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Abstract—Effective unmixing of hyperspectral data cube under
a noisy scenario has been a challenging research problem in re-
mote sensing arena. A branch of existing hyperspectral unmixing
algorithms is based on Craig’s criterion, which states that the ver-
tices of the minimum-volume simplex enclosing the hyperspectral
data should yield high fidelity estimates of the endmember signa-
tures associated with the data cloud. Recently, we have developed
a minimum-volume enclosing simplex (MVES) algorithm based
on Craig’s criterion and validated that the MVES algorithm is
very useful to unmix highly mixed hyperspectral data. However,
the presence of noise in the observations expands the actual data
cloud, and as a consequence, the endmember estimates obtained
by applying Craig-criterion-based algorithms to the noisy data
may no longer be in close proximity to the true endmember
signatures. In this paper, we propose a robust MVES (RMVES)
algorithm that accounts for the noise effects in the observations by
employing chance constraints. These chance constraints in turn
control the volume of the resulting simplex. Under the Gaussian
noise assumption, the chance-constrained MVES problem can be
formulated into a deterministic nonlinear program. The problem
can then be conveniently handled by alternating optimization, in
which each subproblem involved is handled by using sequential
quadratic programming solvers. The proposed RMVES is com-
pared with several existing benchmark algorithms, including its
predecessor, the MVES algorithm. Monte Carlo simulations and
real hyperspectral data experiments are presented to demonstrate
the efficacy of the proposed RMVES algorithm.

Index Terms—Abundance map, chance-constrained optimiza-
tion, convex analysis, endmember signature, hyperspectral
imaging (HI), hyperspectral unmixing (HU), sequential quadratic
programming (SQP).
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I. INTRODUCTION

HYPERSPECTRAL imaging (HI) is a crucial technique to
identify the materials and their composition in an area by

exploiting the spectral diversity of the observed hyperspectral
data. The areas in which HI is employed are diverse, and they
include mineral identification [1], space object identification
[2], analytical chemistry [3], retinal analysis [4], and many
others. In this paper, we focus on HI for mineral identification
and quantification, wherein a hyperspectral sensor (usually
located on an aircraft or satellite) records the electromag-
netic scattering patterns of materials present in an area, over
hundreds of spectral bands that range from visible to near-
infrared wavelength region. The limited spatial resolution of the
sensor used for HI and the presence of noise in the measured
hyperspectral data demand an effective hyperspectral unmixing
(HU) scheme to extract the underlying endmember signatures
(or simply endmembers) and the associated abundance maps (or
abundance fractions) distributed over a scene of interest. The
endmember signature corresponds to the reflection pattern of
a mineral in different wavelengths, and the abundance fraction
is the fractional distribution of a mineral over the given scene.
The design of HU algorithms often (but not always) involves
dimension reduction as the preprocessing step. The dimension
reduction algorithms are intended to reduce the complexity of
the unmixing algorithm that will be used in the sequel, and to
some extent, they also aid in mitigating the noise effects in
the data cloud. Conventional dimension reduction algorithms
for hyperspectral data typically include principal component
analysis [5] and maximum noise fraction [6]. A detailed survey
of various dimension reduction algorithms can be found in
[7]. However, for these algorithms (and also for the unmixing
algorithms), the number of endmembers must be known a
priori. A Neyman–Pearson-detection-theory-based eigenvalue
thresholding method, namely, virtual dimensionality (VD) [8],
is generally used for the estimation of the number of endmem-
bers in the hyperspectral observations. Other algorithms that
can be used to estimate the number of endmembers include
Akaike information criterion [9] and minimum description
length [10]. Hyperspectral subspace identification (HySiMe)
[11] is a recently proposed dimension reduction algorithm that
can also estimate the number of endmembers.

Conventional HU algorithms are based on linear mixing
model (to be explained later) and can be classified into two main
categories. The algorithms in the first category are based on
the existence of pure pixels (pixels that are fully contributed by
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Fig. 1. Illustration of HU.

a single endmember) in the given hyperspectral observations,
and those in the second category may not require the existence
of pure pixels. Fig. 1 shows the notion of pure pixels and
mixed pixels in an HI scenario. The red pixel corresponds to
a mixed pixel (contributed by land, vegetation, and water), and
the blue pixel corresponds to a pure pixel (contributed by only
water). Pure-pixel-based algorithms include pixel purity index
[12], N-finder (N-FINDR) [13], the simplex growing algorithm
(SGA) [14], [15], vertex component analysis (VCA) [16], and
alternating volume maximization [17], to name a few. All the
pure-pixel-based algorithms aim to find the purest pixels in the
given observations, either directly or indirectly, and hence can
identify only the endmember signatures. However, the fully con-
strained least squares (FCLS) algorithm [18] can be used to es-
timate the abundance maps from the endmember estimates and
the observations. The algorithms in the second category include
minimum-volume transform [19], iterated constrained end-
members (ICEs) [20], piecewise convex endmember [21], alter-
nating projected subgradients (APSs) [22], minimum-volume
constrained nonnegative matrix factorization (MVC-NMF)
[23], minimum-dispersion constrained nonnegative matrix fac-
torization [24], minimum-volume simplex analysis (MVSA)
[25], and minimum-volume enclosing simplex (MVES) [26],
to name a few. The MVSA and MVES algorithms are directly
based on Craig’s criterion [19], which states that the vertices of
the minimum-volume simplex enclosing the data cloud should
yield high fidelity estimates of its endmember signatures. Apart
from the aforementioned algorithms, there are certain other
categories of algorithms that are based on spatial processing
and morphological operators [27], [28]. For a recent survey on
the various existing unmixing algorithms, please refer to [29].

Generally speaking, HU algorithms that do not require the
existence of pure pixels in the data set are more computationally
complicated than pure-pixel-based algorithms. On the other
hand, the presence of pure pixels cannot be guaranteed for
real hyperspectral data that are acquired under poor spatial

resolutions. Hence, there exists a tradeoff between the two
categories of algorithms, in terms of computational tractability
and accuracy. Nevertheless, the performance of all the HU
algorithms degrades when the observations are noisy.

In recent years, several concurrent works on linear unmixing
of noisy observations have been reported. Those works include
the joint Bayesian algorithm (JBA) [30] and simplex identifi-
cation via split augmented Lagrangian (SISAL) [31]. The JBA
[30] is a statistical HU algorithm that assumes conjugate prior
distributions for the abundances and endmember parameters.
The endmember signatures are estimated by using a hierarchi-
cal Bayesian model, which generates the posterior distributions
of both the abundances and the endmember parameters. The
SISAL algorithm [31] is based on Craig’s criterion, and it
employs variable splitting and the augmented Lagrangian ap-
proach to estimate the minimum-volume simplex. Furthermore,
it uses soft constraints to mitigate the effects of the outlier
pixels.

In this paper, we propose a robust MVES (RMVES) algo-
rithm for a general case, where uniform/nonuniform additive
Gaussian noise is present in the observations. We begin with a
linear mixing model and suitably modify an existing dimension
reduction method, called affine set fitting [26], so as to account
for the presence of noise. A toy example shown in Fig. 2
demonstrates how Craig’s criterion may yield inaccurate end-
member estimates for the noisy observations (shown as dots).

