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ABSTRACT Effective hyperspectral unmixing (HU) is essential to the estimation of the underlying
materials’ signatures (endmember signatures) and their spatial distributions (abundance maps) from a given
image (data) of a hyperspectral scene. Recently, investigating HU under the non-negligible endmember
variability (EV) and outlier effects (OE) has drawn extensive attention. Some state-of-the-art works either
consider EV or consider OE, but none of them considers both EV and OE simultaneously. In this paper,
we propose a novel HU algorithm, referred to as the variability/outlier-insensitive multi-convex unmixing
(VOIMU) algorithm, which is robust against both EV and OE. Considering two suitable regularizers,
a nonconvex minimization problem is formulated for which the perturbed linear mixing model proposed
by Thouvenin et al., is used for modeling EV, while OE is implicitly handled by applying a p quasi-norm to
the data fitting with 0 < p < 1. Then, we reformulate it into a multi-convex problem which is then solved
by the block coordinate descent method, with convergence guarantee by casting it into the block successive
upper boundminimization framework. The proposed VOIMU algorithm can yield a stationary-point solution
with convergence guarantee, together with some intriguing information of potential outlier pixels though
outliers are neither physically modeled in the above problem nor detected in the algorithm operation. Finally,
we provide some simulation results and experimental results using real data to demonstrate the efficacy and
practical applicability of the proposed VOIMU algorithm.

INDEX TERMS Hyperspectral imaging, endmember variability, outlier effects, block successive upper
bound minimization (BSUM), block coordinate descent (BCD) method, alternating direction method of
multipliers (ADMM).

I. INTRODUCTION
A hyperspectral sensor records electromagnetic fingerprints
(scattering patterns) of substances (materials) in a scene,
known as spectral signatures, over hundreds of narrow spec-
tral bands (typically, 5-10 nm in wavelength spacing) from
visible to short-wave infrared wavelength region. However,
mixed pixel spectra (i.e., mixed pixel phenomena) are preva-
lent in the hyperspectral image/data due to limited spatial
resolution of the hypersepctral sensor, and thus they must
be decomposed for identifying the underlying materials for a
variety of applications in hyperspectral remote sensing (HRS)
[1]–[3] such as planetary exploration, land mapping and
classification, environmental monitoring, and mineral
identification and quantification [4]–[6]. To accurately

identify materials (or endmembers) as well as their cor-
responding proportions (or abundances) for a scene of
interest, hyperspectral unmixing (HU) [7], [8] with the
observed hyperspectral data has been extensively stud-
ied over the last 2 decades. Indeed many powerful
HU algorithms have been proposed, especially when the
conventional linear mixing model (LMM) can well apply to
the hyperspectral data for heavily-mixed mixtures [9] and ill-
conditioned mixtures [10], [11]. However, the conventional
LMM may not be very suitable for some hyperspectral
scenes for which endmember variability (EV) and outlier
effects (OE) are non-negligible, and recently, the HU design
has drawn considerable attention for such hyperspectral
data.
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In many scenarios, the conventional LMM bears inade-
quate approximation, to some extent, of the actual mixing
process, when EV [12]–[17] and OE [18]–[20] are present
as two confounding factors that hamper the efficacy of HU
algorithms. The EVmakes conventional LMM invalid mostly
because the measured radiance or reflectance of a material
changes according to the geometry and topography of the
scene, thus leading to each endmember inappropriately rep-
resented by a single spectral signature. Several more factors
such as atmospheric effects, intrinsic variability of material,
and the variation of a hidden parameter (e.g., concentration
of chlorophyll in vegetation) also cause EV in hyperspectral
data. Moreover, the OE, similarly, is another obstacle we
need to overcome. In general, outlier pixels have quite dis-
tinct spectra from the background pixels. However, there are
plenty of causes making a background pixel unable to deliver
reliable information. For example, any defect in electronics
makes it difficult to read or access the generated data via
sensors, or a reading of bad pixels resulted from defective
electronic apparatus exceeds the operation scope of the sen-
sors. Most of the existing HU algorithms either focus on
EV or on OE, but none on both simultaneously as far as we
know.

Current studies of HU algorithms that can handle
EV mainly comprise (i) the spectral bundles based
approaches, (ii) the probability distribution based approaches
and (iii) physics-model based approaches. For approaches
in (i), each endmember is represented as a set of spec-
tra extracted from a number of randomly selected sub-
images [21]. However, such approaches do not explicitly
model the variability, sometimes leading to uninterpretable
unmixing results, and the assumptions (e.g., the pure pixel
assumption) required by the endmember extraction algorithm
used may not hold for all the sub-images. For approaches
in (ii), the M -band spectral signature of each material is
assumed to be a random vector following some indepen-
dent and identically distributed (i.i.d.) probability distribu-
tion (e.g., normal composition model (NCM) [13] and beta
compositional model (BCM) [14], and the Gaussian mixture
model (GMM) [15]). However, such approaches cannot be
practically applied in many scenarios due to limitations of
exponentially increasing complexity with number of spectral
bands (M ), number of materials and number of pixels, and
presence of regions of pure pixels [15]. For approaches
in (iii), a physics-based model is used for modeling the EV
such as Hapke model [22], which may lead to cumbersome
HU algorithms, extended linear mixing model (ELMM) [17],
which can account for illumination variations but lack flex-
ibility when the endmembers are subject to more com-
plex spectral distortions, and perturbed linear mixing model
(PLMM) [16], which allows the endmembers to vary from a
pixel to another by modeling the EV as an additive perturba-
tion, thus well interpreting spatial-spectral variabilities.

There are also some efforts devoted to the HU algo-
rithm design with OE taken into account. A straightfor-
ward approach is to detect outlier pixels and then remove

them from the hyperspectral data followed by the standard
HU processing. Various outlier detection algorithms have
been proposed such as clustering based approaches [23],
Reed-Xiaoli (RX) algorithm [24] that statistically detects
outliers using a sliding window, and random-selection-based
anomaly detector (RSAD) [19], which is an improved version
of RX algorithm. Recently, a robust affine set fitting (RASF)
approach proposed in [20], considers the background as the
conventional LMM of different endmembers and then finds
the best affine set of the given hyperspectral data such that
outliers can be separated from background pixels, and thereby
effectively detected. However, there are very few effective
HU algorithms when both EV and OE are present in the
hyperspectral data, thus motivating the study to be presented
in this work.

In this paper, we propose a novel robust HU algo-
rithm, referred to as the variability/outlier-insensitive multi-
convex unmixing (VOIMU) algorithm, that can handle both
EV and OE. Considering two suitable regularizers, a non-
convex minimization problem is formulated for which the
PLMM is used for modeling EV, while OE is implicitly
handled by using a p quasi-norm function for the data fitting
error with 0 < p < 1 [25]–[27]. Then we reformulate it into a
multi-convex problem and solve the resulting problem by the
block coordinate descent (BCD) [28] method, and then the
VOIMU algorithm is designed to obtain the desired solution.
Some analyses about the performance and convergence of
the proposed VOIMU algorithm are also presented. Finally
we provide some simulation results and experimental results
using real data to demonstrate the efficacy and practical
applicability of the proposed VOIMU algorithm, followed by
some conclusions.

