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Abstract—In the late 1990s, Winter proposed an endmember
extraction belief that has much impact on endmember extraction
techniques in hyperspectral remote sensing. The idea is to find
a maximum-volume simplex whose vertices are drawn from the
pixel vectors. Winter’s belief has stimulated much interest, re-
sulting in many different variations of pixel search algorithms,
widely known as N-FINDR, being proposed. In this paper, we
take a continuous optimization perspective to revisit Winter’s
belief, where the aim is to provide an alternative framework of
formulating and understanding Winter’s belief in a systematic
manner. We first prove that, fundamentally, the existence of pure
pixels is not only sufficient for the Winter problem to perfectly
identify the ground-truth endmembers but also necessary. Then,
under the umbrella of the Winter problem, we derive two methods
using two different optimization strategies. One is by alternating
optimization. The resulting algorithm turns out to be an N-FINDR
variant, but, with the proposed formulation, we can pin down
some of its convergence characteristics. Another is by succes-
sive optimization; interestingly, the resulting algorithm is found
to exhibit some similarity to vertex component analysis. Hence,
the framework provides linkage and alternative interpretations
to these existing algorithms. Furthermore, we propose a robust
worst case generalization of the Winter problem for accounting
for perturbed pixel effects in the noisy scenario. An algorithm
combining alternating optimization and projected subgradients is
devised to deal with the problem. We use both simulations and
real data experiments to demonstrate the viability and merits of
the proposed algorithms.

Index Terms—Alternating optimization, endmember extrac-
tion, hyperspectral imaging, projected subgradient method,
robust optimization, simplex volume maximization, successive
optimization.

I. INTRODUCTION

HYPERSPECTRAL imaging devices with high spectral
resolution utilize more than a hundred contiguous spec-

tral bands to produce a set of remotely sensed images, thereby
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facilitating the identification of the composition of disparate
materials over the observed scene [1], [2]. Hyperspectral imag-
ing techniques have been applied to various fields, including
space object detection and planet exploration in space [3], [4],
as well as environmental monitoring and military surveillance
on the Earth [5], [6]. In these hyperspectral images, each pixel
physically represents a surface area and could cover more
than one material, depending on the spatial resolution of the
sensor. Hence, each observed pixel spectrum usually comprises
multiple spectra of materials (or endmember signatures). How
the endmember signatures can be accurately recovered from the
measured data, or, namely, the endmember extraction problem,
has been a subject of numerous investigations during the past
decade [7]–[9].

A major branch of algorithms for endmember extraction is
based on Craig’s belief [10], which states that the vertices of
a minimum-volume simplex enclosing all the observed pixel
vectors may serve as reliable estimates of the endmembers.
Algorithms that are based on Craig’s belief, either explicitly
or implicitly, include iterated constrained endmembers [11],
minimum volume constrained nonnegative matrix factoriza-
tion (NMF) [12], minimum dispersion constrained NMF [13],
minimum volume simplex analysis [14], and minimum-volume
enclosing simplex (MVES) [15], to name a few. In [15], we
have shown that Craig’s belief is capable of perfectly iden-
tifying the true endmembers when there exist pure pixels for
each endmember, i.e., pixels composed of a single endmember.
Moreover, by empirical experience, these Craig’s belief-based
methods work well even when the pure pixel assumption is
violated to a certain extent. However, they can be expensive
to implement computationally, due mainly to the complexity of
Craig’s problem.

Another branch of endmember extraction algorithms, which
are generally simpler to implement, assumes the existence of
pure pixels and attempts to search for those pure pixels as end-
member estimates. The pure pixel assumption generally holds
for cases where the remote sensing platforms (or aircrafts)
fly at a low altitude or perform small-area surveillance [16].
In the late 1990s, Winter proposed an endmember extraction
belief which is different from Craig’s. Instead of attempting
to find the minimum-volume data enclosing simplex, Winter
suggested to find a maximum-volume simplex whose vertices
are drawn from the hyperspectral data cloud [17]. This resulted
in N-FINDR [17]—a class of now widely used endmember
extraction algorithms in real hyperspectral data analysis. The
principle of N-FINDR is to exhaustively examine a collection
of pixel vectors in an attempt to find the maximum-volume
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simplex. N-FINDR has drawn much interest in the community,
and we have seen many different versions of N-FINDR algo-
rithms based on different pixel search strategies [18]–[21], al-
gorithm structures [22]–[24], and/or computation methods [25],
[26] (often with the simplex volume computations). For exam-
ple, iterative N-FINDR (I-N-FINDR) [18] uses iterative outer
and inner loops, with the outer loop relating to pixel vectors
and the inner loop relating to endmember estimates; sequential
N-FINDR (SQ-N-FINDR) [19] adopts a per-pixel update strat-
egy; successive N-FINDR (SC-N-FINDR) [19] adopts a per-
endmember update strategy; the simplex growing algorithm
(SGA) [22], [23] identifies one endmember at one time in a
successive manner; and random N-FINDR [24] runs a standard
N-FINDR multiple times and then fuses the results in an effort
to get more accurate endmember estimates. Other than the
family of N-FINDR algorithms [17]–[26], there also exist some
pure pixel-based methods, such as pixel purity index (PPI)
[27], vertex component analysis (VCA) [28], automatic target
generation process (ATGP) [29], and automated morphological
endmember extraction (AMEE) [30]. PPI [27] projects the data
onto a set of randomly generated vectors and estimates the
endmembers by extreme projected value search. VCA [28] also
estimates an endmember by extreme projected value search and
finds another new endmember by using orthogonal complement
projection such that the projected data are orthogonal to the
endmembers already obtained. ATGP [29] also uses orthogo-
nal complement projection to search for the most distinctive
observed pixel vectors as the endmember estimates. AMEE
[30], [31] applies the extension of mathematical morphology
to the spectral and spatial domain of hyperspectral data for
endmember identification.

The main interest of this paper is to revisit Winter’s belief
using a perspective of optimization. While the intuition in
Winter’s original work is indeed very insightful, there is little
work that places emphasis on establishing more disciplined
formulations of Winter’s belief, for gaining further insights
and for analysis. This paper endeavors to fill this gap. In the
first part of this paper, we adopt a continuous optimization
formalism in formulating Winter’s belief. From the formu-
lated Winter problem, two aspects are explored: endmember
identifiability analysis and methods for handling the Winter
problem. This paper reveals a number of interesting results.
One such result is that, using an alternating optimization strat-
egy, we come up with a method that may be seen as yet
another N-FINDR variant, but with desirable provable con-
vergence results. Another result is that, through a successive
optimization strategy, we find that VCA [28], as an existing
algorithm following an idea different from Winter’s, is actually
similar to a Winter-based algorithm. Hence, our formulated
framework provides linkage and alternative interpretations to
N-FINDR and VCA. In the second part of this paper, we
consider a generalization of the Winter formulation for the
noisy scenario. In particular, we propose a robust Winter for-
mulation for coping with perturbed pixel effects in the noisy
scenario, and then, we devise a new algorithm from the for-
mulation. Simulation and experimental results will be provided
to demonstrate the advantages and the real applicability of the
proposed methods.

A. Contributions and Related Works

The specific contributions of this paper are as follows.
1) From the continuous optimization formulation of the

Winter problem, it is shown that under the noiseless
model, Winter’s belief yields the true endmembers if and
only if pure pixels exist. A crucial implication of this is
that Winter-based methods would be most suitable for the
pure-pixel existent scenario.

2) We introduce two optimization strategies for handling
the formulated Winter problem, namely, the alternat-
ing optimization and successive optimization strategies.
From them, we derive two algorithms, called alternating
volume maximization (AVMAX) and successive volume
maximization (SVMAX). We also provide some anal-
ysis to the endmember identifiability of AVMAX and
SVMAX, under the pure pixel condition.

3) We establish connections of the continuous Winter frame-
work to some existing algorithms. As an interesting
coincidence, we find out that AVMAX and SVMAX
are algorithmically similar to SC-N-FINDR and VCA,
respectively. The similarity provides the latter with a new
interpretation—SC-N-FINDR and VCA were known to
be developed based on pixel search ideas, and now, they
may also be regarded as those built from continuous alter-
nating/successive optimization strategies. The similarity
also implies that the analysis for AVMAX/SVMAX may
be applicable to SC-N-FINDR/VCA.

4) We formulate a robust worst case Winter problem for
accounting for the noise effects. The newly formulated
problem is in the form of max–min optimization, and it is
more difficult to handle than the original Winter problem.
An algorithm incorporating alternating optimization and
projected subgradients is proposed to tackle the robust
Winter problem.

It is worthwhile to discuss some interactions of this paper
and some other existing studies. In a previous work [20],
the possible connection of VCA and Winter’s belief has been
alluded to. Here, in order to consolidate the similarity claim,
not only the successive optimization concept is needed, but we
also need to derive a special determinant decomposition lemma
(Lemma 3). Furthermore, we should mention concurrent works
on dealing with noise in endmember extraction: In the joint
Bayesian algorithm [32], a Bayesian estimation framework ac-
counting for the presence of noise explicitly was employed; in
simplex identification by split augmented Lagrangian [33], soft
constraints are utilized to mitigate outlier pixel effects caused
by noise, and in robust MVES [34], we apply chance constraints
on the original MVES constraints. Our worst case optimization
for handling the noise effects is nonetheless different from the
existing works in terms of the criterion (or belief).

B. Organization of This Paper and Notations

This paper is organized as follows. In Section II, we present
the problem statement of endmember extraction and its convex
geometry. Section III presents the problem formulation for
Winter’s belief. Sections IV and V present the AVMAX and
SVMAX algorithms, respectively. In Section VI, we present
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the robust worst case formulation of Winter’s belief and the
associated algorithm. Section VII provides some computational
complexity analysis. Sections VIII and IX present some simu-
lation and experimental results to demonstrate the viability of
the proposed algorithms and their advantages relative to some
other existing algorithms. Finally, some conclusions are drawn
in Section X.

The notations used throughout this paper are given as fol-
lows: R (R+), R

N (RN
+ ), and R

M×N (RM×N
+ ) denote the

set of real (nonnegative) numbers, N × 1 real (nonnegative)
vectors, and M ×N real (nonnegative) matrices, respectively;
1N , IN , and ei represent the N × 1 all-one vector, N ×N
identity matrix, and unit vector with the ith entry equal to 1,
respectively; � denotes componentwise inequality; ‖ · ‖2 is the
Euclidean norm, and X† is the pseudoinverse of a matrix X.