Clearly, the random noise expands the data cloud, and conse-
quently, the volume (vertices) of the simplex formed by Craig’s
criterion (shown in dashed line) is larger than (far from) that
of the true simplex (shown in solid line). Motivated by this,
we formulate the RMVES problem by incorporating probabil-
ity constraints or chance constraints [32] into Craig-criterion-
based MVES problem [26], so as to deal with the effect of
random noise. Under the Gaussian noise assumption, the
chance-constrained RMVES problem can be conveniently for-
mulated into a deterministic nonlinear program, where the
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Fig. 2. Illustration of Craig’s simplex for noisy observations, where the
number of endmembers is equal to three.

preassigned probability given in the chance constraints when
coupled with the noise covariance controls the volume of
Craig’s simplex. We then handle the resulting problem by alter-
nating optimization, where each subproblem involved therein
is specifically handled by readily available sequential quadratic
programming (SQP) solvers. Some existing benchmark HU
methods, including the MVES algorithm, are compared with
the proposed RMVES algorithm through Monte Carlo simula-
tions so as to demonstrate its efficacy. The RMVES algorithm,
along with MVES and VCA, is applied to real hyperspectral
data, and some inferences regarding the obtained endmember
signatures and abundance maps are also discussed.

The forthcoming sections are organized as follows. The
linear mixing model and the general assumptions are detailed
in Section II. The dimension reduction technique employed
for uniform and nonuniform Gaussian noises is discussed in
Section III. In Section IV, we briefly summarize the MVES
algorithm [26], which is developed based on Craig’s criterion
[19]. In Section V, we present the robust reformulation of
the MVES algorithm by applying chance constraints on the
noisy data, and then, we develop a robust HU algorithm,
namely, the RMVES algorithm. Monte Carlo simulations and
real hyperspectral data experiments are given in Section VI and
Section VII, respectively. Finally, Section VIII provides some
conclusions and future directions.

In the remainder of this paper, the following notations are
employed. RM (RM

+ ) and R
M×N (RM×N

+ ) represent a set of
real (nonnegative real) M × 1 vectors and real (nonnegative
real) M ×N matrices, respectively. A† represents pseudoin-
verse of a matrix A. 1N and 0 represent an N × 1 all-one
vector and an all-zero column vector of proper dimension,
respectively. A Gaussian distribution with mean vector μ and
covariance matrix Σ is denoted as N (μ,Σ). The symbol Ai

denotes the (i, i)th diagonal element of the matrix A. ‖a‖
represents the Euclidean norm of vector a, and a � b means
that every component in a is larger than or equal to the
corresponding component in b. Finally, det(B) represents the
determinant of a square matrix B.

II. LINEAR MIXING MODEL AND ASSUMPTIONS

The linear mixing model is the one in which each pixel in
the observations is obtained via single reflection of the end-

members present in that location. Such a linear mixing model is
conventionally used in HU [1], [13], [16], [17], [33], [34]. We
consider a scenario in which a hyperspectral sensor measures
solar electromagnetic radiation from N distinct substances.
Owing to low spatial resolution, each observed pixel vector
represents a mixture of multiple distinct substances. Hence,
each pixel vector of the hyperspectral images measured over
M spectral bands can be represented by the following M ×N
linear mixing model

y[n] =x[n] +w[n] (1)

x[n] =As[n] =

N∑
i=1

si[n]ai ∀ n = 1, . . . , L. (2)

In (1), y[n] = [y1[n], . . . , yM [n]]T represents the nth observed
pixel vector (or simply pixel for convenience) comprising M
spectral bands, x[n] = [x1[n], . . . , xM [n]]T corresponds to its
noise-free counterpart, and w[n] = [w1[n], . . . , wM [n]]T is the
noise vector. In (2), A = [a1, . . . ,aN ] ∈ R

M×N denotes the
endmember signature matrix with the ith column vector ai be-
ing the ith endmember signature, s[n] = [s1[n], . . . , sN [n]]T ∈
R

N is the nth abundance vector comprising N fractional
abundances, and L is the total number of observed pixels.
The noise vector w[n] considered in the signal model (1) is
zero-mean uniform/nonuniform additive Gaussian noise vector,
i.e., N (0,D), where D = diag(σ2

1 , . . . , σ
2
M ) ∈ R

M×M
+ is a

diagonal matrix and σ2
i denotes the noise variance in the ith

spectral band. If σ2
i = σ2

j , ∀i �= j, then it is called uniform
Gaussian noise; else, it is called nonuniform Gaussian noise.
The additive Gaussian noise is a reasonable assumption and is
widely used in designing HU algorithms [1], [16], [30].

Assuming prior knowledge about the number of endmem-
bers N , we aim to estimate the endmember signature matrix
A and the abundances s[1], . . . , s[L] from the noisy pixels
y[1], . . . ,y[L] under the following general assumptions
[17], [33].
(A1) The intensities of all the abundance vectors are nonnega-

tive, i.e., si[n] ≥ 0, for all i and n.
(A2) Abundance fractions are proportionally distributed in each

observed pixel, i.e.,
∑N

i=1 si[n] = 1, ∀n.
(A3) min{L,M} ≥ N , and the endmembers are linearly inde-

pendent, i.e., A is of full column rank.
In the ensuing development, we employ two convex analysis

concepts, namely, affine hull and convex hull [32]. While the
affine hull is employed for dimension reduction, the convex hull
is used to infer the geometry of the observations. For ease of
later use, they are defined as follows.

• The affine hull of {a1, . . . ,aN} ⊂ R
M is defined as

aff{a1, . . . ,aN}=
{
x=

N∑
i=1

θiai

∣∣∣∣∣ 1T
Nθ=1,θ ∈ R

N

}
(3)

where θ = [θ1, . . . , θN ]T. An affine hull can be repre-
sented as

aff{a1, . . . ,aN}=A(C,d)={x=Cα+d | α ∈ R
P } (4)

for some (nonunique) d ∈ R
M and C ∈ R

M×P ,
where P ≤ N − 1 is the affine dimension. If
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Fig. 3. Illustration of dimension reduction by affine set fitting for N = 3.

{a1, . . . ,aN} is affinely independent (i.e., the vectors
a1 − aN , . . . ,aN−1 − aN are linearly independent), then
the affine dimension P = N − 1.

• The convex hull of the vectors {a1, . . . ,aN} ⊂ R
M is

defined as

conv{a1, . . . ,aN} =

{
x =

N∑
i=1

θiai

∣∣∣∣∣1T
Nθ = 1,θ ∈ R

N
+

}
.

(5)

A convex hull conv{a1, . . . ,aN} is called an N − 1
dimensional simplex in R

M if {a1, . . . ,aN} ⊂ R
M is

affinely independent and is called the simplest simplex
when M = N − 1.

