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Two-Dimensional Frequency-Domain Blind System
|dentification Using Higher Order Statistics with
Application to Texture Synthesis
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~ Abstract—in this paper, Shalvi and Weinstein's super-exponen-  that y[n1, no] is Gaussian, Kashyap and Chellappa [5] and
tial (SE) algorithm using higher order statistics for blind decon-  Sharma and Chellappa [7] estimate AR parameters using an
volution of one-dimensional (1-D) linear time-invariant systems is L estimator. Takelpet al. [8] proposed an image restoration

extended to a two-dimensional (2-D) SE algorithm. Then, a 2-D fre- . .
guency-domain blind system identification (BSI) algorithm for 2-D method using an ARMA model for which the AR and MA

linear shift-invariant (LSI) systems using the computationally effi- Parts correspond to the image model and the blur system,
cient 2-D SE algorithm and the 2-D linear prediction error filter is ~ respectively. They estimate the ARMA parameters by also
proposed. In addition to the LSI system estimate, the proposed BSI using an ML estimator with the assumption that the driving

algorithm also provides a minimum mean square error (MMSE)  input of the image model is white Gaussian. Eom [9] uses
equalizer estimate and an MMSE signal enhancement filter esti- "1 dimensional (1-D) function as an approximation to a

mate. Then, a texture synthesis method (TSM) using the proposed Lo . .
BSI algorithm is presented. Some simulation results to support the 2-D MA model. The 1-D function is estimated also using an

efficacy of the proposed BSI algorithm and some experimental re- ML algorithm with the assumption that the 2-D spectrum of
sults to support the efficacy of the proposed TSM are presented. y[n1, no] is independent identically distributed (i.i.d.) complex

Finally, some conclusions are drawn. Gaussian. Then, the 2-D MA model obtained from the esti-
Index Terms—Higher order statistics and texture synthesis, 2-D Mated 1-D function is applied to synthesis of texture images.
blind system identification, 2-D super-exponential algorithm. Due to the fact that SOS are blind to the system phase, only the

magnitude information of 2-D LSI systems can be extracted by
the SOS-based approaches mentioned above.

Higher order statistics (HOS), known as cumulants [10],
STIMATION of a two-dimensional (2-D) linear shift-in- which include both magnitude and phase information of
variant (LSI) systemhi[ni, n2] with only a given 2-D non-Gaussian random fields, have been used for the estimation

system output random fielg[n, no] is a blind system iden- of 2-D AR or ARMA models that can be nonminimum-phase,
tification (BSI) problem that is essential in a variety of 2-Dasymmetric, and noncausal [11]-[16]. Bhattachaetal. [11]
statistical signal processing applications, such as 2-D specgatimate AR parameters by the LS solution of a set of linear
estimation, texture image synthesis, classification, and imagguations formed from third-order cumulants of the given 2-D
restoration [1]-[9], [11]-[16]. Parametric models, such amndom fieldy[n, ns]. Swami and Mendel [12] also estimate
autoregressive (AR), moving average (MA), and autoregressik& parameters by the LS solution of a set of linear equations
moving average (ARMA) models, have been widely used féormed from higher orderX3) cumulants ofy[ny, ns]. Then,
hlny, n2], and thus, the BSI becomes a parameter estimatiblA parameters are estimated via a closed-form solution using
problem that often leads to mathematically tractable solutionemulants of the residual signal obtained by removing the
with predictable performance [1]-[8], [11]-[15]. There havéR part fromy[ny, nz]. Inverse filter criteria [13], [14] have
been a number of second-order statistics (SOS)-based allgeen reported for estimating ARMA parameters. Tugnait [13]
rithms reported for the estimation of parameters:pf;, n2], proposed three inverse filter criteria for jointly estimating
such as linear prediction based methods [1]-[3], least-squafd® and MA parameters, whereas only the estimated AR
(LS) solution based methods [4]-[6], and maximum-likelihoodarameters are used for texture synthesis. Hall and Giannakis
(ML) methods [5], [7]-[9]. In [4]-[6], 2-D AR parameters [14] proposed two inverse filter criteria for estimating AR
are estimated by the LS solution of a set of linear equatioparameters, whereras MA parameters are estimated either by
formed from autocorrelations (SOS) gfni, ns]. Assuming a closed-form solution using higher order cumulants or by
cumulant matching. Then, the estimated AR parameters are
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optimum model parameters through iterative nonlinear searthsume that we are given a set 6f x N measurements
procedure such as the aforementioned inverse filter criteria. y[ny, n2] modeled as