The remainder of this paper is organized as follows:
Section II presents the signal model and the problem for-
mulation. The proposed VOIMU algorithm is detailed in
Section III, including theory and analysis with the associated
proofs given in the Appendixes. Then some simulation results
and real data experiments are presented in Sections IV and V,
respectively. Finally, we conclude the paper in Section VI.

For ease of the ensuing presentation, some notations are
defined collectively hereinafter. R (RN ,RM×N ) is the set of
real numbers (N -vectors,M ×N matrices). R+ (RN

+,R
M×N
+ )

is the set of nonnegative real numbers (N -vectors, M × N
matrices). Boldface x and X denote a column vector and a
matrix, respectively; 0M×N (0M ), 1M and IM , respectively,
denote the all-zero M × N matrix (all-zero M -vector), all-
oneM -vector, andM ×M identity matrix. e(m)i ∈ Rm denote
the i-th unit vector. ‖ · ‖p, ‖ · ‖2 and ‖ · ‖F denote the
p quasi-norm (0 < p < 1), 2-norm and the Frobenius norm,
respectively. ⊗ and � stand for the Kronecker product and
the componentwise inequality, respectively. [x]+ denotes the
vector by replacing all the negative elements in x with zero.
vec(X) is a column vector formed by sequentially stacking the
columns of the matrix X; devec(x,M ,N ) denotes anM × N
matrix for which x = vec(devec(x,M ,N )). IL , {1, . . . ,L}
for any positive integer L. {An} represents the set of An for
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all the admissible values of n, and {Bn}Ln=1 , {B1, . . . ,BL}.
DIAG({Bn}) denotes the block diagonal matrix with the
n-th diagonal block equal to Bn.

II. SIGNAL MODEL AND PROBLEM FORMULATION
In the absence of any prior information of the EV nature,
we adopt the PLMM, for which the data pixel xn can be
represented as

xn = Ansn + wn ∈ RM , n ∈ IL ,

where An , [a1,n, . . . , aN ,n] ∈ RM×N is the associated end-
member spectral signature matrix; sn , [s1,n, . . . , sN ,n]T ∈
RN is the associated abundance vector;wn is zero-meanwhite
Gaussian noise; and N ,M , and L denote the total numbers of
endmembers, spectral bands, and pixels, respectively, where
N can be estimated ahead of time such as using information-
theoretical based method [29] or signal subspace identifi-
cation method [30]. Note that in the absence of variability
(i.e., A1 = · · · = AL = A), the above model reduces
to the conventional LMM in the HU [31]. Some standard
assumptions pertaining to this model are considered in this
work as follows:
(A1) S , [s1, . . . , sL] � 0N×L (nonnegativity),
(A2) ST 1N = 1L (sum-to-one),
(A3) An � 0M×N (nonnegativity).
With the EV taken into account, the HU problem is to blindly
estimate {An} and S from the data matrix X , [x1, . . . , xL].
Let

yn = xn − Ansn

denote the data fitting error vector for the n-th pixel, and
y = [‖y1‖2, . . . , ‖yL‖2]T . A natural data fitting criterion [3]
is to minimize

‖y‖pp =
L∑
n=1

‖yn‖
p
2 (1)

with respect to (w.r.t.) {An} and S, where p > 0. Note that for
p ≥ 1, ‖y‖p is known as the p-norm, while for 0 < p < 1, it is
so-called p quasi-norm. For instance, it has been widely used
for the case of the conventional LMM with p = 2, which
is however sensitive to outliers. Recently, the p quasi-norm
based data fitting criterion [25] by minimizing ‖y‖pp (where
0 < p < 1) has been demonstrated that the OE can be
effectively suppressed. To understand how it works, please
refer to Figure 1, where a toy example is designed for readers
to understand the outlier-insensitivity mechanism of p quasi-
norm from a simple optimization perspective.
Example 1: In this example, we illustrate the outlier-

insensitivity of p quasi-norm. For illustration purpose
(cf. Figure 1), assume no EV and no noise in the data, and
consider a dataset X of L = 100 pixels comprising N = 2
endmembers, i.e., X , {xn = Asn | sn = ( nL , 1 −

n
L ), ∀n ∈

IL−1} ∪ {xL}, where xL , 1
2 (a1 + a2) + `c (` > 0 and c

is any unit-norm vector (‖c‖2 = 1) orthogonal to a1 − a2)
is an outlier not located on the endmember simplex. Such

FIGURE 1. Illustration of the dataset X in Example 1.

dataset is illustrated in Figure 1. Assuming that the outlier is
not too seriously deviated from the endmember simplex (say
` < 1

2‖a1−a2‖2 ), one can verify that argminA′ ‖y‖
p
p = A =

[a1, a2] 6= argminA′ ‖y‖22 for 0 < p < 1, showing the robust
fitting of p quasi-norm over the conventional 2-norm based
fitting.

In this work, to develop an HU algorithm that is robust
against both EV and OE simultaneously, we consider the
following nonconvex minimization problem under the
assumptions (i.e., constraints) (A1), (A2) and (A3):

min
{An},S

1
2
‖y‖pp

s.t. S � 0N×L , ST 1N = 1L , (2)

An � 0M×N , ∀n ∈ IL .

Obviously, it is an ill-posed inverse problem, and so we need
to use some advisable regularizers in order to promote some
desired characteristics of the solution for An for all n and Ā.
Two regularizers are considered as follows:

φ1(An, Ā) ,
1
2
‖An−Ā‖2F , φ2(Ā) ,

1
2

N−1∑
i=1

N∑
j=i+1

‖āi−āj‖22.

(3)

The first regularizer is to limit EV energy w.r.t. Ā ,
[ā1, . . . , āN ] ∈ RM×N (a reference endmember signature
matrix), a natural characteristic [16] in HU in the presence
of EV. Note that signature matrices at different pixels are
supposed to be similar (though different), and minimizing
φ1(An, Ā) also implicitly promotes such desired solution
according to the triangle inequality (i.e., ‖(Ai − Aj)‖F ≤
‖Ai − Ā‖F + ‖Aj − Ā‖F , ∀i, j ∈ IL). The other regu-
larizer φ2(Ā), the so-called sum-of-squared-distances (SSD)
regularizer, is to demote the volume of the simplex formed
by the reference endmember spectral signatures [32], [33]
(i.e., the convex hull of {āi, i = 1, . . . ,N }), motivated by
the fact that endmember spectral signatures without EV and
without noise can be perfectly identified under some mild
condition [34]–[36] from the minimum volume enclosing
simplex.
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Based on (2) together with the above two regularizers taken
into account, the proposed robust VOIMU algorithm tries to
solve the following nonconvex problem:

min
{An},Ā,S

1
2

L∑
n=1

[
‖xn − Ansn‖22 + ε

]p/2
+ λ1

L∑
n=1

φ1(An, Ā)+ λ2φ2(Ā) (4)

s.t. S � 0N×L , ST 1N = 1L ,

An � 0M×N , ∀n ∈ IL ,

where λ1, λ2 > 0 are regularization parameters. It is
noticeable that the first term in the objective function in
problem (4) is obtained by modifying ‖yn‖

p
2 in (1) as

(‖yn‖22 + ε)p/2 (in which ε is a small positive real num-
ber) to avoid numerical problems in the algorithm design
in Section III (cf. Remark 1).

