM-CM COKE CAM-CM

20 k̂e p , f 1.83 ± 0.17 2.10 ± 0.05 3.45 ± 0.31 4.14 ± 0.08 6.33 ± 1.03 8.50 ± 0.66
k̂e p , s 0.39 ± 0.02 0.45 ± 0.01 0.40 ± 0.02 0.45 ± 0.00 0.41 ± 0.02 0.47 ± 0.01

25 k̂e p , f 1.77 ± 0.13 1.91 ± 0.03 3.47 ± 0.18 3.79 ± 0.06 6.84 ± 0.71 7.57 ± 0.13
k̂e p , s 0.36 ± 0.01 0.40 ± 0.00 0.36 ± 0.01 0.40 ± 0.00 0.37 ± 0.01 0.41 ± 0.00

30 k̂e p , f 1.74 ± 0.08 1.79 ± 0.01 3.48 ± 0.17 3.57 ± 0.03 6.78 ± 0.45 7.13 ± 0.07
k̂e p , s 0.35 ± 0.01 0.37 ± 0.00 0.35 ± 0.01 0.37 ± 0.00 0.35 ± 0.01 0.38 ± 0.00

35 k̂e p , f 1.69 ± 0.06 1.72 ± 0.00 3.40 ± 0.14 3.44 ± 0.00 6.71 ± 0.28 6.87 ± 0.00
k̂e p , s 0.34 ± 0.00 0.35 ± 0.00 0.34 ± 0.00 0.35 ± 0.00 0.34 ± 0.00 0.36 ± 0.00

40 k̂e p , f 1.68 ± 0.05 1.69 ± 0.00 3.39 ± 0.11 3.36 ± 0.00 6.77 ± 0.25 6.71 ± 0.00
k̂e p , s 0.34 ± 0.00 0.34 ± 0.00 0.34 ± 0.00 0.34 ± 0.00 0.34 ± 0.00 0.35 ± 0.00

∞ k̂e p , f 1.63 ± 0.00 NA 3.25 ± 0.00 NA 6.50 ± 0.00 NA
k̂e p , s 0.33 ± 0.00 NA 0.33 ± 0.00 NA 0.33 ± 0.00 NA

ke p , s = 0.33 in all cases (NA stands for “NOT APPLICABLE”).

TABLE III
BIOPSY RESULTS (INFERRED PERCENTAGE OF TUMOR DISTRIBUTION) FOR PATIENTS A, B, C, AND D FOR DIFFERENT POSITIONS

Patients Locations Anterior Left Anterior Right Middle Left Middle Right Posterior Left Posterior Right

Patient A Periphery 80% 95% 90% 90% 90% 90%
Center 90% 50% 45% 95% 85% 95%

Patient B Periphery 0% 10% 0% 5% 0% 0%
Center 0% 0% 0% 0% 0% 0%

Patient C Periphery 0% 35% 0% 40% 0% 20%
Center 0% 30% 0% 30% 0% 65%

Patient D Periphery 0% 95% 0% 95% 0% 95%
Center 0% 95% 0% 95% 0% 95%

In this table, periphery and center locations correspond to the peripheral and central prostate regions, respectively.

the suspected abnormal areas were marked in a corresponding
T2-weighted image, by a radiologist, and those corresponding
areas in the T1-weighted DCE-MR images are considered for
marking the ROI for the real data experiments. It should be men-
tioned that except for the AIF selection procedure (as explained
in Section V-A below), the application of COKE algorithm is
confined to this marked ROI in each slice of a patient, and so are
the ensuing results and discussions. The biopsy tests have been
conducted for all the four patients and the test results for all
the patients in the three regions (anterior, middle, and posterior)
of the prostate cancer, are shown in Table III. The values indi-
cated in Table III are the percentage of cancerous tissues in the
biopsy samples taken at the respective locations. Specifically, the
biopsy examination has been conducted in 12 locations, for each
patient; six locations in the peripheral prostate region and six lo-
cations in the central prostate regions. The biopsy observations
are made through the anus, and in the following discussions, the
anterior and posterior regions correspond to smaller and larger
slice numbers, respectively. It should be noted that the biopsy
results are based on samples obtained in some specific locations
(as it is not possible to extract biopsy samples in all the different
slices with the slice thickness set to 4 mm, which is both painful
and tedious), and hence, could only serve as a partial reference

for comparison with the respective KP maps obtained for the
different patients. Table III will be handy in comparison and
validation of the estimated KP maps in Section V-C.