Shalvi and Weinstein [17], [18] proposed a family of blind
deconvolution criteria to obtain the optimum 1-D inverse filter
(linear equalizer)[n] using two cumulants of the inverse filterwherex[n;, n»] is the noise-free output signal of an LS| system
output signal with two different cumulant orders. It has beeln,, n,] driven by an unknown input signaln,, n.], i.e.,
shown [17] that under the two assumptions [al) signal-to-nois
ratio (SNR) is infinite and a2) the linear time-invariant (LTI)T it o
channelh[rn] is stable and its inverse filtér, n] exists], the _ o L L
optimum Enz/erse filtew[n] is a zero forcing”(\lz\{:g gqualizer (i.e., N Z Z Alks, Ralulnn = ks nz = ko] (3)
v[n] = ah)ny [n — 7]). However, one has to resort to iterative _ o _
nonlinear optimization algorithms to find the optimusin]. Re-  @nd w[n1, n| is additive measurement noise. Let us make
cently, Fengand Chi[19]-[21] reported performance analyses B following assumptions about[ny, nsl, hlni, no], and
the optimum inverse filtes[r] associated with Shalvi and Wein-w["1, 72], respectively.
stein’s blind deconvolution criteria for finite SNR. The optimum Al) wu[ni, n2]is stationary complex, zero-mean, i.i.d., non-

y[n1, na] = zny, na +wlng, noj %)

f1, no] = uln, no] A, no]

k1=700 kz:*OO

inverse filterv[n] possesses three properties [19]-[21] for finite Gaussian with varianceZ and nonzer¢l/+m )th-order
SNR, including a relation between the minimum mean square cumulant
error (MMSE) equalizer and the optimumin], the stability _ . * .
property, and perfect phase equalization SEoLerty. Based on the a,m = CUM{ulny, nal: 1 o [ng, ol m) “)
three properties of the optimusiin], Chiand Feng [22] proposed wherel andm are non-negative integer§+m) > 3,
ablind channel estimation (BCE) algorithm, and meanwhile, the and the superscriptdenotes complex conjugation.
MMSE equalizer and MMSE signal enhancement filter can be A2)  Both h[ny, no] and its inverse systertyny 11, 72]
readily estimated from the obtained channel estihat are stable LS| systems.

Shalvi and Weinstein [23] also proposed an iterative super-ex-A3) w([ny, no] is stationary complex, zero-mean, colored
ponential (SE) algorithm using higher order cumulants for 1-D Gaussian with variance?, given by
blind channel equalization. At each iteration, the SE algorithm wlng, na] = nn, na] * blny, ns] )
finds the 1-D inverse filter:[n] by solving a set of linear equa- L M2l =i, 12 L2
tions formed from autocorrelations of measurements and higher wheren[ny, ns] is complex zero-mean white Gaussian
order cross-cumulants between the equalized signal and mea- with variances2, andi[n,, n,] is a stable LS| system.
surements. Under the assumptions al) and a2) mentioned above, Moreover, w[ny, no] is statistically independent of
the computationally efficient 1-D SE algorithm converges at a u[ny, nal.
super-exponential rate, and the resultelaf] turns out to be a Note thatw[n1, n»] is white Gaussian whebjn, n] is an all-
ZF equalizer. pass system and thgltn1, no] is also a stationary non-Gaussian