III. THE PROPOSED VOIMU ALGORITHM
In this section, we propose an algorithm to solve the noncon-
vex problem (4). Note that the feasible set of (4) is convex
and the two regularization terms in the objective function
are also convex, but the only term involving p quasi-norm is
nonconvex and also the bottleneck to reformulate (4) into a
tractable problem.
The idea is to formulate the nonconvex p quasi-norm term

in (4) into a multi-convex function and then the resulting
objective function will also be a multi-convex function. Sup-
pose that C ⊂ R is a nonempty convex set, and define a
function fε : R2

−→ R in the following form

fε(v, z) , gε(z)v2 + hε(z), (5)

where gε(z) : R −→ R, hε(z) : R −→ R, and ε >

0 is a parameter. To adopt BCD in solving the nonconvex
problem, we have to properly choose gε(z) and hε(z) such that
gε(C) ⊂ R+ (implying that fε is convex in v), fε(v, z) is
convex in z, and

(v2+ε)p/2 = min
z∈C

fε(v, z). (6)

How to choose gε(z), hε(z) will be presented in Lemma 1
in Subsection III-A.

By applying (5) and (6), in which v = ‖xn−Ansn‖2, z = zn
and ε = ε, to the p quasi-norm term of (4), we come up with
the following multi-convex optimization problem:

min
z,{An},Ā,S

1
2

L∑
n=1

(
gε(zn)‖xn − Ansn‖22 + hε(zn)

)
+ λ1

L∑
n=1

φ1(An, Ā)+ λ2φ2(Ā) (7)

s.t. S � 0N×L , ST 1N = 1L , z ∈ CL ,
An � 0M×N , ∀n ∈ IL ,

where z , [z1, . . . , zL]T is an auxiliary variable and C is a
preassigned nonempty closed convex subset of R. Then the
BCD method [28] can be applied to solve problem (7) to be
presented next.

For ease of the ensuing presentation, let

J (z,{An},S) =
1
2

L∑
n=1

(
gε(zn)‖xn − Ansn‖22 + hε(zn)

)
. (8)

The BCD method is to alternatively update each unknown
variables of z, {An}, Ā, and S in a round-robin man-
ner by solving the associated convex subproblems as
follows:

zk+1 ∈ arg min
z∈CL

J (z,{Ak
n},S

k ), (9)

{Ak+1
n }∈ argmin

{An}
J (zk+1,{An},Sk )+λ1

L∑
n=1

φ1(An, Āk ) (10)

s.t. An � 0M×N , ∀n ∈ IL ,

Āk+1
∈ argmin

Ā
λ1

L∑
n=1

φ1(Ak+1
n , Ā)+ λ2φ2(Ā), (11)

Sk+1 ∈ argmin
S

J (zk+1,{Ak+1
n },S) (12)

s.t. S � 0N×L , ST 1N = 1L ,

where the superscript ‘‘k’’ denotes the iteration number, and
{A0

n}, Ā
0 and S0 can be initialized by successive decoupled

volume max-min (SDVMM)-RASF/fully constrained least
squares (FCLS) [20], [37], which is one of the state-of-
the-art HU algorithms against OE. Solving (9), (10), (11)
and (12), will be presented in the ensuing subsections,
respectively. The resulting BCD algorithm is summarized
in Algorithm 1, and it can be shown that Algorithm 1 will
converge and yield a stationary-point solution to problem
(7), as stated in the following proposition with the proof
given in Appendix A.
Proposition 1: Assume that all the convex subprob-

lems (9), (10), (11), and (12) can be optimally solved at
each iteration. Then the sequence {zk , {Ak

n}, Ā
k ,Sk} gen-

erated by Algorithm 1 converges to a stationary point
of (7).

Though zk+1 and Āk+1 can be updated with the asso-
ciated closed-form expressions, the convex problems (10)
and (12) are large-scale convex problems, so they can-
not be efficiently solved using the off-the-shelf convex
solvers (e.g., CVX [38]) for updating {Ak+1

n } and Sk+1,
respectively. The alternating direction method of multipli-
ers (ADMM) [39] has been recognized as an effective
method for solving large-scale convex optimization prob-
lem. Hence, we employ it to solve (10), whereas problem
(12) is actually a fully constrained weighted least-squares
problem which can be efficiently solved by the existing
FCLS algorithm [37]. The details will be presented in the
following subsections.
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Algorithm 1 BCD Algorithm for Solving (7)

1: Given X, and initial Ā0 and S0 obtained by SDVMM-
RASF/FCLS [20]

2: Set k := 0 and A0
n := Ā0, ∀n ∈ IL .

3: repeat
4: Update zk+1 using the closed-form solution (15);
5: Update {Ak+1

n } by solving (10) using Algorithm 2;
6: Update Āk+1 using the closed-form solution (26);
7: Update Sk+1 by solving (12) using FCLS

Algorithm [37];
8: k := k + 1;
9: until pre-defined stopping criterion is satisfied.
10: Output zk , {Ak

n}, Ā
k ,Sk .

A. CLOSED-FORM SOLUTION FOR SOLVING (9)
To ensure that the function values of gε(z) is non-
negative (thus guaranteeing the convexity of fε(v, z) w.r.t. v;
cf. (5), (6)), we choose gε(z) = z2. In the following
Lemma, proved in Appendix B, we show that the counter-
part function hε(z) (for such gε(z)) also exists for (6) to be
satisfied.
Lemma 1: Assume that 0 < p < 1 and ε > 0. Let C =

R+, α = (2/p)
p

p−2 − (2/p)
2

p−2 > 0, and

gε(z) , z2, hε(z) , αz
2p
p−2 + εz2 (13)

for which gε(C) ⊂ R+. Then fε(v, z) defined in (5) is convex
in z over C,

z? = argmin
z∈C

fε(v, z) =
[
2− p
αp

(
v2+ε

)] p−2
4

, (14)

and the optimal value fε(v, z?) is given by (6).
It is noticeable from (8), that problem (9) can actually be

solved in a decoupling manner (i.e., pixel-wise manner). By
setting v = ‖xn −Ak

ns
k
n‖2 and ε = ε in (14), it can be readily

inferred that the optimal solution zk+1n to convex problem (9)
with C = R+, gε(zn) and hε(zn) according to (13), is obtained
as

zk+1n =

[
2− p
αp

(
‖xn − Ak

ns
k
n‖

2
2+ε

)] p−2
4

, ∀n ∈ IL , (15)

where the parameter α is given in Lemma 1.
Remark 1: In spite of the closed-form optimal solution

z?n given by (15), if ε = 0 in (15), computing the optimal
z?n may lead to numerical problems when the data fitting term
‖xn − Ak

ns
k
n‖2 is significantly smaller than unity such that

z?n may get almost unbounded for some n because of the
negative exponent −1/2 < (p − 2)/4 < −1/4. Meanwhile,
when ‖xn − Ak

ns
k
n‖2 � 1, the larger the ε (where ε < 1),

the smaller the z?n. Hence it is advisable to choose a moderate
value for ε (e.g., ε = 10−3) such that it will not cause the
neglect of the two regualarizers in (7).