A. Estimation of TACs

The proposed COKE algorithm, summarized in Table I, is
used to estimate the TACs (AIF, fast flow TAC, and slow flow
TAC), FRCs, and the KP maps (with α = 100), of interest.5 As
discussed in Section II, here, the “purest pixel” corresponding
to the AIF is chosen from the entire scanned region (not just
confined to the ROI), for each tissue slice of a patient, based on
(20). Furthermore, among the AIFs (purest pixels) chosen for
the different tissue slices of a patient, the purest pixel that has
the best visual match with the standard AIF (shown in Fig. 4)
is used universally for the estimation of fast flow and slow flow
TACs, of each tissue slice of that particular patient. The reason
behind choosing the AIF globally for all slices of a patient is
due to the practical fact that the AIF may not be explicitly
available/captured in each of the DCE-MRI slices of a patient.

5For other values of α = 500, 1000, the KP maps remain the same and only
the values in the color bars are different.
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Fig. 5. Fast-flow TAC (green solid line) and the slow-flow TAC (red solid
line) estimated by COKE algorithm, for different tissue slices of each Patient.
The associated fast-flow pure pixel x[lf ] (green dotted line) and the slow-flow
pure pixel x[ls ] (red dotted line) in the data, are also shown.

For ease of visualization, for each Patient, the TACs estimated
by COKE algorithm for five affected tissue slices are shown in
Fig. 5,6 where the slice number represents the position of the
MRI scanner that scans the prostate region from bottom to top.
Also for the purpose of comparison and validation, the purest
pixels in the data, i.e., x[lf ] and x[ls ], corresponding to fast flow
TAC and slow flow TAC, respectively, are shown (dotted lines)
along with the estimated TACs (solid lines) for various slices.
It can be readily observed from Fig. 5 that for most cases, the
estimated TACs have shapes similar to those of the respective
purest pixels in the data. Moreover, while the patterns of the
TACs obtained by COKE for Patients A and B are close to those
of the ideal TAC curves (shown in Fig. 4), those deformations
in TACs obtained for Patients C and D could be attributed to the
inevitable noise present in the data, or due to the unavailability
of a perfect pure pixel corresponding to the AIF, fast-flow TAC,
slow-flow TAC, or all the aforementioned.

B. Estimation of Flux Rate Constants

The k̂ep,f and k̂ep,s values obtained by the COKE algorithm
for the respective tissue slices for the four patients are also
tabulated in Table IV. Specifically, it can be observed from Ta-
bles IV that the dynamic range of the FRCs estimated by COKE

6High-resolution images of Figs. 5–9, and additional simulations us-
ing real AIFs estimated from the patients, are available at http://www.ee.
nthu.edu.tw/cychi/publications-e.html

TABLE IV
FRCS (̂kep ,f , k̂ep ,s ) ESTIMATED BY COKE FOR PATIENT A, B, C, AND D FOR

DIFFERENT SLICES

Patient A FRCs Slice 17 Slice 19 Slice 21 Slice 23 Slice 25
k̂e p , f 0.6495 0.5693 0.5779 0.3711 0.4802
k̂e p , s 0.1451 0.3012 0.1274 0.2262 0.1693

Patient B FRCs Slice 14 Slice 16 Slice 18 Slice 20 Slice 22
k̂e p , f 0.3289 0.3535 0.2986 0.2648 0.2834
k̂e p , s 0.2547 0.2067 0.0786 0.1435 0.0749

Patient C FRCs Slice 19 Slice 21 Slice 23 Slice 25 Slice 27
k̂e p , f 0.5437 1.1541 0.4831 0.3886 1.2377
k̂e p , s 0.4163 0.3154 0.0383 0.2512 0.1089