III. DATA PREPROCESSING

In this section, the dimension reduction technique employed
for the observations corrupted by uniform and nonuniform
Gaussian noise is discussed. For the noisy scenario, we employ
the dimension reduction by using a variant of affine set fitting
procedure introduced in [26]. To begin with, the affine set fitting
procedure for noise-free data is reviewed in the following for
convenience.

It can be readily inferred from the signal model (2), assump-
tions (A2) and (A3), and from (3) that x[n] ∈ aff{a1, . . . ,aN}.
Furthermore, it is shown in [26] that the affine hull of the
observations is the same as the affine hull of the endmember
signatures, i.e., aff{x[1], . . . ,x[L]} = aff{a1, . . . ,aN}, which,
in turn, can be represented by the affine set fitting parameters C
and d in (4). Such representation aids in dimension reduction
of the observed data. The dimension-reduced pixel vector x̃[n]
can be obtained by the following affine transformation of x[n]:

x̃[n] = CT (x[n]− d) ∈ R
N−1 ∀n = 1, . . . , L (6)

where (C,d) is an affine set fitting solution given by [26]

d =
1

L

L∑
n=1

x[n] (7)

C =
[
q1

(
UxU

T
x

)
, . . . , qN−1

(
UxU

T
x

)]
(8)

where

Ux = [x[1]− d, . . . ,x[L]− d] ∈ R
M×L (9)

is the mean-removed data matrix and qi(R) denotes the unit-
norm eigenvector associated with the ith principal eigenvalue
of the matrix R.

It should be mentioned that under (A2) and (A3), the afore-
mentioned dimension reduction procedure is a lossless trans-
formation in the absence of noise, and the dimension of the
data is reduced from M to N − 1. An illustration of dimension
reduction via the affine set fitting procedure is given in Fig. 3,
where N = 3.

Since
∑N

j=1 sj [n] = 1 (A2), it follows by substituting the
noise-free signal model (2) into (6) that

x̃[n] =

N∑
j=1

sj [n]αj ∀n = 1, . . . , L (10)

where

αj = CT(aj − d) ∈ R
N−1 (11)

is the jth dimension-reduced endmember signature. Moreover,
due to si[n] ≥ 0 (A1), it can be seen that

x̃[n] ∈ conv{α1, . . . ,αN} ⊂ R
N−1 ∀n (12)

and conv{α1, . . . ,αN} is the simplest simplex. This can be re-
garded as the outcome of the fact that the affine transformation
of a simplex is also a simplex, as one can infer from (2) that,
for all n, x[n] ∈ conv{a1, . . . ,aN}, and conv{a1, . . . ,aN} ⊂
R

M is itself a simplex [by (A3)].
However, when the data are corrupted by noise, the ob-

servations can no longer lie in a single specific affine set.
Accordingly, for the noisy scenario, the approximate affine
set fitting parameters (Ĉ and d̂) can be obtained as explained
below.

Similar to (9), by (1), the mean-removed noisy data matrix is

Uy=[y[1]−d, . . . ,y[L]−d]=Ux+W ∈ R
M×L (13)

where W = [w[1], . . . ,w[L]]. Then

UyU
T
y =UxU

T
x +UxW

T +WTUx +WWT

∼=UxU
T
x +WWT = UxU

T
x + LD̂ (14)

which is because the matrices UxW
T and WUT

x asymptoti-
cally approach zero matrix for large L (since the noise is zero
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mean and independent of the noise-free observations), and D̂ is
defined as

D̂ =
1

L
WWT (15)

which is actually an estimate of the noise covariance matrix
D. By replacing x[n] with y[n] in (7) and replacing UxU

T
x

with UyU
T
y − LD̂ [from (14)] in (8), respectively, we have the

following equations for Ĉ and d̂ as approximations for C and
d, respectively

d̂ =
1

L

L∑
n=1

y[n] =
1

L

L∑
n=1

x[n] +
1

L

L∑
n=1

w[n] ∼= d (16)

Ĉ =
[
q1

(
UyU

T
y − LD̂

)
, . . . , qN−1

(
UyU

T
y − LD̂

)]
∼=C. (17)

Note that (16) and (17) hold since the noise is of zero mean
such that (1/L)

∑L
n=1 w[n] asymptotically approaches zero

vector for large L and D̂ approaches the true D for large
L, respectively. In this paper, the multiple-regression-analysis-
based noise covariance estimation method reported in HySiMe
[11] is employed to obtain D̂. With the given D̂, the affine
set fitting solution (Ĉ, d̂) of the noisy data [given by (16) and
(17)] serves as an approximation to the true (C,d), and it
asymptotically approaches the true (C,d) for large L.

The obtained Ĉ and d̂ are then used to obtain the dimension-
reduced noisy observations, as given by

ỹ[n] = ĈT
(
y[n]− d̂

)
= ĈT

(
x[n]− d̂

)
+ ĈTw[n]

∼= x̃[n] + w̃[n] (18)

where

w̃[n] = ĈTw[n] (19)

and the approximation in (18) is because the affine set fitting
parameters (Ĉ, d̂) for the noisy data serve as a good approxi-
mation to the true (C,d) [see (16) and (17)].

IV. BRIEF REVIEW OF MVES ALGORITHM

As mentioned in Section I, for the hyperspectral data with
noise, the aim is to fit a simplex for the observed data, whose
volume is less than that of the simplex volume obtained by
Craig’s criterion, so that the resultant simplex will be close to
the true simplex. For ease of continuity and understanding, the
robust algorithm to be presented in Section V will be derived
from Craig-criterion-based MVES algorithm [19], which is
briefly summarized in this section. The MVES algorithm aims
to solve the following optimization problem [17], [26]:

min
β1,...,βN∈RN−1

V (β1, . . . ,βN )

s.t. x̃[n] ∈ conv{β1, . . . ,βN} ∀n.
(20)

Here, x̃[n] is the dimension-reduced noise-free observation,
β1, . . . ,βN correspond to the dimension-reduced endmember

signatures, and V (β1, . . . ,βN ) is the volume of the simplex
conv{β1, . . . ,βN}, given by [35]

V (β1, . . . ,βN ) =
|det(B)|
(N − 1)!