In this paper, Shalvi and Weinstein's 1-D SE algorithm [23] iandom field with correlation function
extended to the 2-D SE algorithm for blind deconvolution of 2-D N
LSI systems. Then, a computationally efficient 2-D frequency- ryylk, k2] = E{ylna, noly[ny — ki, n2 — Ko}
domain BSI algorithm is proposed for estimating the unknown =o2h[ny, nol ¥ h*[—n1, —nol
LSIsystemh[n1, ns] usingthe well-known 2-D linear prediction + agb[nl, na] * b*[—n1, —na] (6)
error (LPE) filter and the inverse filteffn, , n2] obtained by the
computationally efficient 2-D SE algorithm. The proposed 2-
BSI algorithm is robust against Gaussian noise, and the obtai agn of ryy[k1, k2])
system estimatg[n;, nq] is applied to texture synthesis. Syu(wi, w2) = Spz(wi, w2) + Sew(wi, wa)

The paper is organlze_d as follows. S_ect|on Il presents the 2-D = 02| H(wy, wo)|? + 03]|B(w1, w2 (7)
SE algorithm for 2-D blind deconvolution of 2-D LSI systems
needed by the proposed 2-D BSI algorithm that is presentediRereH (w1, w2) andB(wi, wo) are the frequency responses of
Section Ill. Then, a texture synthesis method (TSM) using tfilee 2-D LS| system&[n,, na] andb[n,, na], respectively. Next,
proposed 2-D BSI algorithm is presented in Section IV. Son@t us briefly review Shalvi and Weinstein 1-D SE algorithm
simulation results to support the efficacy of the proposed BE1], [23] before presenting the proposed 2-D SE algorithm.
algorithm and some experimental results to support the efficacy , ,
of the proposed TSM are presented in Section V. Finally, e Review of the 1-D SE Algorithm
draw some conclusions. Assumethag[n],n =0, 1, ---, N—1are the corresponding

1-D measurements modeled by (2). bgt], n =0, ---, ¢ be

[I. TWO-DIMENSIONAL SUPEREXPONENTIAL ALGORITHM the 1-D causal inverse filter of order (¢;th-order causal FIR

filter). The 1-D inverse filter output[n] is given by

nd continuous power spectrum (discrete-time Fourier trans-

For ease of later use, let c§ym, sz, - - -, sy} denote the
joint cumulant of random variables, so, -- -, sp; [10] and O
e[n] =v[n] = yln] = > v[klyln — k]
cum{s: p, ---} =cum{s, ---, s, ---}. (1) k=0
——

p torms =v"yln] = uln] * g[n] + wln] « v[n] ®)
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wherev = (v[0], v[1], ---, v[a ¥, y[n] = (y[n], y[n — The 2-D SE algorithm, that is, a direct 2-D extension of the
1], -+, yln —])?, and 1-D SE algorithm, iteratively finds the inverse filtefny, 2]
by solving the following linear equations:

g[n] = h[n] *v[n] S

is the overall system after deconvolution. The 1-D SE algorithm Y 2 vk, 1E{y[m, nly*[m + k —ny, n+1— nal}
iteratively finds the inverse filter[r] by solving the following k=0 1=0

linear equations: = cum{e[m, n]: p, €*[m, n]: ¢, y*[m — ny, n —nal}
@ V[n1, n2] € Qrqr(p1, p2 (17)
Z v[k|E{ylmly*[m + k —n]} wherep andq are non-negative integers, apd- ¢ > 2.
k=0 . . Let (n), denote » modulop,” let | k] denote the largest in-
= cumiclm]: p, ¢*[m]: ¢, y"[m —nl}, n=0,-, a1 tegerless than or equal fg and let
10
( ) V= (U[Ov 0]7 U[lv 0]7 T U[plv 0]7 U[Ov 1]7 U[lv 1]7
wherep and ¢ are non-negative integers, apd+ ¢ > 2. At cwlpn, 1, -, olp pQ])T (18)
theth iteration, by expressing (10) in matrix form, the 1-D SE _ _ N
algorithm updates with ||v|| = 1 (£2 norm ofv) via including the filter coefficientsu[ny, ng] for all [ny, na] €
. Qrgr(p1, p2]- At the ith iteration, by expressing (17) in a
vi = Ry “dey (11) matrix form, the 2-D SE algorithm updates the unknown
[ 1 . .
IRy deyll parameter vectov with ||v|| = 1 via
whereR, = E{y*[n]y”[n]} and o R,!-d, (19)
IR7" - dey