B. ALGORITHM FOR SOLVING (10)
By letting gε(zk+1n ) = (zk+1n )2 (cf. (13)) in (10), solving
problem (10) is equivalent to solve the following problem:

min
{An}

1
2

L∑
n=1

‖zk+1n xn−zk+1n Anskn‖
2
2+

λ1

2

L∑
n=1

‖An−Āk
‖
2
F (16)

s.t. An � 0M×N , ∀n ∈ IL .

Apparently, (16) can also be solved in a pixel-wise manner.
Instead, we solve this problem in block-wise manner due
to no closed-form solution for An, in order to have better
computational efficiency, especially when L is large.

Suppose that the j-th data block consists of xn, n =
(j− 1)Ls + 1, . . . , jLs, where j = 1, . . . , dL/Lse (the small-
est integer larger than or equal to L/Ls, implying that the
last block size is less than Ls if L/Ls is not an integer).
The corresponding j-th subproblem, through some change of
variables, can be reformulated as the following unconstrained
convex problem

min
cj

1
2
‖8jcj − qj‖22 +

λ1

2
‖cj − ā‖22 + I+(cj), (17)

where

cj = vec([A(j−1)Ls+1, . . . ,AjLs ]) ∈ RMNLs , (18a)

qj =
[
zk+1(j−1)Ls+1

xT(j−1)Ls+1, . . . , z
k+1
jLs xTjLs

]T
, (18b)

8j = DIAG
(
{(zk+1n skn)

T
}
jLs
n=(j−1)Ls+1

⊗ IM
)
, (18c)

ā = 1Ls ⊗ vec(Āk ) ∈ RMNLs , (18d)

I+(cj) ,

{
0, cj � 0MNLs
∞, otherwise.

(18e)

To solve (17) using ADMM [39], subproblem (17) needs
to be re-expressed as the following form:

min
cj,t

1
2
‖8jcj − qj‖22 +

λ1

2
‖cj − ā‖22 + I+(t) (19)

s.t. cj = t.

Then the augmented Lagrangian of (19) is given by

L(cj, t,d) =
1
2
‖8jcj − qj‖22 +

λ1

2
‖cj − ā‖22

+I+(t)+
η

2
‖cj − t+ d‖22,

where d is the scaled dual variable and η > 0 is penalty
parameter. The ADMM solves (19) by alternatively updating
two primal variables and the dual variable as follows:

ti+1 ∈ argmin
t

L(cij, t,d
i), (20a)

ci+1j ∈ argmin
cj

L(cj, ti+1,di), (20b)

di+1 = di + ci+1j − ti+1, (20c)

where c0j and d0 are initialized by 0MNLs (or by warm

start [39]), and the superscript ‘‘i’’ denotes the iteration
number of ADMM algorithm.
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Problem (20a) is generally referred to as the proximity
operator for the indicator function I+(t) [39], and its solution
is known as

ti+1 = [cij + di]+. (21)

Moreover, the closed-form solution to the unconstrained
quadratic convex problem (20b) can be easily shown to be

ci+1j = (8T
j 8j + (λ1 + η)IMNLs )

−1(8T
j qj + ν), (22)

where ν = λ1ā+ηti+1−ηdi. The resulting ADMMalgorithm
is summarized in Algorithm 2, and meanwhile, convergence
can also be guaranteed because the convergence condition
w.r.t. the equality constraint in problem (19) is satisfied [39].

Note that based on our experience, as Ls = L (only one data
block), computing ci+1j (cf. (22)) using available software
such as MATLAB could yield memory overflow problems
in 8j (cf. (18c)) even when L is moderately large. Moreover,
as Ls = 1, we actually need to solve the problem (19)
using ADMM L times, so computationally too costly to be
practical when L is large. Hence, the preceding multi-block
processing turns out to be a feasible solution. However, a
large-size (MNLs × MNLs) matrix inverse is involved in
updating ci+1j (cf. (22)), thus yielding high computational cost
as well. Instead, an alternative expression for ci+1j , which is
computationally much more efficient than (22), is proposed
in the following proposition.
Proposition 2: The equation (22) for computing ci+1j is

identical to

ci+1j = vec
((
devec(qj,M ,Ls)3+ 0

)
9
)
, (23)

where
9 = DIAG

({(
(zk+1n )2skn(s

k
n)
T
+ (λ1 + η)IN

)−1}jLs
n=l

)
, (24a)

3 = DIAG
(
{(zk+1n skn)

T
}
jLs
n=l

)
∈ RLs×NLs , (24b)

0 = devec(ν,M ,NLs), (24c)

and the parameter l , (j− 1)Ls + 1 in (24a) and (24b).
The proof of Proposition 2 is relegated to Appendix C.

Note that the matrix inversion in the closed-form solution of
Proposition 2 is performed only for a matrix size of N × N
(cf. (24a)), where N is usually within ten. Moreover, the
multi-block processing can be implemented by MATLAB
Parallel Computing Toolbox for better computational effi-
ciency.

C. CLOSED-FORM SOLUTION FOR SOLVING (11)
By substituting φ1 defined in (3) into problem (11), it can be
rewritten in the following form:

Āk+1
= argmin

Ā

λ1

2

L∑
n=1

‖Ak+1
n − Ā‖2F + λ2φ2(Ā) (25)

where φ2(Ā) also defined in (3) can be re-expressed as

φ2(Ā) =
1
2

N−1∑
i=1

N∑
j=i+1

‖Pij ā‖22 =
1
2
‖Pā‖22,

Algorithm 2 ADMM for Solving (10)

1: Given X, zk+1, Āk , Sk and Ls.
2: Set j := 1.
3: repeat
4: Initialize c0j ,d

0
= 0MNLs .

5: Set i := 0.
6: repeat
7: Update ti+1 by (21);
8: Update ci+1j by (23);
9: Update di+1 := di + ci+1j − ti+1;

10: i := i+ 1;
11: until pre-defined stopping criterion is satisfied.
12: j := j+ 1;
13: until j = dL/Lse + 1.
14: Output {Ak+1

n }.

where ā , vec(Ā), Pij , (e(N )
i − e(N )

j )T ⊗ IM and P ∈
R0.5MN (N−1)×MN is the matrix formed by stacking all the Pij.
By letting ak+1n = vec(Ak+1

n ), ∀n ∈ IL , problem (25) is an
unconstrained quadratic convex problem, and its solution can
be easily obtained as

āk+1 = (λ2PTP+ Lλ1IMN )−1(λ1
L∑
n=1

ak+1n ). (26)

The optimal solution for Āk+1
= devec(āk+1,M ,N ) can be

obtained from (26).