(21)

where (N − 1)! represents the factorial of N − 1 and

B = [β1 − βN , . . . ,βN−1 − βN ] ∈ R
(N−1)×(N−1). (22)

By (22) and (5), the constraints of (20) can be expressed as

x̃[n] =
N∑
i=1

si[n]βi = Bs′[n] + βN ∀n (23)

where

s′[n] = [s1[n], . . . , sN−1[n]]
T ∈ R

N−1
+ (24a)

sN [n] = 1− 1T
N−1s

′[n] ≥ 0 (24b)

are the abundance fractions of the nth pixel in the observations.
Note that (24a) and (24b) jointly enforce the nonnegativity and
full-additivity constraints on the abundances. Equation (23) can
be rewritten as

s′[n] = B−1 (x̃[n]− βN ) = Hx̃[n]− g ∀n (25)

where

H =B−1 (26a)

g =B−1βN . (26b)

Substituting (25) into (24) gives rise to the following equivalent
constraints:

si[n] =hT
i x̃[n]− gi ≥ 0,

∀i = 1, . . . , N − 1; n = 1, . . . , L (27a)

sN [n] = 1− 1T
N−1 (Hx̃[n]− g) ≥ 0,

∀n = 1, . . . , L (27b)

where hT
i is the ith row vector of H and gi is the ith element of

g. Hence, the minimization problem in (20) is equivalent to the
following maximization problem:

max
H∈R

(N−1)×(N−1),

g∈RN−1

|det(H)| (28a)

s.t. hT
i x̃[n]− gi ≥ 0 ∀i, n (28b)

1− 1T
N−1 (Hx̃[n]− g) ≥ 0 ∀n. (28c)

After some simplifications, the nonconvex optimization prob-
lem (28) is then handled via alternating optimization, where
each and every subproblem is convex (in fact, linear program),
and can be solved by using available convex optimization
solvers such as SeDuMi [36] and CVX [37]. Let us emphasize
that the MVES algorithm in [26] considers a noise-free sce-
nario, and hence, for noisy hyperspectral data, the solution, i.e.,
the simplex conv{β1, . . . ,βN}, obtained by MVES may be far
from the true one.
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V. RMVES ALGORITHM

In this section, we develop a robust HU algorithm that aims
to account for the presence of noise in the observations. The
presence of noise in the observations expands the data cloud
(even after dimension reduction). Hence, for noisy data, the
minimum-volume simplex estimated by (28) will be larger
than the true simplex, and therefore, its vertices (endmember
signatures) will be away from those of the true simplex (as
shown in Fig. 2). Given the noisy observations, our aim now
is to find a minimum-volume simplex that can be closer to the
true simplex. This means that we allow some pixels in the noisy
data cloud to be outside the estimated simplex.

From (18), we have x̃[n] ∼= ỹ[n]− w̃[n]. Substituting this
for x̃[n] in (28), we have

max
H∈R

(N−1)×(N−1),

g∈RN−1

|det(H)| (29a)

s.t. hT
i (ỹ[n]−w̃[n])−gi≥ 0 ∀i, n (29b)

1−1T
N−1H (ỹ[n]−w̃[n])+1T

N−1g≥ 0

∀n. (29c)

However, w̃[n] = ĈTw[n] is an unknown random vector. We
therefore need to consider this uncertainty in the constraints of
(29). In the ensuing development, we will make use of chance
constraints or probabilistic constraints [32] that can account
for the randomness in the observations. A chance-constrained
counterpart of problem (29) is proposed as follows:

max
H∈R(N−1)×(N−1),

g∈RN−1

|det(H)| (30a)

s.t. Pr
(
ui[n]≤hT

i ỹ[n]−gi
)
≥ η ∀i, n

(30b)
Pr

(
z[n]≤1−1T

N−1Hỹ[n]+1T
N−1g

)
≥ η

∀n (30c)

where Pr(·) represents the probability; ui[n]
Δ
= hT

i Ĉ
Tw[n] is

a random variable with the distribution N (0,hT
i Ĉ

TDĈhi),

i = 1, . . . , N − 1; z[n]
Δ
= −1T

N−1HĈTw[n] is a random vari-

able with the distribution N (0,1T
N−1HĈTDĈHT1N−1); and

η ∈ (0, 1) is a design parameter. Note that, in (30), the hard
constraints in (29), i.e., (29b) and (29c) are replaced by the soft
constraints (30b) and (30c), respectively. Specifically, in (30),
we only require that the constraints (29b) and (29c) hold true
with probability not less than η.

The chance constraints in (30) can be further simplified by
normalizing the random variables involved [32]. Specifically,
for a random variable ε ∼ N (μ, δ2) and t ∈ R, Pr(ε ≤ t) ≥
η is true as t ≥ δΦ−1(η) + μ, where Φ(·) is the cumulative
distribution function of the standard normal random variable
(Gaussian random variable with zero mean and unit variance),
and Φ−1(·) is the inverse of Φ(·). Applying this procedure to the
constraints of (30), we have the following RMVES problem:

max
H∈R

(N−1)×(N−1),

g∈RN−1

|det(H)| (31a)

s.t. Φ−1(η)
√

Qi ≤ hT
i ỹ[n]− gi ∀i, n

(31b)

Φ−1(η)
√

1T
N−1Q1N−1 ≤ 1− 1T

N−1Hỹ[n]

+ 1T
N−1g ∀n

(31c)

where Q = HĈTDĈHT and Qi = hT
i Ĉ

TDĈhi. Let the
constraint set of (31) be

F(η)=
{
(H,g)|Φ−1(η)

√
Qi ≤ hT

i ỹ[n]−gi∀i, n,Φ−1(η)

×
√
1T
N−1Q1N−1≤1−1T

N−1Hỹ[n] + 1T
N−1g, ∀n

}
.

(32)

As Φ−1(η) is a monotone increasing function of η, one can infer
that

F(η1) ⊆ F(η2) ∀η1 ≥ η2. (33)

Thus, the optimal | det(H)| will be larger for smaller η. Also
note from (26a) that an increased value of | det(H)| corre-
sponds to a decreased value of | det(B)| = 1/| det(H)| (i.e.,
a smaller simplex). It can be readily seen that, when η = 0.5,
the constraint set F(0.5) of (31) is identical to that of (28)
(as Φ−1(η = 0.5) = 0) with x̃[n] replaced by ỹ[n]. Simply
speaking, for noisy observations, our aim is to find a simplex
whose volume is minimized further when compared to that of
the simplex obtained by Craig-criterion-based MVES algorithm
(see Fig. 2). This, together with (33), confirms that the appro-
priate range of η for robust design should be between 0 and 0.5.
It is also worthwhile to mention that, when η = 0, | det(H)|
becomes unbounded as F(0) = R

(N−1)×(N−1) × R
N−1 and,

hence, | det(B)| becomes zero, and for the other extreme case
of η = 1, problem (31) becomes infeasible (as could be inferred
from (32)) since F(1) is an empty set.

Note that the values of η affect the feasible set of (31).
When η > 0.5 (i.e., Φ−1(η) > 0), the constraints (31b) and
(31c) are second-order cone constraints (convex). These con-
straints ensure that the corresponding abundances of each noisy
observation are positive, rendering all the observations to be
inside the estimated simplex. However, from (33), one can infer
that the estimated simplex when η > 0.5 will be larger than the
one estimated when η = 0.5 (simplex estimated by MVES). On
the other hand, if η < 0.5 (i.e., Φ−1(η) < 0), the constraints
(31b) and (31c) become nonconvex in (H,g). However, these
constraints allow some negativity in the abundance fractions,
by means of which some noisy pixels can be left out of the
estimated simplex. Recall that, for the robust design, some
noisy pixels must be left out of the simplex such that the
estimated simplex can be close to the true simplex (as could
be inferred from Fig. 2). Thus, we again conclude that the apt
range of the design parameter η should be between 0 and 0.5.