II. PROBLEM STATEMENT AND CONVEX GEOMETRY

A. Problem Statement and Assumptions

Consider a scenario where a hyperspectral sensor capable of
scanning an object over M spectral bands explores an unknown
area of the Earth’s land surface with N unknown materials.
Assuming that the incident solar radiation reflects from the
surface through only a single bounce and the materials are
distinct [6], each pixel of the hyperspectral images can be
represented by the following M ×N linear mixing model:

x[n] = As[n] =

N∑
i=1

si[n]ai, n = 1, . . . , L (1)

where x[n] = [x1[n], . . . , xM [n]]T is the nth observed pixel
vector comprising M spectral bands, A = [a1, . . . ,aN ] ∈
R

M×N denotes the signature matrix whose ith column vector ai
is the ith endmember signature, s[n] = [s1[n], . . . , sN [n]]T ∈
R

N is an abundance vector corresponding to the nth pixel, and
L is the total number of observed pixel vectors.

The problem of endmember extraction is to estimate A from
the observed pixel vectors x[n], assuming knowledge of N .
The estimation of N can be regarded as a separate problem
and has been studied in [35]–[38]. Some basic assumptions for
hyperspectral endmember extraction are as follows [6].
(A1) The intensities of all the abundance vectors are nonnega-

tive, i.e., si[n] ≥ 0 for all i and n.
(A2) Abundance fractions are proportionally distributed for

each x[n], i.e.,
∑N

i=1 si[n] = 1 for all n.
(A3) min{L,M} ≥ N and the endmember signatures are

linearly independent, i.e., rank(A) = N .
There is an additional assumption called the pure pixel

assumption, which holds in some practical environments, such
as low altitude scanning [16].
(A4) (Pure pixel assumption) There exists an index set

{�1, �2, . . . , �N} such that s[�i] = ei, yielding x[�i] = ai
for i = 1, . . . , N .

B. Convex Geometry Representation

In our previous works [15], [39], [40] (also [41] and [42]
for earlier attempts by others), we have developed a convex ge-

ometry framework for analyzing hyperspectral mixing models,
using the notion of convex analysis [43]. Here, we follow this
previous framework to formulate the problem herein.

In convex analysis, an affine hull of a set of vectors, for
example, {a1, . . . ,aN}, is defined as

aff{a1, . . . ,aN} =

{
x =

N∑
i=1

θiai

∣∣∣∣∣ θ ∈ R
N ,1T

Nθ = 1

}
(2)

where θ = [θ1, . . . , θN ]T . The immediate implication to the
hyperspectral mixing model (1) is that every observed pixel
vector x[n] lies in the endmember affine hull aff{a1, . . . ,aN}
due to (A2). The affine hull aff{a1, . . . ,aN} can always be
represented by

aff{a1, . . . ,aN} = {x = Cα+ d | α ∈ R
P } (3)

for some (C,d) ∈ R
M×P × R

M and rank(C) = P , where P
is the affine dimension. Under (A3), the affine dimension P
is N − 1. We have shown [39], [40] that (C,d) in (3) can be
identified from the observed pixel vectors {x[1], . . . ,x[L]}, as
stated in the following lemma.

Lemma 1 (Affine Set Fitting [39], [40]): Under (A2) and
(A3), the affine set fitting parameter (C,d) in (3) can be
obtained from {x[1], . . . ,x[L]} by

d =
1

L

L∑
n=1

x[n] (4)

C =
[
q1(HHT ), q2(HHT ), . . . , qN−1(HHT )

]
(5)

where H = [x[1]− d, . . . ,x[L]− d] ∈ R
M×L and qi(R) de-

notes the unit-norm eigenvector associated with the ith princi-
pal eigenvalue of R.

Affine set fitting in Lemma 1 provides a way of dimension
reduction. Since x[n] ∈ {x = Cα+ d|α ∈ R

N−1} and C is
semiunitary, one can affinely transform each observed pixel
vector x[n] by

x̃[n] = CT (x[n]− d) ∈ R
N−1. (6)

Substituting (1) into (6), we get

x̃[n] =

N∑
i=1

si[n]αi (7)

where

αi = CT (ai − d) ∈ R
N−1, i = 1, . . . , N. (8)

One can see that the model (7) is in the same form as (1);
however, the dimension of x̃[n] is N − 1, which is less than
that of x[n]. We therefore call x̃[n] the dimension-reduced
observed pixel vectors of x[n] and αi the dimension-reduced
endmembers.

A key concept in the geometric formulation is that of con-
vex hulls. The convex hull of a set of vectors, for example,
{α1, . . . ,αN}, is defined as

conv{α1, . . . ,αN} =

{
x =

N∑
i=1

θiαi

∣∣∣∣∣ θ ∈ R
N
+ ,1T

Nθ = 1

}
.

(9)
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Fig. 1. Illustration of how data geometry varies via affine transformation for N = 3.

Apparently, we have x̃[n] ∈ conv{α1, . . . ,αN} for all n. It
has been shown [15] that the convex hull of the (dimension-
reduced) true endmembers, conv{α1, . . . ,αN}, is a special
kind of convex hulls, namely, a simplex. This means that the
set of all extreme points, or vertices, is {α1, . . . ,αN} itself.
Moreover, we can define its volume given by [44]

vol(α1, . . . ,αN ) = |det (Δ(α1, . . . ,αN ))| /(N − 1)! (10)

where (N − 1)! denotes the factorial of N − 1 and

Δ(α1, . . . ,αN ) =

[
α1 · · · αN

1 · · · 1

]
∈ R

N×N . (11)

An illustration of the affine transformation and simplex
geometry is shown in Fig. 1. The hyperspectral endmem-
ber extraction problem now becomes the estimation of
α1, . . . ,αN from the (dimension-reduced) observed pixel vec-
tors {x̃[1], . . . , x̃[L]}. Once α1, . . . ,αN are found, the end-
members a1, . . . ,aN can be recovered by the following affine
transformation:

ai = Cαi + d, i = 1, . . . , N. (12)

III. FORMULATION OF WINTER’S ENDMEMBER

EXTRACTION BELIEF

In 1999, Winter [17] proposed an endmember extraction
belief that has now attracted much interest. In that work, it
was believed that the ground-truth endmembers can be located
by finding a collection of pixel vectors whose simplex volume
is the largest. Following the hyperspectral signal geometry
derivations in the last section, we herein formulate Winter’s
belief in the form of continuous optimization. As will be seen,
this endeavor will provide many implications. Our continuous
optimization formulation of Winter’s belief is as follows:

max
ν1,...,νN∈RN−1

vol(ν1, . . . ,νN )

s.t. νi ∈ conv {x̃[1], . . . , x̃[L]} , i = 1, . . . , N.

(13)

Fig. 2. Illustration of signal geometry of Winter’s belief for N = 3.

Problem (13), which we will name the Winter problem in the
sequel, is to find an N -tuple (ν1, . . . ,νN ) from the pixel-
constructed convex hull such that the associated simplex vol-
ume is maximized. A picture is used to illustrate this in
Fig. 2. It should be noted that, in Winter’s original work,
each endmember estimate νj is restricted to be any vector in
{x̃[1], . . . , x̃[L]}.

With the Winter criterion formulated in (13), the first ques-
tion that we wish to pin down is endmember identifiability:
Under the noiseless model, is the Winter problem (13) able to
perfectly identify the ground truth {α1, . . . ,αN} and, if yes,
what are the underlying conditions? This is addressed in the
following theorem.

Theorem 1 (Endmember Identifiability for Winter’s Belief):
Suppose that noise is absent and that (A1)− (A3) hold. Then,
the optimal solution of (13), denoted by {ν�

1, . . . ,ν
�
N}, is

uniquely given by {α1, . . . ,αN} if and only if the pure pixel
assumption (A4) is true.

Proof: The proof of Theorem 1 is given in Appendix A. �
The implications of Theorem 1 are twofold. First, for the

pure-pixel case, solving the Winter problem can lead to perfect
identification, or error-free extraction, of all the ground-truth
endmembers. Second, such perfect identification would not be
possible in the absence of pure pixels. The latter further implies
that, in the absence of pure pixels, a Winter-based endmember
extraction algorithm would be subject to estimation errors even
without noise effects. An additional discussion interfacing with
practical consideration is as follows.
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Remark 1: Our endmember identifiability analysis in
Theorem 1 is based on a perspective of perfect identification.
Although Theorem 1 stipulates that perfect identification by
Winter’s belief is impossible in the absence of pure pixels,
one might find that the estimation errors caused by the lack of
pure pixels are acceptable in practice. This is expected to be so
when the pure pixel assumption is not too seriously violated. In
addition, the pure pixel assumption is satisfied in some practical
environments [16].

We have examined the fundamental identifiability charac-
teristics of the Winter problem. Our second question is on
optimization methods for the Winter problem. Problem (13) is
nonconvex in essence, and securing a globally optimal solution
of it can be a significant challenge. However, there are simple
efficient ways of handling problem (13) in a suboptimal sense.
In the two subsequent sections, we will introduce two different
optimization strategies for handling problem (13). The study
therein will reveal more properties and connections brought
about by Winter’s belief.

IV. ALTERNATING VOLUME MAXIMIZATION

The first optimization strategy that we consider for the Win-
ter problem is that of alternating optimization. Section IV-A
will describe the alternating optimization concept, the resulting
algorithm, and its connection to some existing algorithms. This
will then be followed by an analysis.