dey =CUM{ei[n] :p, i 1[0l g, ¥ [0l p+a=2
(12) whereR, is a[(p; + 1)(p2 + 1)] x [(p1 + 1)(p2 + 1)] autocor-
in which e;_1[n] = y[n] * v;_1[n] is the equalized signal ob- relation matrix with thgk, /]th element given by
tained at the(v — 1)th iteration, wherev;_[n] is the inverse

filter associated withr; _; . Ryls, 1 =F {y[nl, naly* [nl +(k—1Dp 41— —1)p+1
As v; converges, the associatedn] is the obtained 1-D in-

verse filteru[n]. It has been shown [23] that the amount of inter- No + { k-1 J _ { [-1 H }

symbol interference 1§k;[n] = h[n] * v;[n]} defined as [17], pt+1 p+1

(23] (20)
Z lg[n]|? — max{|g[n]|?, Vn} andd,, isa(p1 + 1)(p2 + 1) x 1 vector with thekth element

- given by
ISHg[n]} = (13)

max (g%, Vn)

[dey]x =Cum{67‘,—1[ﬂ1, nal: p, €j_i[n1, na): ¢,
decreases to zerg,(n] = «ab[n — 7] for all & # 0) at a super- Y '

exponential rate foBNR = oo andq; sufficiently large. N k-1
P = o« Y 9 Y |:n1_(k_1)P1+1’n2_{ J:|}

) ) ] p1+1
B. Two-Dimensional SE Algorithm (21)

Letwv[n1, no] be the 2-D inverse filter with a truncated quarte\rNhere - Jis the equalized signal obtained at ie-
plane (TQP) region of support given by [1], [2] 1th itee;;tliozl’i? q 9

QTQP[pla p2] = {[711, 712]2 n=0~p;,na=0~ p2]&[4) Cifl[nly 712] — y[”b 712] % Ui*l[n]q 712] (22)
Lety[ni, no] inputtothe 2-D FIRfilters[ny, n2] ande[ni, no] in whichv,_1[n1, no| is the 2-D inverse filter associated with
be the corresponding output signal, i.e., Vi_1.

Asv; converges, the associategl;, n2]is the obtained 2-D
c[n1, na2] = ylna, nal x vlng, ne] inverse filterv[ny, ns]. As the 1-D SE algorithm, it can also be
L& shown that IS{g;[n1, n2] = hk[n1, na] * v;[n1, na2]} [which
- kz;o kz;ov[kl’ kalylna — k1, ma — ko is the 2-D counterpart of I$h;[»]} given by (13)] decreases to

zero (g;[n1, n2] = abd[ny —71, na—72]forall « # 0) ata super-
exponential rate for SNR- oo andp; andp, sufficiently large.
(15) That is, the obtained inverse filtefn:, no] = ahyyy [ —

11, N2 — 72] is @ 2-D ZF equalizer. However, when the SNR
is finite, the obtained[n;, no] can be shown to possess the
following two properties ag; andp- are sufficiently large.

P1) The inverse filterV(w;, ws) (2-D discrete-time
is the 2-D overall system after deconvolution (equalization). Fourier transform ofv[ni, ns]) is related to the

=u[ny, na] * g[ny, na] + wlny, nal * vng, nal

where

glni, na] = hlng, na] *v[ng, nal (16)
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2-D MMSE equalizer [24], which is denoted by rapidly spread oveRrqp[p1, p2], and thusy;[ny, na)
Vmse(wr, w2), via approaches the resultawtz1, n2] in a more efficient
manner.
Viwy, w2) = o D(wy, we)Vuse(wr, wa2) (23)
wherea is a nonzero constant Il. TwO-DIMENSIONAL BLIND SYSTEM IDENTIFICATION
o2 H*(w,w2) ALGORITHM
Vse(wr, w2) = US— . . . ! .
yy (W1, w2) First of all, let us briefly review the 2-D LPE filter that is
o2 H*(wy,ws) widely used in statistical signal processing, which, together with