Fig. 4 shows a scatter plot (for N = 3) of the dimension-
reduced noisy observations and optimal simplexes
conv{α1,α2,α3} of the RMVES problem (31) for different
values of η. As elaborately discussed earlier, one can see in
Fig. 4 that, when η < 0.5, the solution of RMVES problem
indeed approaches the true simplex (as some of the noisy pixels
are left outside the simplex). When η = 0.5, the minimum-
volume simplex tightly encloses all the observations, and
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Fig. 4. Scatter plot of the dimension-reduced pixels for N = 3, illustrating
the solutions of RMVES for different values of η.

when η > 0.5, the simplex expands but still encloses all the
observations. Note that, for η ≥ 0.5, the estimated simplex is
away from the true simplex.

While the feasible set of (31) could be convex or nonconvex
(depending on η), the objective function of (31) is always
nonconvex. Inspired by our previous works [26], [38]–[40], we
utilize the alternating optimization methodology, by virtue of
which we form subproblems that are hopefully “less noncon-
vex” than (31). We consider the cofactor expansion for det(H)
along the ith row of H

det(H) =
N−1∑
j=1

(−1)i+jhij det(Hij) (34)

where Hij is the submatrix of H with the ith row and the jth
column removed. One can observe from (34) that det(H) is
linear in each hT

i , which enables us to update hT
i and gi while

fixing the other rows of H and the other entries of g. Then, the
partial maximization of (31) with respect to hT

i and gi can be
formulated as

max
hT

i
,gi

∣∣∣∣∣∣
N−1∑
j=1

(−1)i+jhij det(Hij)

∣∣∣∣∣∣ (35a)

s.t. Φ−1(η)
√

Qi≤hT
i ỹ[n]−gi ∀n (35b)

Φ−1(η)
√

1T
N−1Q1N−1 ≤ 1−1T

N−1Hỹ[n]+1T
N−1g

∀n. (35c)

The objective function in (35) is still nonconvex but can be
handled by breaking it into the following two optimization
problems:

p� = max
hT

i
,gi

N−1∑
j=1

(−1)i+jhij det(Hij)

s.t. Φ−1(η)
√

Qi ≤ hT
i ỹ[n]− gi ∀n (36a)

Φ−1(η)
√

1T
N−1Q1N−1

≤ 1− 1T
N−1Hỹ[n] + 1T

N−1g ∀n

q� = min
hT

i
,gi

N−1∑
j=1

(−1)i+jhij det(Hij)

s.t. Φ−1(η)
√

Qi ≤ hT
i ỹ[n]− gi ∀n (36b)

Φ−1(η)
√

1T
N−1Q1N−1

≤ 1− 1T
N−1Hỹ[n] + 1T

N−1g ∀n.

As discussed earlier, the apt range of the design parameter is
η < 0.5, and hence, unlike in [26], [38], and [40], the subprob-
lems here (36a) and (36b) are nonconvex, which make problem
(31) yet difficult to solve. SQP [41] is a well-known method to
handle nonconvex problems, and here, we employ the available
MATLAB-based SQP solver, namely, fmincon [42], to handle
the subproblems (36a) and (36b). It should be noted that
although the subproblems (36a) and (36b) are nonconvex, the
objective functions are now linear (convex). From our simula-
tion experience, we found that this strategy substantially aids in
mitigating the local optimality issue associated with the prob-
lem (31) (this issue will be addressed later in Section VI-C).
The optimal solution of (35), denoted by (h�T

i , g�i ), is chosen
as an optimal solution of the maximization problem (36a) if
|p�| > |q�| and that of the minimization problem (36b) if |q�| >
|p�|. This rowwise maximization is conducted cyclically (i.e.,
i := (i modulo (N − 1)) + 1 via each row update of H). We
define one iteration as one full update of the matrix H and the
vector g. At each iteration, if the relative change in | det(H)|
between the current and the previous iteration exceeds a given
threshold, then we continue with the next updating iteration;
else, the updated H and g are the obtained estimates.

Suppose that a solution (H�,g�) is obtained by the afore-
mentioned alternating maximization method. From (11), (26a),
and (26b), the endmember signatures can then be recovered by
âi = Cα̂i + d for i = 1, . . . , N , where

α̂N =(H�)−1g�, (37)

[α̂1, . . . , α̂N−1] = α̂N1T
N−1 + (H�)−1. (38)

Since some abundance fractions si[n] can be negative for those
pixels outside the simplex conv{α̂1, . . . , α̂N}, the abundance
estimates ŝ[1], . . . , ŝ[L] are therefore obtained by using the
FCLS algorithm [18], which can ensure the nonnegativity and
full additivity of the estimated abundances. The previously
illustrated procedure is collectively termed as the RMVES
algorithm.

The proposed RMVES algorithm uses the well-known VCA
[16] for the initialization of (35) [33]. The endmember es-
timates obtained by VCA are first expanded until all the
dimension-reduced data are well within the simplex formed by
the expanded endmember estimates. The expanded endmember
estimates are then used to get the initial estimates of H [by
(26a)] and g [by (26b)]. The pseudocode of the expanded VCA,
which is used for RMVES initialization [25], is given in Table I.
The pseudocode of the proposed RMVES algorithm is given in
Table II.

We conclude this section by summarizing the key distinctions
between the MVES algorithm [26] and the proposed RMVES
algorithm. In contrast to the MVES algorithm that only consid-
ers hard constraints assuming the absence of noise, the RMVES
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TABLE I
PSEUDOCODE FOR THE EXPANDED VCA INITIALIZATION [25]

TABLE II
PSEUDOCODE FOR RMVES ALGORITHM

algorithm employs soft constraints (chance constraints) to ac-
count for the presence of noise in the observed data. In addition,
the RMVES algorithm uses the chance constraint parameter η
to control the volume of the estimated simplex such that some
noisy dimension-reduced data ỹ[n] naturally fall outside the
estimated simplex for η < 0.5, and it yields the same endmem-
ber estimates with the MVES algorithm for η = 0.5. While
both algorithms employ the alternating optimization approach,
the RMVES algorithm resorts to a series of nonlinear and
nonconvex programs (handled via SQP) to obtain the desired
endmember estimates, while the MVES algorithm solves a
series of linear programs. Finally, in RMVES algorithm, the
endmember estimates, along with the hyperspectral data, are
used to estimate the abundances via FCLS algorithm, whereas
the MVES algorithm yields endmember estimates and abun-
dance estimates simultaneously.