Patient D FRCs Slice 17 Slice 19 Slice 21 Slice 23 Slice 25
k̂e p , f 0.6049 0.6485 0.5470 0.4220 0.4363
k̂e p , s 0.1401 0.2730 0.2946 0.3896 0.3414

is regulated between 0 and 2. It should be emphasized that the
estimated FRC values are dependent upon the imaging device
and the preset imaging intensity. Nevertheless, these k̂ep,f and
k̂ep,s values serve as a measure to identify the intensity of cancer
versus normal tissue. In fact, the larger the difference between
these two values, the severer is the cancer intensity, and vice
versa. As per this fact, for instance, based on k̂ep,f and k̂ep,s

estimated by COKE algorithm (from Table IV), it can be con-
cluded that slices 17 and 21 of Patient A, slices 18 and 22 of
Patient B, slices 23 and 27 of Patient C, and slices 17 and 19
of Patient D, reveal advanced stage cancers. This inference is
also consistent with the Gleason score [37] (that ranges from 2
to 10) of the patients, which are 7, 6, 8, and 8, for Patients A,
B, C, and D, respectively, as a higher Gleason score indicates
advanced cancers [37].

C. Estimation of KP Maps

The obtained KP maps (fast-flow map K̂trans
f , slow-flow map

K̂trans
s , and plasma map K̂p ), within the manually selected

respective ROI, for different slices, are shown in Figs. 6–9,
for the four patients (Patient A to Patient D), respectively. In
Figs. 6–9, the ROIs in the prostate region of a slice are shown
along with the entire obtained DCE-MR image in that slice
position, to show the relative variations of the ROI with respect
to different slices, as the ROIs are manually marked for each
slice of a patient. The color bars in Figs. 6–9, that are shown
adjacent to the KP maps indicate the level of activeness of the
particular tissue. More specifically, if the colors in the map of
slow flow tissue are close to the maximum value (dark red) of
its color bar, it indicates that the tissue is quite normal. On the
other hand, if the colors in the map of fast-flow tissue are close
to the maximum value (dark red) of its color bar, then it indicates
dominant detected cancer tissues. However, the seriousness level
of the detected cancer tissues can be decided only based on the
estimated FRC values (cf., Section V-B). As expected, it can
be observed that the slow-flow and fast-flow maps basically
complement each other in all the results shown in Figs. 6–9. It
can also be observed that for each patient, the detected tumor
regions (fast flow maps) in each slice varies; indicating the
irregular spread of tumor tissues in and over the prostate region.
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Fig. 6. KP maps Estimated by COKE algorithm for Patient A in different
slices.

Fig. 7. KP maps Estimated by COKE algorithm for Patient B in different
slices.

Fig. 8. KP maps estimated by COKE algorithm for Patient C in different
slices.

Fig. 9. KP maps estimated by COKE algorithm for Patient D in different
slices.
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The obtained KP maps are also consistent with the biopsy
results shown in Table III. For instance, for Patient A, the biopsy
results suggest that the tumor is present almost in all parts of
the prostate, which is consistent with the obtained KP maps
for Patient A (shown in Fig. 6). More importantly, the obtained
KP maps could yield more information (which is the prime
purpose for PK analysis) than the ones available only based on
the biopsy results. To see this, let us first consider Patient B (see
Fig. 7). Slice 14 (anterior portion) reveals that there is cancer
on the left side of the slice, which coincides with Table III. The
biopsy results in Table III claim that there are no cancers in
other regions. However, the other slices in Fig. 7 do indicate
the irregular spread of the cancer to the other regions of the
prostate, which is also clinically verified by the doctors team.
Similar inference can be made for Patient C (see Fig. 8) and
Patient D (see Fig. 9). It is worth reiterating the fact that the
biopsy examination results can only serve as a reference and
more information regarding the actual spread and distribution
of the tumor can be obtained only through PK analysis of the
data. Also, one can observe from Figs. 6 to 9 that the fast-flow
KP maps associated with those slices mentioned in Section V-B
earlier (slices 17 and 21 of Patient A, slices 18 and 22 of Patient
B, slices 23 and 27 of Patient C, and slices 17 and 19 of Patient
D) indeed reveal the presence of cancer tissues in the ROI.