A. Alternating Optimization for the Winter Problem

Alternating optimization, also known as block coordinate
descent/ascent and nonlinear Gauss–Seidel, is a pragmatic
approach to handling certain classes of difficult optimization
problems [45]. Before proceeding to describing the application
of alternating optimization to the Winter problem, we consider
a simplification of the problem formulation. By (9) and (10),
the Winter problem in (13) can be explicitly expressed as

max
ν1,...,νN∈RN−1

|det (Δ(ν1, . . . ,νN ))|

s.t. νi ∈ F , i = 1, . . . , N, (14)

where

F =

{
ν ∈ R

N−1

∣∣∣∣∣ ν = X̃θ,θ � 0,1T
Lθ = 1

}
(15)

is the convex hull of {x̃[1], . . . , x̃[L]} and X̃ =
[x̃[1], . . . , x̃[L]]. Problem (14) can be simplified to

max
ν1,...,νN∈RN−1

det (Δ(ν1, . . . ,νN ))

s.t. νi ∈ F , i = 1, . . . , N,
(16)

where we take out the absolute value operator from the objec-
tive function. The argument for the equivalence of problems
(14) and (16) is as follows: The optimal solutions of (14) are
order invariant, i.e., if (ν�

1, . . . ,ν
�
N ) is an optimal solution

of (14), then (ν�
π1
, . . . ,ν�

πN
), for any permutation index set

{π1, . . . , πN}, is also an optimal solution to (14). Moreover,

by the basic matrix result that det(E) = − det(B) if B results
from E by interchanging any two columns, an optimal solu-
tion of (14) in which det(Δ(ν�

1, . . . ,ν
�
N )) ≥ 0 always exists.

Hence, an optimal solution of problem (16) is also that of
problem (14).

Now, we apply alternating optimization to the simplified
Winter problem (16). The following procedure describes how
alternating optimization operates:

given a starting point (ν̂1, . . . , ν̂N ).
repeat the following alternating cycle:

for j = 1, . . . , N
solve the jth partial maximization problem of (16):

max
νj∈F

det (Δ(ν̂1, . . . , ν̂j−1,νj , ν̂j+1, . . . , ν̂N )) (17)

and update ν̂j as a solution of problem (17).
end

until a stopping rule is satisfied.
output (ν̂1, . . . , ν̂N ) as an approximate solution to (16).

As seen in the aforementioned procedure, alternating opti-
mization works by maximizing the objective function of (16)
with respect to (w.r.t.) only one endmember νj at one time,
while holding the other endmember iterates ν̂i, i �= j, fixed;
such partial maximizations are done in a cyclic fashion. The
motivation is that the partial maximizations are much easier to
solve than its full counterpart (i.e., maximizing the objective
function of (16) w.r.t. ν1, . . . ,νN simultaneously), as will be
illustrated next.

The partial maximizations in (17) have tractable solutions.
By applying a cofactor expansion to det(Δ(ν1, . . . ,νN )) [44]
to the objective function of each partial maximization problem
in (17), problem (17) can be reformulated as

max
νj∈F

det (Δ(ν̂1, . . . , ν̂j−1,νj , ν̂j+1, . . . , ν̂N ))

= max
νj∈F

bT
j νj + (−1)N+j det(VNj) (18)

where

bj =
[
(−1)i+j det(V ij)

]N−1

i=1
∈ R

N−1 (19)

and V ij ∈ R
(N−1)×(N−1) is a submatrix of Δ(ν̂1, . . . , ν̂N )

with the ith row and jth column removed [44]. We see that
problem (18), for any j, is a linear program. Even better, the
solution to (18) has a closed form, as shown in the following
lemma.

Lemma 2: Consider the jth partial maximization problem in
(18). Let

Ij =
{
� ∈ {1, . . . , L}

∣∣∣∣∣ bT
j x̃[�] = max

n=1,...,L
bT
j x̃[n]

}
. (20)

A point ν̂j is optimal to (18) if and only if it is a convex
combination of {x̃[n]}n∈Ij , i.e., any point

ν̂j =
∑
�∈Ij

β�x̃[�] (21)
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TABLE I
AVMAX ALGORITHM

where
∑

�∈Ij β� = 1, β� ≥ 0 for all � ∈ Ij , is an optimal solu-
tion to (18) and vice versa.

Proof: The proof of Lemma 2 is given in Appendix B. �
We should add that, for instances where Ij contains one

index only, the optimal solution of (18) is unique and is
reduced to

ν̂j = x̃[�] (22)

� = argmax
n

bT
j x̃[n]. (23)

Curiously, we found in our simulation results that the optimal
solution of (18) was usually unique.

We name the previously developed alternating optimization
method the AVMAX method. Table I provides the pseudocode
of how we practically implement the AVMAX method. An
important observation is as follows.

Remark 2: As it turns out, AVMAX is similar to the
N-FINDR algorithms [17], [19], [20] in terms of the algorith-
mic structures—the former and latter both attempt to maximize
the simplex volume by some forms of one-at-a-time pixel search.
Among the various N-FINDR algorithms, AVMAX is particu-
larly similar to the SC-N-FINDR algorithm [19]. To be specific,
the pseudocode of AVMAX in Table I becomes that of SC-N-
FINDR if we replace Step 3 and Step 4 by ν̂j = x̃[�] for any � =
argmaxn=1,...,L | det(ν̂1, . . . , ν̂j−1, x̃[n], ν̂j+1, . . . , ν̂N )| and
restrict the number of alternating cycles to one (i.e., enforces
termination at ζ = 1). From a different perspective, one may
see this similarity result as a new alternative interpretation
to SC-N-FINDR—SC-N-FINDR may also be regarded as an
alternating optimization algorithm under the continuous Winter
formalism.

B. Analysis

Having derived an alternating optimization method for the
Winter problem (AVMAX), we turn our attention to analysis.
From an optimization point of view, a question of interest
is whether, for a given problem, an alternating optimization
algorithm would converge to a stationary point, e.g., a locally
optimal solution. For AVMAX, we have the following result.

Property 1: Suppose that each partial maximization prob-
lem (18) has a unique solution.1 Then, the AVMAX iterate

1As mentioned, in practice, we usually found that the AVMAX partial
maximization problem (18) yields a unique solution.

(ν̂1, . . . , ν̂N ) converges to a stationary point of the Winter
problem (16) as the number of alternating cycles approaches
infinity.

Proof: The claim of Property 1 is based on an alternat-
ing optimization convergence result for a particular class of
optimization problems , Proposition 2.7.1[45]. For the Winter
problem, that convergence result states that the alternating
optimization iterate (ν̂1, . . . , ν̂N ) is guaranteed to converge to
a stationary point, under the following three premises: 1) Each
AVMAX partial maximization yields a unique solution; 2) the
objective function of the Winter problem (16) is continuously
differentiable; and 3) the feasible set F is closed convex. It can
be verified that the latter two are satisfied by the (reformulated)
Winter problem (16). �

Another analysis problem that we are interested in is the
following: Supposing that pure pixels exist and noise is absent,
can AVMAX converge to the ground-truth endmembers and, if
yes, how many alternating cycles would be required? This is
answered in the following property.

Property 2 (Endmember Identifiability of AVMAX): Suppose
that (A1)–(A4) hold, that noise is absent, and that each partial
maximization problem (18) has a unique solution. Then, for
the first alternating cycle and onward, the AVMAX iterate
{ν̂1, . . . , ν̂N} is equal to {α1, . . . ,αN}.

Proof: The proof of Property 2 is given in Appendix C. �
Property 2 implies that, for the noiseless pure-pixel case,

AVMAX will perfectly identify the ground-truth endmembers
in its first alternating cycle. Hence, we may intuitively expect
that the convergence of AVMAX should be fast for the high
signal-to-noise ratio (SNR) regime; this expectation will be
shown to be true by simulations.

Remark 3: In Remark 2, we have discussed the sim-
ilarity between SC-N-FINDR and AVMAX. In particular,
SC-N-FINDR may loosely be viewed as a one-alternating-
cycle AVMAX algorithm. From Property 2, what we realize is
that one alternating cycle is in fact sufficient for the noiseless
pure-pixel case. Hence, SC-N-FINDR can be seen as a “good”
endmember extraction algorithm, capable of achieving perfect
endmember identifiability under the ideal data condition.

V. SUCCESSIVE VOLUME MAXIMIZATION

The second optimization strategy that we propose for the
Winter problem is successive optimization.

Successive optimization is an approach that requires a spe-
cific decomposition structure of the objective function. To put
into context, the Winter problem needs to be cast to a suitable
form. Let wi = [νT

i 1]T and W = [w1, . . . ,wN ]. The Winter
problem in (14) can be equivalently written as

max
w1,...,wN∈RN

|det(W)|

s.t. wi ∈ F , i = 1, . . . , N (24)

where F = {w ∈ R
N |w = [νT 1]T ,ν ∈ F}, with F hav-

ing been defined in (15). The set F can be alternatively
represented by

F =
{
w ∈ R

N | w = Xθ,θ � 0,1T
Lθ = 1

}
(25)
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where x̄[n] = [x̃[n]T 1]T and X = [x̄[1], . . . , x̄[L]]. Moreover,
consider the following matrix lemma which plays an indispens-
able role in this successive optimization development.

Lemma 3: Let Y = [y1, . . . ,yN ] ∈ R
M×N . It holds true

that√
det(YTY)=‖y1‖2

∥∥P⊥
Y1:1

y2

∥∥
2
· · ·
∥∥∥P⊥

Y1:(N−1)
yN

∥∥∥
2

(26)

where Y1:j = [y1, . . . ,yj ] and P⊥
Y1:j

= IM −
Y1:j(Y

T
1:jY1:j)

†YT
1:j is the orthogonal complement projector

of Y1:j .
Proof: The proof of Lemma 3 is given in Appendix D. �

Note that the objective function in (24) is equivalent to
| det(W)| =

√
det(WTW) since W is a square matrix. As

a result, we can apply Lemma 3 to the objective function of
problem (24), thereby obtaining the following equivalent form
of the Winter problem:

max
w1,...,wN∈RN

f1(w1)f2(w1,w2) · · · fN (w1, . . . ,wN )

s.t. wi ∈ F , i = 1, . . . , N.

(27)

where

f1(w1) = ‖w1‖2 (28)

fj(w1, . . . ,wj) =
∥∥∥P⊥

W1:(j−1)
wj

∥∥∥
2
, j = 2, . . . , N. (29)

With the equivalent Winter problem formulation in (27), we
are now ready to consider the successive optimization method.
The procedure is as follows:

for j = 1, . . . , N

ŵj = arg max
wj∈F̄

fj(ŵ1, . . . , ŵj−1,wj) (30)

end
output (ŵ1, . . . , ŵN ) as an approximate solution to (27).