VI. SIMULATIONS

In this section, the efficacy of the proposed RMVES al-
gorithm is demonstrated. The results shown in this section
are averaged over 50 Monte Carlo runs for each considered
scenario. To show the robustness of the proposed algorithm,
two different noisy scenarios are considered. The first scenario
is for the observations corrupted with uniform Gaussian noise
(Section VI-A). The performance is studied under different
purity levels and for different signal-to-noise ratios (SNRs).
The second scenario is that the observations are corrupted by
nonuniform Gaussian noise (Section VI-B). In this case, we fix
the purity level and evaluate the performance of the algorithms
under test for different distributions of the nonuniform Gaussian
noise variance over various SNR levels. Finally, in Section VI-
C, we study the local optimality issue associated with han-
dling the nonconvex problems (31) and (35) (via RMVES
algorithm) to show the substantial performance improvement
of the latter over the former. Several existing algorithms are
used to compare the performance of the proposed RMVES
algorithm. The pure-pixel-based methods used are N-FINDR
[13], SGA [14], and VCA [16], and then, FCLS [18] is used to
find the abundances associated with the obtained endmember
estimates. The other methods used are ICE [20], APS [22],
MVC-NMF [23], MVSA [25], SISAL [31], and MVES [26].
The parameter settings and algorithmic details of the algorithms
under test are summarized in Table III (for other parameters
of the algorithms not listed in the table, their default values
mentioned in their respective references are used). The root-
mean-square (rms) spectral angles, denoted as φen (φab) be-
tween the true endmembers (abundance maps) and estimated
endmembers (abundance maps) (which have been widely used
in HU [1], [16], [26]), are used as the performance indices,
which are defined as follows:

φen = min
π∈ΠN

√√√√ 1

N

N∑
i=1

[
arccos

(
aTi âπi

‖ai‖ ‖âπi
‖

)]2
(39)

φab = min
π∈ΠN

√√√√ 1

N

N∑
i=1

[
arccos

(
sTi ŝπi

‖si‖ ‖ŝπi
‖

)]2
(40)
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TABLE III
IMPLEMENTATION DETAILS FOR THE ALGORITHMS UNDER TEST

where âi denotes the estimated endmember signature, ŝi =
[ŝi[1], . . . , ŝi[L]]

T denotes the estimated abundance map, π =
(π1, . . . , πN )T, and ΠN = {π ∈ R

N |πi ∈ {1, 2, . . . , N}, πi �=
πj for i �= j} is the set of all the permutations of {1, 2, . . . , N}.
The average computation time (averaged over all the scenarios
and independent runs) of all the algorithms (i.e., the average
time required to estimate both the endmember signatures and
the abundances), when implemented in Matlab R2008a and
running in a desktop computer equipped with Core i7-930 CPU
with 2.80-GHz speed and 12-GB memory, is considered as the
computational complexity measure.

In the simulations, 8 endmembers, namely, Alunite, An-
dradite, Buddingtonite, Calcite, Chalcedony, Chlorite, Desert
Varnish, and Halloysite, with 224 spectral bands selected from
the U.S. Geological Survey library [43], [44] are used to
generate the synthetic observations. The abundance vectors
were generated by following the Dirichlet distribution [16][26],
which can ensure the assumptions on the abundance vectors
[i.e., (A1) and (A2)]. The purity parameter ρn of the nth
abundance vector s[n] is defined as 1/

√
N ≤ ρn = ‖s[n]‖ ≤ 1

(where the bounds are due to (A1) and (A2) [26]), which
indicates the quantitative dominance of an endmember ai in the
observed pixel vector x[n] =

∑N
i=1 si[n]ai. It should be clear

that the purity of the observed pixel x[n] is higher for larger
ρn. In the simulations, we define a parameter ρ, which means
that the ρn for all the abundance vectors lies between 1/

√
N

and ρ. In each simulation scenario, a pool of 10 000 pixels
was generated randomly by following the Dirichlet distribution,
and then, 1000 vectors (L = 1000) with ρn ∈ [1/

√
N, ρ] were

taken from the generated pool, for a given purity parameter ρ.
The purity levels considered in our simulations are ρ = 0.6, 0.8,
and 1.

As previously inferred for the RMVES algorithm, the apt
value of η must be less than 0.5, and from our extensive
simulation experience, we found that η should lie in the range
of 0.01 to 0.0001. Therefore, in each simulation and real data
experiment (see Section VII), the η value for the RMVES
algorithm is set to 0.001 (constant) for all SNRs. The reasons
behind fixing an η value can be explained by scrutinizing the
constraints of problem (35), where Qi and Q in (35b) and (35c),
respectively, are functions of the noise covariance matrix D.
This implies that, for a fixed η value, the noise covariance ma-
trix indirectly determines the lower bound of the abundances,
which, in turn, controls the volume of the estimated simplex.
Furthermore, since (35) is nonconvex, for each given data set
(under a given scenario), the RMVES algorithm is executed
ten times with ten different expanded VCA initializations (since
each time VCA yields different endmember estimates for noisy
observations), and the endmember signature and abundance
fractions associated with the largest | det(H)| are chosen as
the optimal endmember and abundance estimates for the data
under consideration. Such a technique has been applied before
in handling nonconvex problems, e.g., [45].

A. Uniform Gaussian Noise Case

For the uniform Gaussian noise case, the noisy data were
obtained by adding independent and identically distributed
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TABLE IV
AVERAGE φen AND φab (IN DEGREES) AND AVERAGE COMPUTATION TIME T (IN SECONDS) OVER THE VARIOUS UNMIXING METHODS

FOR DIFFERENT PURITY LEVELS (ρ) AND SNRs—UNIFORM GAUSSIAN NOISE CASE

zero-mean Gaussian noise vector to the noise-free data for
different SNRs, where SNR =

∑L
n=1 ‖x[n]‖22/(σ2ML). To

maintain nonnegativity of the observed pixels, we artificially
set the negative values of the noisy pixels to zero. Table IV
shows the rms endmember spectral angle φen (in degrees), rms
abundance spectral angle φab (in degrees), and the overall av-
erage computation time (over all the scenarios) T (in seconds)
of all the algorithms under test, for the observations corrupted
by uniform Gaussian noise, with SNRs between 15 and 40 dB,
and ρ = 0.6, 0.8, and 1. For each scenario, the best (minimum
φen and φab) out of all the algorithms is highlighted as a bold-
faced number. As one can infer from Table IV, the proposed
RMVES algorithm achieves the best performance for the highly
mixed case (ρ = 0.6) when SNR ≥ 20 dB, and for all the
values of ρ, the RMVES algorithm performs better than its
predecessor, the MVES algorithm. For the moderately mixed
case (ρ = 0.8), SISAL shows the best performance for SNR ≥
20 dB, followed by RMVES for SNR ≥ 25 dB. As expected,
when pure pixels exist in the data (ρ = 1), the performances of
the pure-pixel-based algorithms such as N-FINDR, VCA, and
SGA are comparable with each other, and in some scenarios,
ICE and APS perform well. As far as the average computation
time of the algorithms is concerned, Table IV confirms that the
values of the average computation time for pure-pixel-based
algorithms (N-FINDR, VCA, and SGA) are less than those of
other algorithms. Among the other algorithms, SISAL costs the
least average computation time, and the average computation
time of RMVES algorithm is less than that of ICE algorithm.

As can be seen from Table IV, the computational complexity
of RMVES algorithm is the price for the accuracy, particularly
when the hyperspectral data are highly mixed.