D. ALGORITHM FOR SOLVING (12)
Due to gε(zk+1n ) = (zk+1n )2 (cf. (13)), problem (12) can be
reformulated as

min
S

1
2

L∑
n=1

(zk+1n )2‖xn − Ak+1
n sn‖22

s.t. S � 0N×L , ST1N = 1L .

This problem is nothing but a weighted least-squares convex
problem with nonnegativity and sum-to-one constraints, and
can be decomposed into L FCLS problems [37]. The resulting
solution can be approximately but much more efficiently
obtained by using nonnegativity constrained least squares
(NCLS) method [37] as follows:

sk+1n = argmin
sn

∥∥∥∥[δ(zk+1n xn)
1

]
−

[
δ(zk+1n Ak+1

n )
1TN

]
sn

∥∥∥∥2
2
,

s.t. sn � 0N ,

where δ > 0 is a small parameter for controlling the impact
of the sum-to-one constraint.
Let us conclude this section with following three remarks:
Remark 2: Regarding the stopping criteria for the pro-

posed Algorithm 1 for solving (7) and Algorithm 2 for
solving (10), the one used for the former can be relative
change of the consecutive objective values smaller than a
suitable tolerance (e.g., 10−3), a commonly used stopping
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criterion in BCD algorithms [28]. The one used for the lat-
ter in each block processing can be the associated primal
residual ‖cij − ti‖2 and dual residual ‖ − η(ti − ti−1)‖2
(where j is the block number) are smaller than a suit-
able tolerance (e.g., 10−3), also a standard stopping crite-
rion in ADMM [39].
Remark 3: It can be observed from (15) that, if xn is an

outlier, then u = ‖xn − Ak
ns
k
n‖

2
2+ε � 1, and thus zk+1n =

[(2− p)u/(αp)](p−2)/4 � 1, since (p − 2)/4 < 0 and
(2 − p)/(αp) > 0. Hence, the pixel n could be an outlier
if 1/zk+1n � 1. Nevertheless, the detection of outliers is
not the purpose for the proposed VOIMU algorithm. Further-
more, from (16), it can be inferred that the obtained solution
Ak+1
n ≈ Āk when zk+1n � 1.
Remark 4: From (3) and (4), one can observe that if the

m-th endmember does not contribute to the n-th pixel, then the
EV energy ofm-th endmembermust be zero. This observation
implies that EV will share the same distribution pattern as
the associated abundance map and which can be justified in
Sections IV and V (cf. Figures 3, 5, 10, and 16).

IV. SIMULATION RESULTS
This section evaluates the performance of the proposed
VOIMU algorithm (Algorithm 1) using synthetic data. As far
as we know, no existing HU algorithms are reported in the lit-
erature that can handle the EV andOE simultaneously. So, we
compare Algorithm 1 with SDVMM-RASF/FCLS algorithm
[20], [37] that is only robust against OE, and PLMM [16] and
ELMM [17] algorithms that can only handle EV, and vertex
component analysis (VCA)/FCLS [37], [40] that is a bench-
mark HU algorithm based on the conventional LMMwithout
considering both EV and OE, just serving as a baseline for
performance comparison. Next, we present generation of
synthetic data, performance measures used, and performance
comparison in the ensuing subsections, respectively.

A. GENERATION OF SYNTHETIC DATA
Each synthetic dataset is generated with N = 6 endmember
spectral signatures of M = 200 spectral bands, includ-
ing Alunite, Buddingtonite, Calcite, Jarosite, Muscovite, and
Andradite, randomly selected from U.S. geological survey
(USGS) library [41], to form the endmember signature matrix

Atrue = [a1true , . . . , aNtrue ] ∈ RM×N . (27)

Then the associated N abundance maps (each being a row
vector of the abundance matrix S) taken from [42] that satisfy
the assumptions (A1) and (A2) are used to obtain a dataset of
size L = 100× 100 through the following procedure:
(S1) Generate

An = [a1true + p1n, . . . , aNtrue + pNn], ∀n ∈ IL ,
(28)

where pin is a Gaussian random vector with zero
mean and squared-exponential covariance matrix
10−3 ×6 [43] with the (i, j)-th element given by

[6]ij = exp
(
− (i− j)2/(M/2)2

)
, i, j ∈ IM .

(S2) Compute

xntrue , Ansn, ∀n ∈ IL . (29)

(S3) Obtain xn by adding zero-mean white Gaussian
noise to xntrue for a specified signal-to-noise ratio
(SNR=

∑L
n=1 ‖xntrue‖

2
2/(σ

2ML) where σ 2 is the noise
variance).

(S4) Following the same way as in [20], generate Z outliers
(rli , ∀i = 1, . . . ,Z ) with the outlier pixel indices set
Z , {l1, . . . , lZ }, with li randomly selected from IL ,
as follows:

rli = cκ i, i = 1, . . . ,Z , (30)

where κ i is a zero-mean unit-variance Laplace random
vector and c is the scalar to meet a specified signal-to-
outlier-ratio (SOR) defined as

SOR = (
L∑
n=1

‖xn‖22/L)/(
Z∑
i=1

‖rli‖
2
2/Z ).

Finally, add rli to xli for all li ∈ Z .

B. PERFORMANCE MEASURES
Five commonly used performance measures are as follows:
• Average spectral signature root mean square error
(aRMSE) [17]:

aRMSE ,
1

L − Z

∑
n∈IL\Z

√
1
MN
‖An − Ân‖

2
F ,

where An is given by (28) and Ân is the associated
endmember matrix estimate.

• Spectral angle error (SAE) [31]:

SAE ,

√√√√ 1
N

N∑
m=1

[
arccos

(amtrue )T ām
‖amtrue‖2 · ‖ām‖2

]2
,

where amtrue is the m-th column of Atrue (cf. (27)),
and ām is the associated reference endmember signature
estimate.

• Abundance angle error (AAE) [31]:

AAE ,

√√√√ 1
N

N∑
m=1

[
arccos

(sm)T ŝm
‖sm‖2 · ‖̂sm‖2

]2
,

where sm , [sm,1, . . . , sm,L]T ∈ RL is them-th row of S,
i.e., the abundance map of the m-th material, and ŝm is
the associated estimate.

• Average reconstruction spectral angle mapper
(xSAM) [17]:

xSAM ,
1

L − Z

∑
n∈IL\Z

arccos
( (xntrue )

T x̂n
‖xntrue‖2 · ‖̂xn‖2

)
,

where xntrue is given by (29) and x̂n = Ân̂sn is the
associated estimate.
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• Reconstruction error (RE) [16]:

RE ,
1

M (L − Z )

∑
n∈IL\Z

‖xntrue − x̂n‖22.

Note that xntrue in the performance measures xSAM and
RE need to be replaced by measurements xn in the real data
experiments below due to lack of xntrue .