= 2 H(wy, w22 + 72| Bwy, ws)|? (24 the inverse filten[n,, no] obtained by the 2-D SE algorithm, is
_ ) ) _ needed by the 2-D BSI algorithm for the magnitude estimation
andD(w1, wo) is the 2-D dlscrete—tlm.e Fpur!er trans-yf the 2-D LS| systenh[ny, ns]. Leta[ny, no] be a 2-D LPE
form of the 2-D sequenadny, n.], whichis given by fijjter associated with measuremenfs, no] with leading co-

d[ny, n2] = (glny, n2])?(g" [n1, na))? (25) cefficiental0, Q] = 1 and a truncated nonsymmetric half plane
(TNSHP) region of support given by [1], [2]

whereg[n1, no] is given by (16).

P2) For the case of compleyn,, n2] andp = ¢ + 1, the Qrnsup[p1, p2] ={[n1, n2]: n1 =1~ p1, n2o = —p2 ~ p2}
phase responseg[V (w;, w2)] is related to the system U{[n1, n2):n1 =0, n2 =0~ p2}. (28)

hasearg[H b
P rg[H (w1, wo)] by The prediction error, which is denoted &y , ], is the output

arglV (w1, w2)] = — arg[H (w1, wa2)] —w1T1 —wama+k (26) signal of the 2-D LPE filter driven by[ny, n], i.e.,

where; and 72 are unknown integers, andis an e[ny, na] =y[ny, na] *afny, nol

unknown constant. On the other hand, for the case of _
realy[ny, no], (26) is also true withc = 0, asp + g is - ZZ alky, k2ly[n1 — ki, na — k.
odd. (b1, ke]€QTNsnp [P1, 2]

The proofs of P1) and P2) are given in Appendices A and B, (29)

respectively. The optimum LPE filter coefficientsalni, n2] for all
We remark that the 2-D (1-D) SE algorithm is also applicable:;, n»] € Qrnsur[p1, pa], excepta[0, 0] = 1 by minimizing

when the given measuremenfs.; , n| (y[n]) are real, anditis E{|¢[n;, no]|*}, can be obtained by solving the following 2-D

the same for alp > 0, ¢ > 0, and(p + ¢) > 2, and surely, the Yule-Walker (linear) equations [1], [2]

obtained 2-D inverse filtes[n,, n2] (v[n]) is real as well. Let us

conclude this section with the following two remarks regarding ZZ alky, ko]
the 2-D SE algorithm. [k, kz]€QTNsHP [P1, P2)
R1) By P2), the resultant overall systef{w;, wy) = ~E{ylky, k2]y* (k1 — na, k2 — na]} =0,
H(wi, w2)V (w1, we) can be a zero-phase system Y [n1, n2](#£[0, 0]) € Qrnsur[p1, po]- (30)
(i.e., g[n1, n2] = g¢*[—n1, —ng]) if the 2-D space

Moreover, for sufficiently large andp., a[n1, no] performs

shift [r1, 7] and constant phase shiftcan be com- g\)s a whitening filter or an amplitude equalizer, i.e.,

pensated. Moreover, it can be easily shown from (2

that wheng[ni, nq] is zero phased[ni, n2] is also 2 1
zero phase (i.ed[ni, no] = d*[—n1, —na2)). A, w2l o Syy (w1, w2)

R2) The property P2) also implies that a space $hift k] B 1 by (7
and a complex scale facta¥® may exist between T 02|H(wy,w)|? +03|B(w1,w2)|2 by (7)].
vi[n1, n2] andv;_1[ny, n2]. However, the 2-D space (31)

shift [k, k2] betweenv;[n1, na] andv;_1[n1, n2] is

always equal td0, 0] because the locatiojin,, mo] As a remark, Qrqr[p1, p2] given by (14) rather than
for which |gi[mi, mo]] = max{|gi[n1, no]|, $rnsur[p1, p2] given by (28) can also be used as the region
Y [n1, no]} is always invariant for ali as SNR= oo Of support of the 2-D LPE filter, as long as the resultant
[23]. Therefore, the following convergence rule forS=c(w1, w2) is flat.