B. Nonuniform Gaussian Noise Case

For the nonuniform Gaussian noise case, the noise variances
σ2
i of the M spectral bands, following a Gaussian shape

centered at the (M/2)th band, as used in [16] and [26], are
given by

σ2
i =σ2

exp
(
− (i−M/2)2

2τ2

)
M∑
j=1

exp
(
− (j−M/2)2

2τ2

) ∀i = 1, . . . ,M (41)

where τ controls the variance of the Gaussian shape among
σ2
1 , . . . , σ

2
M . It corresponds to uniform Gaussian noise for τ =

∞ and one-band noise for τ = 0. Table V shows the average
rms spectral angles and the average computation time of all the
algorithms under test, for SNR from 15 to 40 dB, ρ = 0.7, and
τ = ∞, 18, and 9. For the nonuniform Gaussian noise case, in
most of the scenarios under consideration, RMVES performs
best, followed by SISAL and ICE. It is worth mentioning that,
for τ = 9, some performance drop of RMVES may be due to
the estimation of the noise covariance matrices in such sce-
narios. Here again, in all the scenarios, the RMVES algorithm
performs better than its predecessor, the MVES algorithm. The
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TABLE V
AVERAGE φen AND φab (IN DEGREES) AND AVERAGE COMPUTATION TIME T (IN SECONDS) OVER THE VARIOUS UNMIXING METHODS

FOR DIFFERENT τ VALUES AND SNRs—NONUNIFORM GAUSSIAN NOISE CASE, ρ = 0.7

TABLE VI
AVERAGE φen AND φab (IN DEGREES) AND AVERAGE COMPUTATION TIME T (IN SECONDS) WHILE DIRECTLY APPLYING SQP TO (31),

FOR DIFFERENT ρ VALUES AND SNRs—UNIFORM GAUSSIAN NOISE CASE

observations on the average computation time of the algorithms
under test for the uniform Gaussian noise case in Section VI-A
also apply to the nonuniform Gaussian noise case here.

C. Local Optimality Issues

In this section, let us investigate the local optimality issues
while attempting to solve the nonconvex problems (31) and
(35) (via RMVES algorithm). Table VI shows the average φen

and φab for the uniform Gaussian noise case and the average
computation time T (in seconds), when (31) is directly handled
using SQP. Here again, the η value used is 0.001, and (31) is
executed ten times with ten different VCA initializations (as in
Table I). The estimates associated with the maximum value of
| det(H)| are chosen as the solution for (31). As one can infer
by comparing Tables IV and VI, attempting to solve (35) in a
cyclic optimization fashion (RMVES algorithm) significantly
improves the performance of the algorithm. The numerical
results from these tables indicate that cyclic optimization is not

as susceptible to local optimality issues as attempting to solve
(31) directly by SQP.

Another interesting observation is the variation in the average
endmember spectral angle when handling (35) (via RMVES
algorithm) with one VCA initialization (as in Table I) and
with ten different VCA initializations. In Fig. 5, the asterisks
correspond to the average endmember spectral angle (averaged
over 50 independent runs) obtained by executing the RMVES
algorithm with a single VCA initialization in each of the 50
independent runs, for ρ = 0.6 and SNR (uniform Gaussian
noise) varying from 15 to 40 dB with a step size of 5 dB.
The triangles in the figure represent the average endmember
spectral angles associated with the RMVES algorithm for the
same scenarios, but with ten VCA initializations in each of the
50 independent runs, and choosing the spectral angle associ-
ated with the maximum | det(H)| (i.e., those φen’s shown in
Table IV). As one can infer, the differences between the average
endmember spectral angles obtained by RMVES with one VCA
initialization and by RMVES with ten VCA initializations for
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Fig. 5. Average endmember spectral angles obtained by the RMVES algo-
rithm for ρ = 0.6 with one VCA initialization and ten VCA initializations and
choosing the spectral angle associated with the maximum |det(H)|.

TABLE VII
var{φen} AND mean{φen} OF VARIOUS HU ALGORITHMS,

WHEN ρ = 0.6 AND SNR = 25 dB, FOR 50 INDEPENDENT DATA SETS.
FOR EACH DATA SET, THE ALGORITHM IS APPLIED TEN TIMES, EACH

TIME WITH ITS INHERENT INITIALIZATION

all the scenarios are within two degrees. This indicates that the
local optimality issue associated with (35) is not severe, but still
exists (even after linearizing the objective function of (31) via
cofactor expansion), since the constraint sets are nonconvex.

Analyzing the local optimality issue of the existing HU
algorithms in a fair fashion is nontrivial due to their distinct
characteristics and can be a separate research topic. However, to
illustrate the existence of local optimality in other HU methods,
we proceed with the following simulations. A total of 50 data
sets have been independently generated with ρ = 0.6, under
uniform Gaussian noise case with an SNR of 25 dB, and the HU
algorithms were applied ten times (each time with a different
initialization) to each of the data set. Then, for the ith data
set, the variance and mean of φen (over the ten executions of
each algorithm on the ith data set), denoted by var{φen}i and
mean{φen}i, respectively, are noted and the average variance
and mean over 50 independent runs are computed, respec-
tively, as

var{φen} =
1

50

50∑
i=1

var{φen}i

mean{φen} =
1

50

50∑
i=1

mean{φen}i.

Table VII shows the var{φen} and mean{φen} of the various
algorithms under test. The mean{φen} values in Table VII are
comparable with the corresponding values shown in Table IV,

where the average values of φen are over 50 independent runs
without using 10 different initializations for each independent
run. As can be seen from Table VII, in addition to SGA [14]
and APS [22], the var{φen} for MVES algorithm is also zero
because the MVES algorithm is initialized by solving the fea-
sibility problem [26] (that is inherent in the MVES algorithm),
which, being convex, always yields the same initial estimates
for each data set (i.e., the same initialization is yielded for the
same data set).

VII. REAL DATA EXPERIMENTS

In this section, we demonstrate the performance of the pro-
posed RMVES algorithm using the AVIRIS data taken over
the Cuprite Nevada site [46], as a good library of endmember
signature is available [43], [44] and thus can be used for perfor-
mance evaluation. The AVIRIS data are challenging because
of two reasons. One reason is that the spatial resolution is
not so high (about 17 m per pixel), and the other reason is
that the true total number of endmembers and the associated
minerals are yet to be accurately identified. While, initially, it
was concluded that there are about 13 minerals (endmembers)
in the site, the number kept increasing, and later, it was reported
that there are around 70 mineral compounds (endmembers) [47]
present in the site and the number is still expected to rise.
In our experiment, we considered a 200 × 200 subimage of
the hyperspectral data as our region of interest (ROI), with
224 spectral bands. The bands 1–2, 104–113, 148–167, and
221–224 are less significant (due to strong noise or dense water-
vapor content) and were removed. A total of 188 bands is
therefore considered. Estimation of the number of endmembers
present in a given scene of interest is an important issue,
because both the dimension reduction algorithm and the HU
algorithm are in need of this number. To begin with, the eigen-
value distribution (signal energy distribution) of the ROI’s data
covariance matrix shows that the number of sources accord-
ing to the principal eigenvalues is approximately 4 (N = 4).
Obviously, it is an underestimate of N , as the ground truth
[43] reports more than four endmembers in the ROI. Applying
HySiMe [11] to the ROI data yields N = 18. On the other
hand, for a very similar ROI, it is reported in [16] and [26]
that VD [8] estimates the number of endmembers as 14. Also,
Miao and Qi reported in their work [23] that, for a similar ROI,
N = 9, and they further claimed that the overestimation of N
by other methods can be attributed to the nonlinear mixing
of the observations in a real scenario. However, for the sake
of consistency with our previous work [26], here we consider
N = 14. Two existing algorithms, namely, MVES and VCA,
were also tested with the same real data and compared with
the proposed RMVES algorithm. It should be noted that the
nonpure-pixel-based algorithms are sensitive to initialization,
and hence, their performances vary with the initialization. In
order to have a fair comparison with our RMVES algorithm, the
MVES algorithm was applied to the hyperspectral data with ten
different expanded VCA initializations (which are also feasible
initializations for MVES), and the estimates associated with
the least simplex volume is chosen as the results of MVES
algorithm.