D. Additional Discussions

The CAM-CM algorithm [18] has been designed for PK
analysis based on compartmental modeling (irrespective of the
type of cancers). However, the results (TACs, FRCs, and KP
maps) yielded by applying CAM-CM to real prostate data are
uninterpretable.7 The reasons for the inapplicability of CAM-
CM for prostate tumor detection could be attributed to the fol-
lowing: 1) The AIF estimation procedure for COKE is more
practical and realistic (cf., Section V-A), than the AIF estima-
tion procedure in CAM-CM. 2) The ignorance of the scaling
constant and the local optimality effects due to nonconvexity of
the problems involved in CAM-CM may have significant impact
on the results of real data experiments. 3) In addition, there are
also quite some tuning parameters involved in CAM-CM. The
default tuning parameters are based on the simulated data (where
the true information about the TACs and FRCs is available), and
hence, for the simulated data, CAM-CM exhibited performance
comparable to that of COKE (cf., Table II). However, for the real
data experiments on prostate cancer, the optimal tuning param-
eters for CAM-CM are unknown and difficult to find, and this is
out of the scope of this paper. Furthermore, as reported in [18],
the CAM-CM algorithm has been validated for the breast can-
cer data, which are less prone to motion effects, as the DCE-MR
image sequences were externally fixed. Whereas, the prostate
cancer data suffers from motion effects jointly due to the mo-
tion caused through breathing and bowel movement. In addition
to the aforementioned algorithmic issues, such inevitable mo-
tion effects and noise artifacts could also have resulted in poor

7For reference, the PK analysis results using CAM-CM, for the four
patients and the respective slices are available at http://www.ee.nthu.
edu.tw/cychi/publications-e.html

performance of the CAM-CM algorithm when applied to the
prostate cancer data.

VI. CONCLUSION

We have presented an effective, convex-optimization-based
BSS algorithm, namely COKE algorithm for PK analysis of
prostate cancer using T1-weighted DCE-MRI data. We have
first transformed the three-tissue compartmental PK model to a
latent variable model so that the PK analysis can be reformu-
lated into a BSS problem. Under the assumption that the tumor is
present in the prostate region, the COKE algorithm, first applies
normalization to the observed data and successively identifies
the pure pixel indices corresponding to the TACs of the fast
flow, slow flow, and plasma. The FRCs, which are the most
important parameters that determine the accuracy of the esti-
mated KP maps, are then, effectively (without local optimality
issue and with due considerations for the scaling ambiguities)
estimated by solving the original nonconvex FRCs estimation
problem, by optimally solving the corresponding convex op-
timization problems (32) and (37). Finally, the KP maps are
obtained by solving a pixel-wise constrained least-squares op-
timization (also convex) problem (38), subject to all the pos-
sible physical constraints. We have evaluated the efficacy of
the COKE algorithm with the synthetic DCE-MRI data and real
DCE-MRI data of four patients with prostate cancer. Simulation
results have shown that the proposed COKE algorithm performs
well for all the scenarios (early-stage, moderate, and advanced
tumor). For real data experiments, we have detected the tumor
regions together with the estimated TACs and FRCs, which are
consistent with the Mackay Memorial Hospital experts team’s
observations.

Like any other PK analysis algorithm, there is also scope
of extension for the proposed COKE algorithm. The proposed
COKE algorithm is based on the generalized compartmental
model for slice-by-slice PK analysis of DCE-MRI data, thus al-
lowing the interslice heterogeneity (i.e., modeling the flux rate
constants such that they are allowed to vary between slices,
while remaining same within a slice). The most challenging
future extension of this study shall be the joint modeling and
consideration of both interslice and intraslice tumor heterogene-
ity (wherein the flux rate constants vary within each slice and
across slices). The automatic selection of ROI, other modeling
based or in situ based measurements for AIF estimation, the
reconstruction of 3-D cancer tissue patterns over all the slices
based on the observed fast flow KP maps of multiple slices, and
PK analysis using the recently developed magnetic resonance
fingerprinting [38], are also some of the potential future research
directions. Finally, formulating and designing an algorithm ex-
clusively for detecting the presence or absence of cancer, and
the quantification of the tumor lesions (if identified as cancer)
will be of high practical interest.
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