As one may see, successive optimization utilizes the special
decomposition structure in the objective function of (27) to
perform a recursive determination of the endmembers: The
jth endmember wj is determined by finding a maximizer of
the decomposed subobjective function fj(ŵ1, . . . , ŵj−1,wj),
fixing the previously determined endmembers ŵ1, . . . , ŵj−1.
The obtained partial maximizer ŵj , together with the previ-
ous partial maximizers ŵ1, . . . , ŵj−1, is then used to help
determine the next endmember. Notice that, unlike alternating
optimization, successive optimization is not an iterative method
and requires no initial point to start with. Moreover, the partial
maximization problems in (30) have simple solutions.

Lemma 4: For each j, the partial maximizer in (30) is given
by ŵj = x̄[�], where

� ∈
{
argmaxn=1,...,L ‖x̄[n]‖2 , j = 1

argmaxn=1,...,L

∥∥∥P⊥
Ŵ1:(j−1)

x̄[n]
∥∥∥
2
, j > 1

. (31)

TABLE II
SVMAX ALGORITHM

Proof: The proof of Lemma 4 is given in Appendix E. �
We name the successive optimization procedure developed

earlier the SVMAX method. Table II provides a summary of the
SVMAX method in pseudocode form. An important remark is
as follows.

Remark 4: As another interesting coincidence, SVMAX
appears to be similar to the VCA algorithm [28] in algo-
rithmic structures. The notably similar part lies in the re-
sult in Lemma 4: If we replace the index selection in (31)
by � ∈ argmaxn=1,...,L |rTj x̄[n]|, where rj = P⊥

Ŵ1:(j−1)
ξ/

‖P⊥
Ŵ1:(j−1)

ξ‖ with ξ being randomly generated, then the re-

sulting algorithm would be very similar to VCA. As one can
see, both VCA and SVMAX employ some form of orthog-
onal complement projection onto the previously determined
ŵ1, . . . , ŵj−1 at each stage, and they both do so in a successive
manner.

In the previous section, we have shown that, for the noise-
less pure-pixel case, AVMAX can perfectly identify the true
endmembers. In fact, we can show that SVMAX possesses the
same desirable property.

Property 3 (Endmember Identifiability of SVMAX): Sup-
pose that (A1)–(A4) hold and that noise is absent. Then,
SVMAX identifies the true dimension-reduced endmembers,
i.e., {ν̂1, . . . , ν̂N} = {α1, . . . ,αN}.

Proof: The proof of Property 3 is given in Appendix F. �

VI. WORST CASE WINTER’S ENDMEMBER

EXTRACTION PROBLEM

In the preceding sections, we have revisited Winter’s end-
member extraction belief, using the convex geometry notion to
formulate the belief in the form of an optimization problem.
Then, under the umbrella of the formulated Winter problem, we
have established two endmember extraction methods, AVMAX
and SVMAX, that exhibit connections to some existing meth-
ods. We have also proven that the two proposed methods can
perfectly identify the ground-truth endmembers, under the pure
pixel assumption and under the noiseless model. In this section,
the noisy scenario is considered. A robust generalization of
the Winter problem will be proposed, where we intend to
mitigate the noise uncertainty effects by adopting a worst case
simplex volume strategy. The proposed robust Winter belief
and formulation will be described in Section VI-A, while the
optimization method for dealing with the newly formulated
problem will be developed in Section VI-B.
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Fig. 3. Illustration of data geometry in the presence of noise for N = 3. (a) Solution of original Winter’s belief. (b) Solution of the worst case Winter’s belief.

A. Worst Case Winter’s Belief

In the scenario where the pixel vectors x̃[n] are corrupted by
additive noise, the simplex volume yielded by Winter’s criterion
may be larger than that of the ground truth; a picture is shown
in Fig. 3(a) to illustrate such a possible instance. Our idea of
mitigating such effects is to keep the endmember estimates
ν1, . . . ,νN away from the boundary of the pixel-constructed
convex hull conv{x̃[1], . . . , x̃[L]} by some distance, thereby
attempting to bring (ν1, . . . ,νN ) closer to the ground truth
(α1, . . . ,αN ). A picture illustrating this idea is shown in
Fig. 3(b); in the figure, the circles located at the corners of
conv{x̃[1], . . . , x̃[L]} represent the maximum backoff regions
of ν1, . . . ,νN .

We formulate the aforementioned proposed belief as an
optimization problem, given as follows:

max
vi∈RN−1,
i=1,...,N

{
min

‖ui‖≤r,
i=1,...,N

vol(v1 − u1, . . . ,vN − uN )

}
s.t. vi ∈ conv {x̃[1], . . . , x̃[L]} , i = 1, . . . , N,

(32)

where each ui ∈ R
N−1, i = 1, . . . , N , is an error vector that

lies in a norm ball {u ∈ R
N−1|‖u‖2 ≤ r}, with the given

radius r. By letting (v�
1, . . . ,v

�
N ,u�

1, . . . ,u
�
N ) denote the

outer–inner solution of (32), the robust Winter endmember
estimates are ν�

i = v�
i − u�

i , i = 1, . . . , N .
Physically speaking, our formulated problem in (32) takes

a worst case robust strategy. The newly incorporated vectors
u1, . . . ,uN are used to enforce the backoffs of ν1, . . . ,νN

in a worst case simplex volume sense, while the radius r
represents how much backoff of ν1, . . . ,νN is allowed. In
other words, the value r is also a sort of measure that quantifies
the desired robustness against noise. As a rule of thumb, one
should increase r when the noise variance, or the magnitude of
the noise perturbations, increases.

B. Worst Case AVMAX

Apparently, the worst case robust Winter problem (32) is
even more challenging to solve than the original Winter prob-
lem (13). In this section, we explain how we handle (32).

We first reformulate problem (32) by using the convex hull
representation in (9)

max
θi∈S

i=1,...,N

{
min

‖ui‖≤r,
i=1,...,N

∣∣∣det(Δ(X̃θ1 − u1, . . . , X̃θN − uN )
)∣∣∣}
(33)

where S is a simplex given by

S =
{
θ ∈ R

L|θ � 0,1T
Lθ = 1

}
. (34)

Again, by exploiting the order invariance property of the sim-
plex volume function (as discussed in Section IV-A), problem
(33) can be simplified to

max
θi∈S

i=1,...,N

{
min

‖ui‖2≤r,
i=1,...,N

det
(
Δ(X̃θ1−u1, . . . , X̃θN−uN )

)}
.

(35)

In the ensuing development, the aforementioned problem will
be handled in the following manner: We begin by applying
alternating optimization to (35) over θj’s, where each partial
maximization problem w.r.t. each θj is handled by the projected
subgradient method [45]. In each of its subgradient updates, the
optimal solution of the inner problem of (35) is approximated
by alternating optimization over u1, . . . ,uN . The resultant
method is named the worst case AVMAX (WAVMAX).

1) Alternating Optimization for (35) over θ1, . . . ,θN : To
derive the alternating optimization of (35) over θ1, . . . ,θN , we
first express the inner problem of (35) as an objective function

ϕ(θ1, . . . ,θN )= min
‖ui‖≤r,
i=1,...,N

det
(
Δ(X̃θ1−u1, . . . , X̃θN−uN )

)
.

(36)

Then, by applying a cofactor expansion to det(Δ(X̃θ1 −
u1, . . . , X̃θN − uN )), the partial maximization problem of
(35) w.r.t. θj is formulated as

max
θj∈S

ϕ(θj , Θ̂j)=max
θj∈S

{
min

‖ui‖2≤r,
i=1,...,N

bT
j (U)(X̃θj−uj)+hj(U)

}
(37)
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where Θ̂j = [θ̂1, . . . , θ̂j−1, θ̂j+1, . . . , θ̂N ], U =
[u1, . . . ,uN ], bj(U) = [(−1)i+j det(Qij)]

N−1
i=1 in which

Qij is a submatrix of Δ(X̃θ̂1 − u1, . . . , X̃θ̂N − uN )
with the ith row and the jth column removed, and
hj(U) = (−1)N+j det(QNj). Note that (37) is a convex
problem since it can be easily verified that ϕ(θj , Θ̂j) is
concave w.r.t. θj [43] due to the pointwise infimum property.2

However, problem (37) is still difficult to handle due to the fact
that ϕ(θj , Θ̂j) does not have a closed-form expression and is
nondifferentiable. Next, we will concentrate on dealing with
problem (37).

2) Projected Subgradient Method for (37): In the optimiza-
tion literature, there are methods available for solving nondif-
ferentiable convex problems, and those include the subgradient
methods, cutting plane methods, and ellipsoid methods [45].
Here, we employ the projected subgradient method to deal with
(37) due to its relative implementation simplicity. The projected
subgradient method for (37) is as follows.

The basic idea of the projected subgradient method is to gen-
erate a sequence of points according to the following iteration:

θ
(k+1)
j =

{
θ
(k)
j − γkg

(k)
}
S

(38)

where g(k) is a subgradient of −ϕ(θj , Θ̂j) at θ
(k)
j , γk is

the step size, k is the current iteration number, and {x}S =
argminθ∈S ‖x− θ‖2 denotes the projection of x onto S . The
projected subgradient method keeps track of the best solution
found, i.e., at each iteration, we update

ϕ
(k+1)
best = max

{
ϕ
(k)
best, ϕ

(
θ
(k+1)
j , Θ̂j

)}
(39)

and update θ̂j = θ
(k+1)
j if ϕ(k+1)

best = ϕ(θ
(k+1)
j , Θ̂j). As a key

property, the projected subgradient method can converge to the
optimal objective value for certain kinds of step size sequences,
e.g., the diminishing step size sequence γk = γ/

√
k for some

γ > 0 [45].
The projection onto the simplex {x}S can be efficiently

implemented by a waterfilling-type algorithm [46]. The sub-
gradients for −ϕ(θj , Θ̂j) can be computed as follows. By
Danskin’s theorem [45], a subgradient of −ϕ(θj , Θ̂j) at θj is
given by

g = −X̃Tbj(U
�) (40)

where U� = [u�
1, . . . ,u

�
N ] is the optimal solution of the inner

problem of (35) given by

(u�
1, . . . ,u

�
N )

= arg min
‖ui‖2≤r,
i=1,...,N

det
(
Δ(X̃θ̂1 − u1, . . . , X̃θ̂N − uN )

)
. (41)

The aforementioned problem is nonconvex, but it can be ap-
proximated by alternating optimization in the same spirit as

2Let Y be a nonempty continuous set. The pointwise infimum property states
that, if f(x,y) is concave in x for any y ∈ Y , then g(x) = infy∈Y f(x,y)
is concave in x.