C. PERFORMANCE COMPARISON
Thirty synthetic datasets were generated under the following
two scenarios:
• Scenario 1 (with EV, without OE): The data were gener-
ated through Steps (S1)-(S3) in Subsection IV-A (Z = 0
and Z is an empty set).

• Scenario 2 (with both EV and OE): The data were
generated through Steps (S1)-(S4) in Subsection IV-A
(Z = 10 and SOR = −10 dB).

Then the generated data were processed by all the algorithms
under test, and the preceding performance measures and
the running time T were calculated by averaging over the
performed 30 independent runs. The parameters used for
the proposed VOIMU algorithm are p = 0.5, λ1 = 0.5,
λ2 = 10, ε = 10−3, and Ls = 25. For performance
comparison, the proposed VOIMU algorithm and the existing
VCA/FCLS, SDVMM-RASF/FCLS, PLMM (with parame-
ters (α, β, γ ) = (10−5, 4.9 × 10−3, 1)) and ELMM (with
parameters (λS , λA, λψ ) = (6.3× 10−2, 5× 10−3, 9× 10−1))
algorithms are tested with the same synthetic data. The source
codes of the SDVMM-RASF/FCLS [20], PLMM [16] and
ELMM [17] algorithms were downloaded from the associ-
ated authors’ websites. Based on the reference parameters
provided in [16] and [17], we also tried our best in finding
the proper parameters for their best performances. The simu-
lation results for the two scenarios are shown in Table 1, that
were obtained using Mathworks MATLAB R2017b running
on a personal computer equipped with Core-i7-4790K CPU
with 4-GHz speed and 16-GB random access memory.

It can be observed from Table 1 for Scenario 1, that in
terms of RE and xSAM (data-fitting error based performance
measures), the VOIMU algorithm significantly outperforms
all the other algorithms. ELMM performs much better than
PLMM, and PLMMperforms slightly better thanVCA/FCLS
and SDVMM-RASF/FCLS (due to EV never considered in
their design). However, all the algorithms under test are
comparable in terms of aRMSE, SAE (endmember spectral
signature estimation accuracies), and AAE (abundance esti-
mation accuracies), indicating that the estimated reference
spectral signatures are also good approximations toAtrue ‘‘the
ground truth signatures’’ (cf. (27)), and that the estimated
abundance maps are also quite similar as shown in Figure 2
for a typical realization.Moreover, for the VOIMU algorithm,
the spatial distribution of the estimated EV in terms of

1
√
M
‖am,n − ām‖2 (i.e., square root of EV energy) (31)

FIGURE 2. A typical realization of six estimated abundance maps by the
algorithms under test for Scenario 1 (with EV without OE) together with
the six true abundances (the top row), where the gray level scale is
between 0 (black) and 1 (white).

FIGURE 3. The corresponding square root of EV energy distribution
(cf. (31)) associated with the VOIMU algorithm for the same realization
in Figure 2.

is shown in Figure 3, which also shares the same distribu-
tion pattern as the associated abundance map (cf. Figure 2)
because the EV energy of each endmember only applies
to those pixels where the associated material is extracted
(cf. Remark 4). On the other hand, the computational costs in
terms of running time for the three HU algorithms with EV
taken into account are much higher than those of VCA/FCLS
and SDVMM-RASF/FCLS, because when EV is considered,
the number of variables to be estimated is significantly larger.

Now let us focus on the simulation results shown in Table 1
for Scenario 2 which is a more challenging scenario (in the
presence of both EV and OE). Some observations are as
follows. All the performances of all the algorithms under test
are worse than those shown in Scenario 1, except for VOIMU
and SDVMM-RASF/FCLS. Nevertheless, the VOIMU algo-
rithm performs much better than all the other algorithms
in terms of RE and xSAM. In terms of aRMSE, SAE,
and AAE, the VOIMU algorithm performs slightly better
than the SDVMM-RASF/FCLS algorithm (that is also robust
against outliers by design), and they significantly outper-
form the other algorithms. This can be further justified from
the estimated abundance maps that are shown in Figure 4
for a typical realization. From AAE and Figure 4, one can

VOLUME 7, 2019 15093



Y.-R. Syu et al.: Outlier-Insensitive Unmixing Algorithm With Spatially Varying Hyperspectral Signatures

TABLE 1. Simulation results for Scenario 1 (with EV without OE for SNR = 30 dB) and Scenario 2 (with both EV and OE for SNR = 30 dB, SOR = −10 dB
and Z = 10 outliers), where the boldface numbers denote the best performance.

FIGURE 4. A typical realization of six estimated abundance maps by the
algorithms under test for Scenario 2 (with both EV and OE) together with
the six true abundances (the top row), where the gray level scale is
between 0 (black) and 1 (white).

FIGURE 5. The corresponding square root of EV energy distribution
(cf. (31)) associated with the VOIMU algorithm for the same
realization in Figure 4.

clearly see that the VOIMU algorithm can yield more accu-
rate abundance maps than SDVMM-RASF/FCLS, however,
VCA/FCLS, PLMM and ELMM algorithms fail to yield
reliable abundance maps. Surely, the distribution pattern for
the square root of EV energy shown in Figure 5 and that for
the estimated abundance maps shown in Figure 4 are almost
the same, meaning that VOIMU algorithm is indeed outlier-
insensitive. Moreover, the distribution of the normalized 1/z?n
in Scenario 1 is quite uniform, indicating no outliers in
this scenario. The normalized 1/z?n in Scenario 2 is shown
in Figure 6, together with true outliers generated in Step
(S4) (cf. (30)), indicating that they are highly coincident

FIGURE 6. The distribution of the normalized 1/z?n exceeding a threshold
(denoted as circles) and true artificial outliers (denoted as ‘‘∗’’) for the
same realization in Figure 4.

with each other in outlier locations and relative magnitudes
as analyzed in Remark 3. Actually, taking a close look at
the abundance map for m = 3 associated with the VOIMU
algorithm in Figure 4, all the ten outliers can be identified
and they are consistent with the true outlier locations shown
in Figure 6, and meanwhile the corresponding square root of
EV energies in Figure 5 at the outlier locations are invisibly
small (cf. Remark 3). Finally, the running times of all the
algorithms under test are larger for Scenario 2 than those for
Scenario 1 with different degree.

V. EXPERIMENTAL RESULTS
The proposed VOIMU algorithm is evaluated using two
real datasets taken from the hyperspectral imaging data col-
lected by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) [44]. The experiment for each dataset is per-
formed for two cases as follows:
• Case 1: No artificial outliers added to the original
dataset;

• Case 2: 10 artificial outliers (according to (30)) added to
the original dataset.

The proposed VOIMU algorithm is tested together with
those algorithms for performance comparison as presented
in Section IV. Again, all the parameters used for the VOIMU
algorithm in the experiment are the same as used in the
Subsection IV-C, and we also tried our best in finding
the proper parameters for best performances of the other
algorithms under test. Next, we present the experimental
results.
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TABLE 2. Moffett field experimental results for Case 1 (without artificial outliers) and Case 2 (with 10 artificial outliers added), where the boldface
numbers denote the best performance.