In order to remove some pixels corresponding to inac-
tive constraints and thereby speed up the algorithms, data
subsampling is needed. Since the pixels at the periphery (the
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Fig. 6. Endmember signatures taken from the library and the ones estimated by RMVES, MVES, and VCA.

pixels associated with active constraints) of the dimension-
reduced data cloud determine the simplex volume, we first
perform some subsampling of the dimension-reduced hyper-
spectral data ỹ[i] by using the following convex projection
procedure: We consider solving the following optimization
problem for all i = 1, . . . , L:

min
θ∈RL−1

∥∥∥ỹ[i]− Ỹiθ
∥∥∥2

s.t. 1T
L−1θ = 1,θ � 0. (42)

where Ỹi = [ỹ[1], ỹ[2], . . . , ỹ[i− 1], ỹ[i+ 1], . . . , ỹ[L]].
Problem (42) is a convex problem and can be solved using
available convex optimization solvers, such as SeDuMi [36]
and CVX [37]. The idea is to check each and every pixel in the
dimension-reduced data cloud for the case whether it belongs
to the convex hull of all the other remaining pixels (i.e., if
the optimal value of (42) is zero) or not. If yes, the pixel is
discarded, and if not, it is retained (as they correspond to a
peripheral pixel). In spite of its initial cost, this procedure
of data subsampling significantly aids in speeding up the
algorithms under test. By doing so, we were able to identify
17 965 peripheral pixels out of the 40 000 pixels in the ROI,

and we have used them in our experiments for RMVES and
MVES algorithms. Finally, it should be mentioned that, in
all the algorithms under test, the complete hyperspectral data
set (without subsampling) is used for the estimation of the
abundance maps. When applied to real hyperspectral data,
the computational times for RMVES and MVES (both with
subsampled data) and VCA (with full data) are around 145 min
(which is around 8 hours on average for the complete data),
119 min, and 4 min, respectively. Since we need to perform
ten executions with different expanded VCA initializations and
choose the solution corresponding to the maximum | det(H)|
as the endmember estimates of the RMVES algorithm, the
subsampled data are used.

The endmember signatures obtained via RMVES, MVES,
and VCA, along with the corresponding library signatures, are
shown in Fig. 6. The minerals were identified by the visual
comparison of the obtained abundance maps with the ones
available in [23], [26], [43], [48], and [49]. The materials
identified are arranged in alphabetical order for ease of visual
comparison. Owing to the space limitation, only the abundance
maps obtained by the RMVES algorithm are shown in Fig. 7.
It should be mentioned that the difference in the materials
identified by the three algorithms could possibly be due to the
working nature of the respective algorithms and their sensitivity
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Fig. 7. Abundance maps obtained by the RMVES algorithm.

to initializations. The mean-removed spectral angle between the
estimated signature aest and the corresponding library signature
alib[26], [48] defined as

φ = arccos

(
(aest −m(aest))

T (alib −m(alib))

‖aest −m(aest)‖ · ‖alib −m(alib)‖

)
(43)

was used as the performance measure, where m(a) =
(1T

Ma)1M (1/M) for any vector a ∈ R
M . The values of φ for

the various minerals identified by the algorithms under test are
given in Table VIII. Again, the least φ value for an endmember
is highlighted as a bold-faced number, and the number in paren-
thesis is the φ value for the repeatedly identified endmember. It
can be seen from Table VIII that, for the materials identified, the
proposed RMVES algorithm performs best (with the minimum
average φ), and furthermore, it mostly yields better endmember
estimates (minimum φ) than its predecessor, i.e., the MVES
algorithm, and the pure-pixel-based VCA algorithm. Note that
few of the mean-removed spectral angles for endmembers
(e.g., Buddingtonite and Kaolinite#1) identified by RMVES
algorithm are marginally higher than that of the ones obtained
by MVES. This could be attributed to some orientation of the
simplex obtained by RMVES, with respect to the simplex of the
true endmembers. In our simulations and real data experiments,
HySiMe [11] was used to estimate the noise covariance matrix.
Better estimation of the noise covariance matrix should further
enhance the performance of the RMVES algorithm.

VIII. CONCLUSION

In this paper, we have presented a robust HU algorithm,
namely, RMVES (as shown in Table II), for effective unmixing
of mixed hyperspectral data corrupted by uniform or nonuni-
form Gaussian noise. The dimension reduction via affine set

TABLE VIII
MEAN-REMOVED SPECTRAL ANGLES φ (IN DEGREES) BETWEEN

LIBRARY SPECTRA AND ENDMEMBERS ESTIMATED BY

RMVES, MVES, AND VCA

fitting procedure has been suitably modified for noisy hyper-
spectral observations. The randomness caused by noise has
been dealt with by incorporating chance constraints in the
unmixing problem formulation with a design parameter η. A
detailed analysis on the role of η has been presented, and
it was concluded that η must be less than 0.5, which, along
with the objective function, results in a nonconvex optimization
problem. In an effort to minimize the effect of nonconvexity of
the objective function, an alternating optimization concept has
been utilized. The partial maximization problems involved are
handled by using available SQP solvers. Finally, Monte Carlo
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simulations and real data experiments presented in Sections VI
and VII, respectively, demonstrate that RMVES algorithm pro-
vides superior performance over several existing benchmark
methods, including its predecessor, the MVES algorithm. Some
future research directions are as follows: 1) From our simu-
lation results and real data experiments (where we have set
η = 0.001), the RMVES algorithm performs well; however,
other more appropriate choices for η that can still enhance the
performance of the RMVES algorithm for different scenarios
are worth for investigations; 2) an algorithm that can account
for the orientation of the estimated endmember simplex in ad-
dition to the volume shrinkage of the estimated simplex should
further improve the performance of the RMVES algorithm;
and 3) an algorithm that is not only robust against noise but
also robust against outliers in the hyperspectral data will be an
interesting, but challenging, future direction.
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