TABLE III
SUMMARYOF ALTERNATING OPTIMIZATION FOR HANDLING (41)

TABLE IV
SUMMARY OF WAVMAX ALGORITHM

AVMAX. The partial minimization problem of (41) w.r.t. uj

can be expressed as

min
‖uj‖2≤r

kT
j (X̃θ̂j − uj) + (−1)N+j det(UNj) (42)

where kj = [(−1)i+j det(U ij)]
N−1
i=1 in which U ij is a subma-

trix of Δ(X̃θ̂1 − û1, . . . , X̃θ̂N − ûN ) with the ith row and the
jth column removed. By Cauchy–Schwarz inequality, it can
be easily shown that the solution to (42) is uniquely given by
ûj = rkj/‖kj‖2. The pseudocode of alternating optimization
for (41) is described in Table III.

In summary, the resultant pseudocode of the proposed
WAVMAX method is given in Table IV.

VII. COMPUTATIONAL COMPLEXITY

The computational complexity of the proposed methods and
some existing benchmark methods is briefly discussed in this
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TABLE V
COMPUTATIONAL COMPLEXITY ORDER OF THE VARIOUS ENDMEMBER EXTRACTION METHODS, WHERE η ∈ (2.3, 2.9) [28], N IS THE NUMBER OF

ENDMEMBERS, L IS THE NUMBER OF PIXELS, ζ IS THE NUMBEROF ITERATIONS, K IS THE MAXIMUM NUMBER OF SUBGRADIENT

ITERATIONS, ζu IS THE NUMBER OF ALTERNATING CYCLES FOR HANDLING (41), AND ζw IS THE NUMBER OF

ITERATIONS REQUIRED FOR WATERFILLING ALGORITHM [46] TO IMPLEMENT {x}S

section. Since the AVMAX and SVMAX algorithms (as shown
in Tables I and II) involve simple matrix/vector additions and
multiplications, we can easily verify that the complexities
of the AVMAX and SVMAX algorithms are O(N2Lζ) and
O(N2L), respectively, where ζ is the total number of alternat-
ing cycles used. Moreover, the computational complexity of the
WAVMAX algorithm (as shown in Tables III and IV) is charac-
terized as follows. Denote the number of alternating cycles over
θ1, . . . ,θN , the maximum number of subgradient iterations,
the number of alternating cycles for handling (41), and the
number of iterations required for the waterfilling algorithm [46]
to implement simplex projection {x}S by ζ, K, ζu, and ζw,
respectively. The computational complexity of the WAVMAX
method can be shown to be

O
(
NζK

(
(N − 1)L+ ζwL+ ζuN

2(N − 1)η
))

(43)

where η ∈ (2.3, 2.9) [28].
We also provide the computational complexities of some

existing benchmark methods. The computational complexi-
ties of VCA and SGA have been reported in [22] and [28]
as O(N2L) and O(

∑N
i=2 i

η), respectively. For N-FINDR
variants, such as I-N-FINDR [18], SQ-N-FINDR [19], and
SC-N-FINDR [19], we consider the application of the fast sim-
plex volume computation method using the Woodbury matrix
identity [25] to them, and hence, the complexity of each simplex
volume computations involved reduces from O(Nη) to O(N).
Therefore, it is easy to verify that the computational complexity
orders of I-N-FINDR, SQ-N-FINDR, and SC-N-FINDR are
O(ζN2L), O(ζN2L), and O(N2L), respectively. We sum-
marized the aforementioned complexity analysis in Table V.
One can see that VCA, SC-N-FINDR, and SVMAX have the
same complexity order. Since ζ, ζw, and ζu are theoretically
unknown, we will use the average computation time of the
methods to illustrate their respective computational complexity
in Section VIII.

VIII. COMPUTER SIMULATIONS

In this section, three Monte Carlo simulations are presented
to demonstrate the performance of the proposed AVMAX,
SVMAX, and WAVMAX algorithms. In each Monte Carlo sim-
ulation, 100 independent runs were performed. Section VIII-A
presents the results for different SNRs. Section VIII-B presents
the results for different numbers of pixels. Section VIII-C
presents the results for different numbers of endmembers.
For comparison, we also tested five existing endmember
extraction algorithms: I-N-FINDR [18], SQ-N-FINDR [19],

SC-N-FINDR [19], SGA [22], and VCA [28]. Note that the
fast simplex volume computation method using the Woodbury
matrix identity [24] was used in I-N-FINDR, SQ-N-FINDR,
and SC-N-FINDR, and the affine set fitting [39] (as presented
in Lemma 1) was used for dimension reduction in I-N-FINDR,
SQ-N-FINDR, SC-N-FINDR, and SGA for fair comparison.

Let â1, . . . , âN denote a set of the endmember estimates. The
root-mean-square spectral angle distance between endmembers
and their estimates was used as a performance measure [28]

φ = min
π∈ΠN

√√√√ 1

N

N∑
i=1

[
arccos

(
aTi âπi

‖ai‖‖âπi
‖

)]2
(44)

where π = (π1, . . . , πN ) and ΠN = {π ∈ R
N |πi ∈

{1, 2, . . . , N}, πi �= πj for i �= j} is the set of all the
permutations of {1, 2, . . . , N}. The performance measures
defined in (44) with N ! permutations π can be efficiently
solved by the Hungarian algorithm [47].

Some simulation settings are as follows. The convergence
tolerance for the AVMAX algorithm and the WAVMAX al-
gorithm and its associated subalgorithm in Table III is set
to ε = 5× 10−5. In addition, we set the maximum number
of subgradient iterations K = 5 and step size γ = 1 in the
WAVMAX algorithm. For comparison of computational com-
plexity, the computation time T (in seconds) of each algorithm
(implemented in Mathworks Matlab R2008a) running on a
desktop computer equipped with 2.80-GHz Core i7-930 CPU
and 12-GB memory is used as our computational complexity
measure.

A. Monte Carlo Simulations for Various SNRs

Eight endmembers (i.e., Carnallite, Biotite, Actinolite, An-
dradite, Clintonite, Diaspore, Goethite, and Halloysite) with
224 bands selected from the U.S. Geological Survey (USGS)
library [48] were used to produce 1000 noise-free observed
pixel vectors (i.e., N = 8, M = 224, and L = 1000). The
corresponding abundances were generated following a Dirichlet
distribution with μ = (μ1, . . . , μN )T = (1/N)1N [28] to auto-
matically enforce (A1) and (A2). To ensure (A4), the s[�i] =
ei for i = 1, . . . , N were randomly added in the generated
abundances. The noisy data were eventually obtained by adding
independent and identically distributed zero-mean Gaussian
noise to the noise-free data for different SNRs, where SNR =∑L

n=1 ‖x[n]‖2/(σ2ML) in which σ2 is the noise variance.
The average φ and T of all the endmember extraction

algorithms over SNR = 5, 15, . . . , 45, ∞ (dB) are shown in



CHAN et al.: SIMPLEX VOLUME MAXIMIZATION FRAMEWORK FOR HYPERSPECTRAL ENDMEMBER EXTRACTION 4187

TABLE VI
PERFORMANCE COMPARISON OF AVERAGE φ (DEGREES), AVERAGE T

(SECONDS), AND AVERAGE ζ OVER DIFFERENT ENDMEMBER

EXTRACTION METHODS FOR N = 8, L = 1000, AND VARIOUS SNRs

TABLE VII
PERFORMANCE COMPARISON OF AVERAGE φ (DEGREES), AVERAGE T

(SECONDS), AND AVERAGE ζ OVER DIFFERENT ENDMEMBER

EXTRACTION METHODS FOR N = 8, SNR = 15 (dB),
AND VARIOUS NUMBERS OF PIXELS L

Tables VI, where each bold-faced number denotes the min-
imum φ and minimum T for a specific SNR over all the
algorithms. The error tolerance r for the proposed WAVMAX
algorithm was set to r = λσ, where λ is a tunable constant
and was set to 1.3 and the noise standard deviation σ is
assumed to be perfectly known in the simulations. One can
see from Table VI that the average φ of all the algorithms
gradually decreases as the SNR goes up, and they are equal
to zero in the absence of noise. This directly validates our
analytical results that AVMAX and SVMAX can yield perfect
endmember identification in the noise-free case. The simulation
results also show that the same perfect endmember identifica-
tion result applies to their similar counterparts, SC-N-FINDR

TABLE VIII
PERFORMANCE COMPARISON OF AVERAGE φ (DEGREES), AVERAGE T

(SECONDS), AND AVERAGE ζ OVER DIFFERENT ENDMEMBER

EXTRACTION METHODS FOR L = 1000, SNR = 15 (dB),
AND VARIOUS NUMBERS OF ENDMEMBERS N

and VCA. For most cases of the SNRs under test, WAVMAX
outperforms all the other algorithms, and the computation
time of AVMAX and SVMAX is less than that of all the
other algorithms. The average number of iterations ζ spent by
I-N-FINDR, SQ-N-FINDR, AVMAX, and WAVMAX algo-
rithms are also displayed in Table VI. It can be inferred from
Table VI that, as the SNR increases, the ζ of SQ-N-FINDR
and AVMAX algorithms decreases. This meets our intuitive
expectation that the AVMAX algorithm can quickly converge
under the high SNR regime. In particular, in the absence of
noise (SNR = ∞), the number of iterations ζ for the AVMAX
algorithm to terminate is equal to 2; this also further validates
our claim in Property 2 that AVMAX iterate equals the true
endmembers after the first alternating cycle.

B. Monte Carlo Simulations for Various Numbers of Pixels

The synthetic data were generated in the same manner as
in Section VIII-A, where the SNR is fixed at 15 dB and the
number of pixels varies from 500 to 16 000. The average φ
and T of the endmember extraction methods for the synthetic
data sets with different L’s are shown in Table VII. The error
tolerance r for WAVMAX is the same as that in Section VIII-A
for SNR = 15 dB. One can see that, for all the values of L
under test, WAVMAX outperforms all the other algorithms,
and the AVMAX and SVMAX spent less computation time T
than the others. One can also see that the computation time of
WAVMAX is the price for its better accuracy. As a future
work, we may consider redundant constraint removal as a pre-
processing to reduce the complexity of WAVMAX. Moreover,
the number of iterations ζ of AVMAX slightly increases as
L becomes larger while that of I-FINDR, SQ-N-FINDR, and
WAVMAX seems independent of L.
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Fig. 4. (a) Endmember signatures provided by the USGS library and endmember estimates obtained by (b) SGA and the proposed (c) AVMAX, (d) SVMAX,
and (e) WAVMAX algorithms.