FIGURE 7. Sub-image of Moffett field.

A. SUBSCENE OF MOFFETT FIELD
A sub-image of size 50 lines by 50 columns taken from the
hyperspectral image of Moffett Field (cf. Fig. 7), consisting
of 224 spectral bands. With water absorption bands removed,
the left 189 exploitable spectral bands are used in the exper-
iment. This sub-image has been extensively studied in HU
literature [16], in which the number of endmembers is known
as N = 3, including vegetation, water, and soil. The param-
eters used for PLMM are (α, β, γ ) = (0.05, 0, 1) and those
used for ELMM are (λS , λA, λψ ) = (0.4, 5× 10−3, 10−3).
The experimental results in terms of RE, xSAM and run-

ning time for Case 1 and Case 2 are shown in Table 2. The
estimated three abundance maps are shown in Figure 8 and
Figure 9 for Case 1 and Case 2, respectively. From the results
for Case 1, one can observe that the VOIMU algorithm signif-
icantly outperforms all the other algorithms, ELMMperforms
slightly better than PLMM, and PLMMperforms much better
than VCA/FCLS and SDVMM-RASF/FCLS, and that the
estimated abundance maps are also quite similar to each
other (cf. Figure 8). These observations are also consistent
with those from the simulation results for Scenario 1 in the
previous section (simulation results).

From the results for Case 2 in Table 2, one can observe
that the VOIMU algorithm still outperforms all the other
algorithms. It is noticeable by comparing Figure 8 and
Figure 9 that the abundance maps associated with VOIMU
and SDVMM-RASF/FCLS algorithms are much more reli-
able than those associated with the other algorithms, and
OE has larger impact on the HU performance than EV.
These observations are also consistent with those from the
simulation results for Scenario 2 in the previous simu-
lation section. Moreover, the square root of EV energy

FIGURE 8. Three estimated abundance maps of the Moffett field
sub-image by the algorithms under test for Case 1 (without artificial
outliers), where the gray level scale is between 0 (black) and 1 (white).

distributions of VOIMU for Case 1 and Case 2 are shown
in Figures 10(a) and 10(b), respectively. The three estimated
endmember signatures Ân and the estimated reference signa-
tures Ā by VOIMU are shown in Figure 11(a) for Case 1,
and Figure 11(b) for Case 2. Note that the results shown
in Figures 10 are similar to each other for the two cases and so
are those shown in Figure 11, demonstrating that the VOIMU
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TABLE 3. Cuprite Desert Varnish sub-image experimental results for Case 1 (without artificial outliers) and Case 2 (with 10 artificial outliers added),
where the boldface numbers denote the best performance.

FIGURE 9. Three estimated abundance maps of the Moffett field
sub-image by the algorithms under test for Case 2 (with 10 artificial
outliers), where the gray level scale is between 0 (black) and 1 (white).

algorithm is robust against outliers. The normalized 1/z?n
exceeding a threshold (denoted by circles) for Case 1 is shown
in Figure 12(a), and that for Case 2 in Figure 12(b) as well
as the true artificial outliers (denoted as ‘‘∗’’). It can be
observed that some moderate outliers appear in Figure 12(a)
and they can also be seen in Figure 12(b) in addition to
high coincidence between the distribution of 1/z?n (excluding

FIGURE 10. The corresponding square root of EV energy distribution of
the Moffett field sub-image associated with the VOIMU algorithm
for (a) Case 1 and (b) Case 2.

the moderate outliers) and the true artificial outliers. Again,
these observations are also consistent with those from the
simulations results for Scenario 2. Finally, the running times
of VOIMU are similar for the two cases (cf. Table 2).

B. SUB-IMAGE OF CUPRITE: DESERT VARNISH
A sub-image of size 50 lines by 90 columns taken
from the hyperspectral image of well-known AVIRIS
Cuprite (cf. Fig. 13), with water absorption bands removed
(1-3, 104-113, 148-168, and 221-224), the left 187 exploitable
spectral bands are used in the experiment. This sub-
image also extensively studied in HU literature, is
known to have N = 3 endmembers, including Mont-
morillonite, Desert Varnish, and Alunite [45], [46]. The
parameters used for PLMM and ELMM are (α, β, γ ) =
(0.014, 404, 1) and (λS , λA, λψ ) = (0.4, 5×10−3, 5×10−3),
respectively.

The experimental results in terms of RE, xSAM and run-
ning time for Case 1 and Case 2 are shown in Table 3. The
estimated three abundance maps are shown in Figure 14 and
Figure 15 for Case 1 and Case 2, respectively. From Table 3,
one can observe that for Case 1, the VOIMU algorithm
significantly outperforms all the other algorithms, whose
performances are basically comparable and thus their
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FIGURE 11. Three estimated endmember signatures Ân (blue line) and
the estimated reference signatures Ā (red line) of the Moffett field
sub-image by the VOIMU algorithm for (a) Case 1, and (b) Case 2.

estimated abundance maps are somewhat similar as well
(cf. Figure 14).

From Case 2 in Table 3, one can observe that the VOIMU
algorithm significantly outperforms the other algorithms.
By comparing Figure 14 and Figure 15, we can see that
the abundance maps for VOIMU and SDVMM-RASF/FCLS
are much more reliable than those obtained by the other
algorithms under test for this case, and again, OE has larger
impact on the HU performance than EV. These observations
are also consistent with those from the simulation results for
Scenario 2 in Section IV. Moreover, the square root of EV
energy distributions of VOIMU for Case 1 and Case 2 are
shown in Figures 16(a) and 16(b), respectively. The three esti-
mated endmember signatures Ân and the estimated reference
signatures Ā byVOIMU are shown in Figure 17(a) for Case 1,
and Figure 17(b) for Case 2. Note that the results shown
in Figure 16 are similar to each other for the two cases and so
are those shown in Figure 17, demonstrating that VOIMU is
robust against outliers. The distribution of 1/z?n in Case 1 is
quite uniform, thus indicating no non-negligible outliers in
the original Cuprite Desert Varnish dataset. Moreover, the
normalized 1/z?n exceeding a threshold (denoted by circles)
for Case 2 is shown in Figure 18 as well as the true artificial
outliers (denoted as ‘‘∗’’), which can also be identified from
the abundance maps associated with the VOIMU algorithm
for m = 2 and m = 3 in Figure 15. Again, these observations
are also consistent with those from the simulations results

FIGURE 12. The distribution of the normalized 1/z?n exceeding a
threshold (denoted as circles) of the Moffett field sub-image for
(a) Case 1 and (b) Case 2, where true artificial outliers are denoted as ‘‘∗’’.

FIGURE 13. Sub-image of Cuprite: Desert Varnish.

for Scenario 2 in Section IV. Finally, the running times of
VOIMU are also similar for the two cases (cf. Table 3).

The presented experimental study only for N = 3 above
is for ease of demonstrating the effectiveness of the pro-
posed algorithm (e.g., outlier detectability) in a visually
concise and clear manner. Some more experimental results
using AVIRIS data for N = 9 are provided in a sepa-
rate but self-contained technical report in a GitHub link1,
to further support the practical applicability of the proposed
algorithm.

1https://github.com/roy50408/VOIMU
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FIGURE 14. Three estimated abundance maps of the Cuprite Desert
Varnish sub-image by the algorithms under test for Case 1 (without
artificial outliers), where the gray level scale is between 0 (black)
and 1 (white).

FIGURE 15. Three estimated abundance maps of the Cuprite Desert
Varnish sub-image by the algorithms under test for Case 2 (with
10 artificial outliers), where the gray level scale is between 0 (black) and
1 (white).

VI. CONCLUSION
Motivated by the robustness property of p-quasi norm to
outliers (where 0 < p < 1), we have presented a PLMM
based HU algorithm, i.e., the VOIMU algorithm, that is
robust against EV and OE in the meantime, by solving a
nonconvex minimization problem as given by (4), where an

FIGURE 16. The corresponding square root of EV energy distribution of
the Cuprite Desert Varnish sub-image associated with the VOIMU
algorithm for (a) Case 1 and (b) Case 2.

FIGURE 17. Three estimated endmember signatures Ân (blue line) and
the estimated reference signatures Ā (red line) of the Cuprite Desert
Varnish sub-image by the VOIMU algorithm for (a) Case 1, and (b) Case 2.

EV energy based regularizer and a simplex volume based
regularizer are used in order to get the solution with desired
characteristics. Then problem (4) is reformulated into amulti-
convex problem as given by (7), with an auxiliary variable
z ∈ RL

+ used for optimal weights of the data-fitting errors.
The proposed VOIMU algorithm is designed by applying the
BCD method to solve (7), and implemented by Algorithm 1,
which can yield a stationary point of (7) with convergence
guarantee. A remarkable property of Algorithm 1 is that
the yielded solution for z exhibits potential outlier locations
(cf. Remark 3). Some simulation results and experimental
results using AVIRIS data have been provided to demonstrate
the effectiveness of the proposed VOIMU algorithm, and its
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FIGURE 18. The distribution of the normalized 1/z?n exceeding a
threshold (denoted as circles) of the Cuprite Desert Varnish
sub-image for Case 2, where true artificial outliers are denoted as ‘‘∗’’.

superior performance over some benchmark physics-model
based algorithms that are either robust against EV or robust
against OE. However, no performance comparison with any
existing HU algorithms that can handle both EV and OE at
the same time is presented because of no such algorithms
reported in the literature as far as we know. How to upgrade
the computational efficiency of the VOIMU algorithm is left
as a future study.

APPENDIX A
PROOF OF PROPOSITION 1
Let x1 = z, x2 = [vec(A1)T , . . . , vec(AL)T ]T , x3 = vec(Ā),
x4 = vec(S), and x = [xT1 , . . . , x

T
4 ]
T . Let f (x) be the

objective function of problem (7) and X be the associated
feasible set. Note that f is differentiable [47] and noncon-
vex though multi-convex, and X is a closed convex set.
Let

f̄i(xi | x̄) = f (x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄4), (32)

and Xi, i = 1, . . . , 4, be the objective functions and the
associated feasible sets of convex subproblems (9), (10), (11),
and (12), respectively, where x̄ ∈ X denotes a given reference
point. Let

ξ̄ i = arg min
xi∈Xi

f̄i(xi | x̄), (33)

which is unique because f̄i(xi | x̄) is strictly convex [48], [49]
and Xi is closed convex for all i = 1, . . . , 4.
Algorithm 1 is an instance of the iterative block succes-

sive upper bound minimization (BSUM) method [48], [49],
that at the r-th iteration, x̄i is updated by x̄i = ξ̄ i in
a round-robin fashion, where i = ((r − 1) mod 4) +
1. It can be seen that Algorithm 1 also satisfies all the
convergence conditions required for obtaining a stationary-
point solution by BSUM when f and f̄i are differentiable as
follows [49, Remark 4.10]:

f̄i(x̄i | x̄) = f (x̄), (since (32))

f̄i(xi | x̄) ≥ f (x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄4), (since (32))

f̄i(xi | x̄) is continuous in (xi, x̄), (as f is differentiable)

problem (33) has a unique solution, (as mentioned above)

as well as the premise that f̄i(xi | x̄) is quasiconvex in xi,
∀i = 1, . . . , 4 (since f̄i(xi | x̄) is strictly convex), and f (x) is
regular at every point x ∈ X (since f is differentiable).
Therefore, the solution obtained byAlgorithm 1 is guaranteed
to be a stationary point of problem (7). �

APPENDIX B
PROOF OF LEMMA 1
First of all, let us prove that fε(v, z) given by (5) is convex
in z by the second-order condition. It can be easily derived
that

∂fε(v, z)
∂z

= 2v2z+ α ·
2p

p− 2
· z

p+2
p−2+2εz,

∂2fε(v, z)
∂z2

= 2v2 + α ·
2p(p+ 2)
(p− 2)2

· z
4

p−2+2ε.

Because of ∂2fε(v, z)/∂z2 > 0 for all z ≥ 0, fε(v, z) is strictly
convex in z. Next, let τ = (2− p)(v2+ε)/αp, to find the
optimal z, by setting ∂fε(v, z)/∂z = 0, and then we come up
with the optimal z? > 0 given by (14) and the associated
optimal value is given by

fε(v, z?) = gε(z?)v2 + hε(z?)
= τ (p−2)/2(v2+ε)+ ατ p/2

=

( 2α
2− p

)(2− p
αp

)p/2
(v2 + ε)p/2

= (v2+ε)p/2,

where lengthy mathematical manipulations were performed
in the derivations of the third and fourth equalities. Thus we
have completed the proof. �

APPENDIX C
PROOF OF PROPOSITION 2
By (18c), we have

8T
j 8j = DIAG{(zk+1n )2skn(s

k
n)
T
}
jLs
n=(j−1)Ls+1

⊗ IM . (34)

Then substituting (34) into the first term in (22) followed by
some matrix manipulations, we have

(8T
j 8j + (λ1 + η)IMNLs )

−1
= 9 ⊗ IM , (35)

where 9 is defined in (24a). Next, by substituting (35)
into (22), we come up with

ci+1j = (9 ⊗ IM )× (8T
j qj + ν),

= vec(devec(8T
j qj + ν,M ,NLs)×9)

= vec
(
(devec(8T

j qj,M ,NLs)+ 0)×9
)

= vec
((
devec(qj,M ,Ls)3+ 0

)
9
)

(36)

which is exactly (23), and 3 and 0 are defined in (24b)
and (24c), respectively. In the derivation of (36), the sec-
ond equality is due to the Kronecker product property of
(UT
⊗ V)vec(Y) = vec(VYU) and the fact that 9 is sym-

metric; the last equality is obtained by applying the same
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Kronecker product property as used in the third equality and
the Kronecker product structure of 8j (cf. (18c)) to 8T

j qj.
Hence, the proof of Proposition 2 is completed. �
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