C. Monte Carlo Simulations for Various Numbers
of Endmembers

Again, the synthetic data were generated in the same man-
ner as in Section VIII-A, where the SNR is set to 15 dB
and the N endmembers varying from 4 to 14 are randomly
picked from the USGS library [48]. The average φ and T
of the endmember extraction methods for the synthetic data
sets with different N ’s are shown in Table VIII. The error
tolerance r for WAVMAX is the same as that in Section VIII-A
for SNR = 15 dB. One can observe that the performance of all
the algorithms under test degrades as the number of endmem-
bers increases. Moreover, WAVMAX outperforms the other
methods, and the computation time of AVMAX and SVMAX
is less than that of the other algorithms for all the values of
N under test. The average ζ increases as N goes up for I-N-
FINDR, SQ-N-FINDR, AVMAX, and WAVMAX.

IX. REAL HYPERSPECTRAL IMAGE EXPERIMENTS

In this section, the SGA algorithm [22] and the proposed
AVMAX, SVMAX, and WAVMAX algorithms were tested on
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
hyperspectral data taken over the Cuprite mining site, Nevada,
in 1997 [49]. After removing the spectral bands with low
SNRs (owing to atmospheric effects), a total of 188 bands
out of the 224 bands (excluding the bands 1–2, 104–113,
148–167, and 221–224) are chosen for the experiment. As
has been done in [12], [15], and [28], subimages of 200 by
200 pixels for these bands are considered. Hyperspectral signal
identification by minimum error [38] was used to estimate the
number of endmembers in this region of interest; the result
is N = 18. The four algorithms, SGA, AVMAX, SVMAX,
and WAVMAX (with r = 30), were applied to the cropped
data, and the fully constrained least squares method [50] with
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Fig. 5. Eighteen respective estimated abundances obtained by WAVMAX algorithm.

TABLE IX
MEAN-REMOVED SPECTRAL ANGLES φ (DEGREES) BETWEEN LIBRARY SPECTRA AND

ENDMEMBERS ESTIMATED BY SGA, AVMAX, SVMAX, AND WAVMAX

the estimated endmembers, as shown in Fig. 4, was used to
estimate the corresponding abundance maps. The minerals were
then identified based on the available ground-truth abundance
maps [51], [52] and the results reported in [12], [15], [28],
and [46]. Due to space limit, we only display the abun-
dance maps obtained by the proposed WAVMAX algorithm
in Fig. 5.

The mean-removed spectral angle of the estimated endmem-
ber â and the associated library endmember signature a [53] is

considered as the performance measure and is defined as

φ̄ = arccos

(
(â−m(â))T (a−m(a))

‖â−m(â)‖ ‖a−m(a)‖

)
(45)

where m(a) = (1T
Ma/M)1M for any vector a ∈ R

M . Table IX
shows the mean-removed spectral angle φ̄ for the estimated
endmembers obtained by the various methods, where the
numbers in parentheses stand for φ̄ of the endmember classified
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to the same mineral. As can be seen in Table IX, although
WAVMAX yields the least average mean-removed spectral
angle, the difference w.r.t. SGA, AVMAX, and SVMAX algo-
rithms is less than 1◦. It should be mentioned that the Cuprite
data taken by AVIRIS have a very high SNR [54], and hence,
the performance improvement of WAVMAX would not be sig-
nificant. We anticipate that WAVMAX may yield more promis-
ing results when the SNR of the hyperspectral data is low, for
instance, the data acquired by the Earth Observing-1 Hyperion
sensor [54]. Even so, the results (in Figs. 4 and 5 and Table IX)
still validate the real applicability of the proposed algorithms.

X. CONCLUSION

We have used a continuous optimization perspective to re-
visit Winter’s endmember extraction problem and explore the
subsequent implications. In the first part of this paper, we
consider a continuous optimization formulation of the Winter
problem as an alternative way to study Winter’s belief. In the
process, we have shown by analysis that the existence of pure
pixels is the sufficient and necessary endmember identifiability
condition for Winter’s belief. We have introduced two opti-
mization strategies for the Winter problem, namely, alternating
optimization and successive optimization, and used them to
derive two algorithms, namely, AVMAX and SVMAX, respec-
tively. We have explored their connections to some existing
algorithms, namely, SC-N-FINDR and VCA. Some analyses
for AVMAX and SVMAX have also been conducted. Both
Monte Carlo simulation results and real data experiments have
been conducted to demonstrate the performance of AVMAX
and SVMAX relative to some other existing algorithms. The
numerical results have also validated some implications ob-
tained from our analysis, e.g., the potential for AVMAX to have
fast convergence under high SNRs.

In the second part of this paper, we have established a
worst case Winter endmember extraction problem with the
aim of accounting for the presence of noise in hyperspectral
data. Specifically, we have proposed a WAVMAX algorithm
using a combination of alternating optimization and projected
subgradients. The practical applicability of WAVMAX has
been demonstrated by Monte Carlo simulations and real data
experiments.

APPENDIX

A) Proof of Theorem 1: We first prove the sufficiency of
Theorem 1. Under (A4), it can be easily verified that

conv {x̃[1], . . . , x̃[L]} = conv{α1, . . . ,αN}. (46)

Hence, the constraints in (13) become νi ∈ conv{α1, . . . ,αN}
for all i. With (11), this result can be equivalently
represented by

Δ(ν1, . . . ,νN ) = Δ(α1, . . . ,αN )QT (47)

where Q ∈ R
N×N
+ , Q1N = 1N . In [55, Lemma 1], we have

proved that | det(Q)| ≤ 1 for any Q ∈ R
N×N
+ , Q1N = 1N ,

and that equality holds if and only if Q is a permutation matrix.
Hence, we infer that

vol(ν1, . . . ,νN ) = vol(α1, . . . ,αN ) |det(Q)|
≤ vol(α1, . . . ,αN ) (48)

and that the aforementioned equality holds if and only if Q is
a permutation matrix. This further implies that the optimum of
Winter’s problem in (13) is attained only by (α1, . . . ,αN ) or
any of its permuted counterparts.

Next, we show the necessity of Theorem 1. Suppose
that {ν�

1, . . . ,ν
�
N} = {α1, . . . ,αN}. This means that αi ∈

conv{x̃[1], . . . , x̃[L]} for all i. Since {α1, . . . ,αN} are affinely
independent, every αi cannot be represented by any nontrivial
convex combination of {α1, . . . ,αN}. Hence, by (7), we must
have αi = x̃[�i] for some �i and for all i; that is, the pure pixel
assumption (A4). �

B) Proof of Lemma 2: By substituting νj = X̃θj into the
objective function, problem (18) can be equivalently written as

max
θj�0,1T

L
θj=1

bT
j X̃θj (49)

where the term (−1)N+j det(VNj) in (18) is removed without
loss of generality (w.l.o.g.). By letting θjn = [θj ]n, we have

bT
j X̃θj =

L∑
n=1

θjnb
T
j x̃[n] ≤ max

n=1,...,L
bT
j x̃[n] (50)

for any θj � 0 and 1T
Lθj = 1. Moreover, it can be verified that

the equality in (50) holds if and only if∑
n∈Ij

θjn =1,

Ij =
{
� ∈ {1, . . . , L}|bT

j x̃[�] = max
n=1,...,L

bT
j x̃[n]

}
.

(51)

Hence, the solution (21) directly follows from (51). �
C) Proof of Property 2: Consider Step 4 in Table I for j = 1.

Under the assumption that the solution of each alternating
maximizer is unique, we have

ν̂1 = x̃[�], � = arg max
n=1,...,L

b̄T
1 x̄[n] (52)

where b̄1 = [bT
1 (−1)N+j det(VN1)]

T and x̄[n] =

[x̃[n]T 1]T . Recall that x̄[n] =
∑N

i=1 si[n]ᾱi and
ᾱi = [αT

i 1]T . Then, we can infer from (52) and assumptions
(A1) and (A2) that

max
n

b̄T
1 x̄[n] = max

n

N∑
i=1

si[n]b̄
T
1 ᾱi ≤ max

i=1,...,N
b̄T
1 ᾱi. (53)

Assume w.l.o.g. that b̄T
1 ᾱ1 = maxi=1,...,N b̄T

1 ᾱi. By the solu-
tion uniqueness in (52), it can be easily verified that the equality
in (53) holds if and only if ν̂1 = x̃[�] = α1. Next, consider
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j ≥ 2. Since b̄T
j is the jth row vector of the adjoint matrix of

Δ(α1, . . . ,αj−1, ν̂j , . . . , ν̂N )[44], it satisfies

b̄T
j ᾱi = 0, i = 1, . . . , j − 1 (54)

due to adj(B)B = det(B)I where adj(B) is the adjoint matrix
of a square matrix B. Hence, it follows from (54) and the
assumptions (A1) and (A2) that

max
n

b̄T
j x̄[n] = max

n

N∑
i=j

si[n]b̄
T
j ᾱi ≤ max

i∈{j,...,N}
b̄T
j ᾱi. (55)

By employing the same aforementioned proof, we obtain,
w.l.o.g., ν̂j = x̃[�] = αj . The proof of Property 2 is therefore
complete. �

D) Proof of Lemma 3: To prove Lemma 3, we first provide
the following lemma.

Lemma 5: Let A ∈ R
m×p, B ∈ R

m×q, and C = [AB]. The
orthogonal complement projector of C, denoted by P⊥

C, is
identical to

P⊥
C = P⊥

B̃
P⊥

A

where B̃ = P⊥
AB.

Proof: Let D = [A B̃]. As a basic result of matrix anal-
ysis, the range spaces of C and D are identical. Thus, their
orthogonal projectors are identical, i.e., PC = PD. Let us
consider PD

PD =D(DTD)†DT = [A B̃]

[
ATA 0
0 B̃T B̃

]† [
AT

B̃T

]
=A(ATA)†AT + B̃(B̃T B̃)†B̃T = PA +PB̃. (56)

Moreover, we have

P⊥
C = Im −PC = Im −PD = Im −PA −PB̃

= Im −PA −PB̃ +PAPB̃ (57)

=(Im −PB̃)(Im −PA) = P⊥
B̃
P⊥

A (58)

where (57) is owing to PAPB̃ = 0. �
Now, we prove Lemma 3. Consider two cases as follows:

(C1) Y is of full column rank, and (C2) Y is not of full column
rank. For (C1), YTY is positive definite, and det(YTY) > 0.
By considering the partitioned form

YTY =

[
yT
1 y1 yT

1 Y2:N

YT
2:Ny1 YT

2:NY2:N

]
(59)

and by using Schur’s formula [43], we obtain

det
(
YTY

)
=det

(
yT
1 y1

)
det
(
YT

2:NY2:N−YT
2:Ny1

(
yT
1 y1

)−1
yT
1 Y2:N

)
=‖y1‖22 det

(
YT

2:NP⊥
Y1:1

Y2:N

)
. (60)

Let us apply Schur’s formula again to the second term of (60)

det
(
YT

2:NP⊥
Y1:1

Y2:N

)
=det

((
P⊥

Y1:1
Y2:N

)T (
P⊥

Y1:1
Y2:N

))
=
∥∥P⊥

Y1:1
y2

∥∥2
2
det
(
YT

3:NP
⊥
Y1:1

P⊥
ỹ2
P⊥

Y1:1
Y3:N

)
=
∥∥P⊥

Y1:1
y2

∥∥2
2
det
((
P⊥

ỹ2
P⊥

Y1:1
Y3:N

)T (
P⊥

ỹ2
P⊥

Y1:1
Y3:N

))
(61)

where ỹ2 = P⊥
Y1:1

y2. By Lemma 5, we have P⊥
ỹ2
P⊥

Y1:1
=

P⊥
Y1:2

, and hence

det(YTY) = ‖y1‖22
∥∥P⊥

Y1:1
y2

∥∥2
2

× det
((

P⊥
Y1:2

Y3:N

)T (
P⊥

Y1:2
Y3:N

))
. (62)

By repeating the aforementioned procedure, we obtain the
decomposition in (26).

For (C2), we have det(YTY) = 0. Schur’s formula may no
longer apply in this case, but it can be easily verified that the
formula on the right-hand side of (26) is also zero. The proof of
Lemma 3 is therefore complete. �

E) Proof of Lemma 4: Consider (30). By substituting w1 =
Xθ into the objective function of (30) for j = 1 and by triangle
inequality [43], we have

max
θ�0,1T

L
θ=1

∥∥∥∥∥
L∑

n=1

θnx̄[n]

∥∥∥∥∥
2

≤ max
θ�0,1T

L
θ=1

L∑
n=1

θn ‖x̄[n]‖2

≤ max
n=1,...,L

‖x̄[n]‖2 . (63)

It can be easily verified that the aforementioned equal-
ity is achieved if and only if θ = e� for any � ∈
argmaxn=1,...,L ‖x̄[n]‖2. Hence, the solution ŵ1 = x̄[�] is
arrived. The proof for (30) when j > 1 is the same as above
and hence is omitted for brevity. �

F) Proof of Property 3: Let ᾱi = [αT
i 1]T . By assumptions

(A1) and (A2) and triangle inequality, we have

‖x̄[n]‖2 =

∥∥∥∥∥
N∑
i=1

si[n]ᾱi

∥∥∥∥∥
2

≤
N∑
i=1

si[n]‖ᾱi‖2 ≤ max
i

‖ᾱi‖2

(64)

where the aforementioned equality holds if and only if n = �
such that x̄[�] = ᾱi for any i ∈ argmaxk=1,...,N ‖ᾱk‖2.
Assume w.l.o.g. that ‖ᾱ1‖ = maxi=1,...,N ‖ᾱi‖2. Hence,
we can obtain ŵ1 = ᾱ1. Next, consider j ≥ 2. Suppose
that Ŵ1:(j−1) = [ᾱ1, . . . , ᾱj−1] are obtained. By
‖P⊥

Ŵ1:(j−1)
ᾱi‖2 = 0 for all i < j, it holds that∥∥∥P⊥

Ŵ1:(j−1)
x̄[n]

∥∥∥
2
≤

N∑
i=j

si[n]
∥∥∥P⊥

Ŵ1:(j−1)
ᾱi

∥∥∥
2

≤ max
i∈{j,...,N}

∥∥∥P⊥
Ŵ1:(j−1)

ᾱi

∥∥∥
2

(65)

where the equality holds if and only if n = � such that x̄[�] =
ᾱi for any i ∈ argmaxk=j,...,N ‖P⊥

Ŵ1:(j−1)
ᾱk‖2. Using the

same argument as above, we get ŵj = ᾱj w.l.o.g. The proof
of Property 3 is therefore complete. �



4192 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 11, NOVEMBER 2011

REFERENCES

[1] T. M. Lillesand, R. W. Kiefer, and J. W. Chipman, Remote Sensing and
Image Interpretation, 2nd ed. New York: Wiley, 2004.

[2] J. A. Richards, “Analysis of remotely sensed data: The formative decades
and the future,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 422–
432, Mar. 2005.

[3] B. A. Campbell, Radar Remote Sensing of Planetary Surfaces.
New York: Cambridge Univ. Press, 2002.

[4] R. N. Clark, G. A. Swayze, K. E. Livo, R. F. Kokaly, S. Sutley,
J. B. Dalton, R. R. McDougal, and C. A. Gent, “Imaging spectroscopy:
Earth and planetary remote sensing with the USGS tetracorder and expert
systems,” J. Geophys. Res., vol. 108, no. 12, pp. 5–44, Dec. 2003.

[5] G. Shaw and D. Manolakis, “Signal processing for hyperspectral image
exploitation,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12–16,
Jan. 2002.

[6] N. Keshava and J. Mustard, “Spectral unmixing,” IEEE Signal Process.
Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002.

[7] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “A quantitative and com-
parative analysis of endmember extraction algorithms from hyperspectral
data,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650–663,
Mar. 2004.

[8] M. Parente and A. Plaza, “Survey of geometric and statistical unmixing
algorithms for hyperspectral images,” in Proc. 2nd IEEE Workshop Hy-
perspectral Image Signal Process.: Evolution Remote Sens. (WHISPERS),
Reykjavik, Iceland, Jun. 14–16, 2010, pp. 1–4.

[9] J. M. Bioucas-Dias and A. Plaza, “Hyperspectral unmixing: Geomet-
rical, statistical, and sparse regression-based approaches,” in Proc.
SPIE—Image and Signal Processing for Remote Sensing XVI, Toulouse,
France, Sep. 20, 2010, vol. 7830, p. 783 00A.

[10] M. D. Craig, “Minimum-volume transforms for remotely sensed data,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542–552, May 1994.

[11] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and
J. F. Huntington, “ICE: A statistical approach to identifying endmembers
in hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 42,
no. 10, pp. 2085–2095, Oct. 2004.

[12] L. Miao and H. Qi, “Endmember extraction from highly mixed data using
minimum volume constrained nonnegative matrix factorization,” IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765–777, Mar. 2007.

[13] A. Huck, M. Guillaume, and J. Blanc-Talon, “Minimum dispersion con-
strained nonnegative matrix factorization to unmix hyperspectral data,”
IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2590–2602,
Jun. 2010.

[14] J. Li and J. Bioucas-Dias, “Minimum volume simplex analysis: A fast al-
gorithm to unmix hyperspectral data,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., Boston, MA, Aug. 8–12, 2008, vol. 4, pp. 2369–2371.

[15] T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “A convex analysis
based minimum-volume enclosing simplex algorithm for hyperspectral
unmixing,” IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418–4432,
Nov. 2009.

[16] M. T. Eismann and R. C. Hardie, “Application of the stochastic mixing
model to hyperspectral resolution enhancement,” IEEE Trans. Geosci.
Remote Sens., vol. 42, no. 9, pp. 1924–1933, Sep. 2004.

[17] M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral
end-member determination in hyperspectral data,” in Proc. SPIE Conf.
Imaging Spectrometry, Pasadena, CA, Oct. 1999, pp. 266–275.

[18] M. E. Winter, “A proof of the N-FINDR algorithm for the automated
detection of endmembers in a hyperspectral image,” in Proc. SPIE Conf.
Algorithms Technol. Multispectral, Hyperspectral, Ultraspectral Imagery,
Aug. 2004, vol. 5425, pp. 31–41.

[19] C.-C. Wu, S. Chu, and C.-I. Chang, “Sequential N-FINDR algorithms,”
Proc. SPIE, vol. 7086, p. 708 60C, Aug. 2008.

[20] Q. Du, N. Raksuntorn, N. H. Younan, and R. L. King, “Variants of
N-FINDR algorithm for endmember extraction,” Proc. SPIE, vol. 7109,
p. 710 90G, Oct. 2008.

[21] M. Zortea and A. Plaza, “A quantitative and comparative analysis of
different implementations of N-FINDR: A fast endmember extraction
algorithm,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 787–791,
Oct. 2009.

[22] C.-I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Quyang, “A new growing
method for simplex-based endmember extraction algorithm,” IEEE Trans.
Geosci. Remote Sens., vol. 44, no. 10, pp. 2804–2819, Oct. 2006.

[23] C.-I. Chang, C.-C. Wu, C.-S. Lo, and M.-L. Chang, “Real-time sim-
plex growing algorithms for hyperspectral endmember extraction,” IEEE
Trans. Geosci. Remote Sens., vol. 48, no. 4, pp. 1834–1850, Apr. 2010.

[24] C.-I. Chang, C.-C. Wu, and C.-T. Tsai, “Random N-finder (N-FINDR)
endmember extraction algorithms for hyperspectral imagery,” IEEE
Trans. Image Process., vol. 20, no. 3, pp. 641–656, Mar. 2011.

[25] W. Xiong, C.-I. Chang, and K. Kalpakis, “Fast algorithms to implement
N-FINDR for hyperspectral endmember extraction,” in Proc. SPIE Conf.
Algorithms Technol. Multispectral, Hyperspectral, Ultraspectral Imagery,
Orlando, FL, Apr. 5–9, 2010, vol. 7695, p. 769 51Q.

[26] W. Xiong, C.-T. Tsai, C.-W. Yang, and C.-I. Chang, “Convex cone-based
endmember extraction for hyperspectral imagery,” Proc. SPIE, vol. 7812,
p. 781 20H, Apr. 13, 2010.

[27] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping target signatures
via partial unmixing of AVIRIS data,” in Proc. Summ. JPL Airborne Earth
Sci. Workshop, Pasadena, CA, Dec. 9–14, 1995, vol. 1, pp. 23–26.

[28] J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis:
A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.

[29] H. Ren and C.-I. Chang, “Automatic spectral target recognition in hy-
perspectral imagery,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4,
pp. 1232–1249, Oct. 2003.

[30] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “Spatial/spectral endmember
extraction by multidimensional morphological operations,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 9, pp. 2025–2041, Sep. 2002.

[31] M. Zortea and A. Plaza, “Spatial preprocessing for endmember extrac-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679–2693,
Aug. 2009.

[32] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero,
“Joint Bayesian endmember extraction and linear unmixing for hyper-
spectral imagery,” IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355–
4368, Nov. 2009.

[33] J. M. B. Dias, “A variable splitting augmented Lagrangian approach
to linear spectral unmixing,” in Proc. 1st IEEE Workshop Hyperspec-
tral Image Signal Process.: Evolution Remote Sens., Grenoble, France,
Aug. 26–28, 2009, pp. 1–4.

[34] A. Ambikapathi, T.-H. Chan, W.-K. Ma, and C.-Y. Chi, “A robust
minimum-volume enclosing simplex algorithm for hyperspectral unmix-
ing,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Dallas,
TX, Mar. 14–19, 2010, pp. 1202–1205.

[35] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Autom. Control, vol. AC-19, no. 6, pp. 716–723, Dec. 1974.

[36] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-33,
no. 2, pp. 387–392, Apr. 1985.

[37] C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct signal
sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 42, no. 3, pp. 608–619, Mar. 2004.

[38] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral sub-
space identification,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8,
pp. 2435–2445, Aug. 2008.

[39] T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, “A convex analysis
framework for blind separation of non-negative sources,” IEEE Trans.
Signal Process., vol. 56, no. 10, pp. 5120–5134, Oct. 2008.

[40] W.-K. Ma, T.-H. Chan, C.-Y. Chi, and Y. Wang, “Convex analysis for non-
negative blind source separation with application in imaging,” in Convex
Optimization in Signal Processing and Communications, D. P. Palomar
and Y. C. Eldar, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2010,
ch. 7.

[41] J. W. Boardman, “Automating spectral unmixing of AVIRIS data using
convex geometry concepts,” in Proc. Summ. 4th Annu. JPL Airborne
Geosci. Workshop, Dec. 9–14, 1993, vol. 1, pp. 11–14.

[42] J. W. Boardman, “Geometric mixture analysis of imaging spectrometry
data,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Pasadena, CA,
Aug. 8–12, 1994, vol. 4, pp. 2369–2371.

[43] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[44] G. Strang, Linear Algebra and its Applications, 4th ed. Belmont, CA:
Thomson, 2006.

[45] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scien-
tific, 1999.

[46] A. Zymnis, S.-J. Kim, J. Skaf, M. Parente, and S. Boyd, “Hyperspectral
image unmixing via alternating projected subgradients,” in Proc. 41st
Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, Nov. 4–7,
2007, pp. 1164–1168.

[47] H. W. Kuhn, “The Hungarian method for the assignment method,” Nav.
Res. Logist. Quart., vol. 2, pp. 83–97, 1955.

[48] Tech. Rep. [Online]. Available: http://speclab.cr.usgs.gov/cuprite.html
[49] AVIRIS Free Standard Data Products. [Online]. Available: http://aviris.

jpl.nasa.gov/html/aviris.freedata.html
[50] D. Heinz and C.-I. Chang, “Fully constrained least squares linear mix-

ture analysis for material quantification in hyperspectral imagery,” IEEE
Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529–545, Mar. 2001.



CHAN et al.: SIMPLEX VOLUME MAXIMIZATION FRAMEWORK FOR HYPERSPECTRAL ENDMEMBER EXTRACTION 4193

[51] G. Swayze, R. Clark, S. Sutley, and A. Gallagher, “Ground-truthing
AVIRIS mineral mapping at Cuprite, Nevada,” in Proc. Summ. 3rd Annu.
JPL Airborne Geosci. Workshop, 1992, vol. 2, pp. 47–49.

[52] G. Swayze, “The hydrothermal and structural history of the Cuprite Min-
ing District, southwestern Nevada: An integrated geological and geophys-
ical approach,” Ph.D. dissertation, Univ. Colorado, Boulder, CO, 1997.

[53] R. N. Clark, G. A. Swayze, A. Gallagher, T. V. King, and W. M. Calvin,
“The U.S. Geological Survey digital spectral library: Version 1: 0.2 to
3.0 μm,” U.S. Geol. Surv., Denver, CO, Open File Rep. 93-592, 1993.

[54] F. A. Kruse, J. W. Boardman, and J. F. Huntington, “Comparison of
airborne hyperspectral data and EO-1 Hyperion for mineral mapping,”
IEEE Trans. Geosci. Remote Sens., vol. 41, no. 6, pp. 1388–1400,
Jun. 2003.

[55] F.-Y. Wang, C.-Y. Chi, T.-H. Chan, and Y. Wang, “Non-negative least-
correlated component analysis for separation of dependent sources by
volume maximization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32,
no. 5, pp. 875–888, May 2010.

Tsung-Han Chan (S’08–M’09) received the B.S.
degree from the Department of Electrical Engineer-
ing, Yuan Ze University, Taoyuan, Taiwan, in 2004,
and the Ph.D. degree from the Institute of Communi-
cations Engineering, National Tsing Hua University
(NTHU), Hsinchu, Taiwan, in 2009.

He is currently a Postdoctoral Research Fellow
with the Institute of Communications Engineering,
NTHU. In 2008, he was a Visiting Doctoral Graduate
Research Assistant with Virginia Polytechnic Insti-
tute and State University, Arlington. His research

interests are in signal processing, convex optimization, and pattern analysis,
with a recent emphasis on dynamic medical imaging and hyperspectral remote
sensing applications.

Wing-Kin Ma (S’96–M’01) received the B.Eng.
(first-class honors) degree in electrical and electronic
engineering from the University of Portsmouth,
Portsmouth, U.K., in 1995, and the M.Phil. and Ph.D.
degrees in electronic engineering from The Chinese
University of Hong Kong (CUHK), Shatin, Hong
Kong, in 1997 and 2001, respectively.

His Ph.D. dissertation was commended to be “of
very high quality and well deserved honorary men-
tioning” by the Faculty of Engineering, CUHK, in
2001. He is currently an Assistant Professor with the

Department of Electronic Engineering, CUHK. From 2005 to 2007, he was
also an Assistant Professor with the Institute of Communications Engineering,
National Tsing Hua University, Hsinchu, Taiwan, where he is still holding an
adjunct position. Prior to becoming a Faculty Member, he held various research
positions with McMaster University, Hamilton, ON, Canada; CUHK; and the
University of Melbourne, Melbourne, Australia. His research interests are in
signal processing and communications, with a recent emphasis on multiple-
input–multiple-output communications, blind signal processing, and convex
optimization techniques.

Dr. Ma currently serves as an Associate Editor of the IEEE TRANSACTIONS

ON SIGNAL PROCESSING and the IEEE SIGNAL PROCESSING LETTERS.
He has also served as a Guest Editor of IEEE Signal Processing Magazine
on the special issue titled Convex Optimization for Signal Processing in
May 2010.

ArulMurugan Ambikapathi (S’02) received
the B.E. degree from Bharathidasan University,
Tiruchirappalli, India, in 2003, and the M.E. degree
from Anna University, Chennai, India, in 2005. He
secured University ranks in both these programs. He
is currently working toward the Ph.D. degree in the
Institute of Communications Engineering, National
Tsing Hua University (NTHU), Hsinchu, Taiwan.

His research interests are in signal processing,
convex optimization, and hyperspectral unmixing.

Mr. Ambikapathi was the recipient of the
NTHU Outstanding Student Scholarship award for two consecutive years
(2009 and 2010).

Chong-Yung Chi (S’83–M’83–SM’89) received the
Ph.D. degree in electrical engineering from the Uni-
versity of Southern California, Los Angeles, in 1983.

From 1983 to 1988, he was with the Jet Propulsion
Laboratory, Pasadena, CA. He has been a Profes-
sor with the Department of Electrical Engineering
since 1989 and the Institute of Communications En-
gineering (ICE) since 1999 (also the Chairman of
ICE during 2002–2005), National Tsing Hua Univer-
sity, Hsinchu, Taiwan. He has published more than
170 technical papers, including more than 60 jour-

nal papers (mostly in IEEE TRANSACTIONS ON SIGNAL PROCESSING),
two book chapters, and more than 100 peer-reviewed conference papers, as well
as a graduate-level textbook, “Blind Equalization and System Identification”
(Springer-Verlag, 2006). His current research interests include signal process-
ing for wireless communications, convex analysis and optimization for blind
source separation, and biomedical and hyperspectral image analysis.

Dr. Chi has been a Technical Program Committee member for many IEEE
sponsored and cosponsored workshops, symposiums, and conferences on signal
processing and wireless communications, including being the Co-organizer
and General Cochairman of the 2001 IEEE Workshop on Signal Processing
Advances in Wireless Communications, the Cochair of the Signal Process-
ing for Communications (SPC) Symposium, ChinaCOM 2008, and the Lead
Cochair of the SPC Symposium, ChinaCOM 2009. He was an Associate Editor
of the IEEE TRANSACTIONS ON SIGNAL PROCESSING (5/2001–4/2006), the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II (1/2006–12/2007), the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I (1/2008–12/2009), and
the IEEE SIGNAL PROCESSING LETTERS (6/2006–5/2010), a member of the
Editorial Board of the European Association for Signal Processing (EURASIP)
Signal Processing Journal (6/2005–5/2008), and an Editor (7/2003–12/2005)
as well as a Guest Editor (2006) of the EURASIP Journal on Applied Signal
Processing. He was a member of the IEEE Signal Processing Committee
on Signal Processing Theory and Methods (2005–2010). Currently, he is a
member of the IEEE Signal Processing Committee on Signal Processing for
Communications and Networking.