the 2-D SE algorithm is suggested: From (23), (24), and (31), it can be easily shown that
min < ||v; — ¢#Pv,_ g - 2—2- VfIVi_ < € 27 H —A3. M
u {H 1” } | 1| <ese  (27) |H(wy, wa)| = Diwr, w2)] (32)

wherev is the complex conjugate of the transpos@heres is a positive constant, and

of v;, andesg > 0 is the assigned convergence toler- IV (wr,wn)|
ance. On the other hand, an initial conditi@in, , 2] TN wy, wa) = %
is needed to initialize the 2-D SE algorithm. By our ex- [ A(ws, w2)]
periencewg[ni, no] = §[n1 — U1, na — l3] is a good Based on (32) and P2) for the magnitude estimation and phase
choice, wherd, , I5] is in the proximity of the center of estimation ofi[ny, n2], respectively, the following 2-D FFT-
Qrgr[p1, p2] because most energy ofjni, n:] can based frequency-domain BSI algorithm is proposed.

(33)
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A. Two-Dimensional BSI Algorithm the estimatd}[nl, no] can be arbitrary as long as the

Step 1) Blind deconvolution.

T1)

T2)

Step 2) Magnitude estimation.

S1)

S2)

Gl (wr,, wiy) = [HI My, wiy)| - [V (@i, wiy)

2-D FFT sizeL x L is chosen sufficiently large so
that aliasing effects on the resultaﬁtnl, ny| are
negligible.

The obtained estimaté((wl, w9) is robust against
Gaussian noise because (32), on which the magnitude
estimation is based, aR®), on which the phase esti-

With finite datay[ni, nq], obtain the inverse filter
v[n1, no] using the 2-D SE algorithm presented in
Section Il and the 2-D LPE filtea[n, n2] using the
2-D Yule—Walker equations given by (33).
Computd/(wkl, wkz),A(wkl, wkz), andl“(wkl, wkz)

given by (30) using the(L x L)-point 2-D FFT mation is based, are true, regardless of the valug’ of
where wy, = 2rk/L and w, = 2rks/L ’ (or the value of SNR), although magnitude responses
k=0, 1 L1 ky = 0, 1 o1 ' of the inverse filteru[n;, ns] and the 2-D LPE filter

a[ny, n2] obtained in Step 1 depend on SNR.

R5) Assume thak[n;, no] is the inverse filter obtained by
processing the 2-D LPE filter output signgh, ns]
[see (29)] with the 2-D SE algorithm. Then, the inverse
filter Vi(wy, we) in Step 1 can also be obtained by

V(wy, w2) = Alwr, wa) - A(wy, wo). (36)

Seti = 0. Set initial values|H% (wy,, wy,)| for
|H(ws, , wi, )| @nd a convergence tolerangg > 0.
Sett = ¢ + 1. Compute

i -DOi - [i—1] .. .
and its(L x L)-point 2-D IFFTg"™"[ny, ns]. We empirically found that the 2-D SE algorithm al-

S3) C[:io_eruted[nl, ”2d] l_JtSin% (ZS)LWith _g[tmé %2] FF:T ways converges faster by processi{g., no| than
511) [, 2] and its (L x L)-point 2- by processingy[n:, ns] when the dynamic range of
(W, W, ). S, (w1, wo) is large. The reasons for this are as fol-
S4) Compute .
lows. By (2), (3) and (29), the signaln,, ns] can be
. Cwr, , wiy expressed as
‘H(wk17 wkz) = W (34) P
by (32) d then, | B ) A . e[ny, na] =ul[ny, na] * (h[n1, na]* afny, nal)
y (32), and then,|H"(wy,, wi,)| is obtaine 4 wlng. no]  alny. nol. 37
as |H(wi,, wi,)| normalized by 37 >>0 % [, ma] < alm, o) 37
|1—~[(wkl, wi,)|? = 1. As mentioned abovg, the 2-D .LPE filter_ bqgically
S5) If performs as an amplitude equalizer that significantly
L—1 I—1 ) removes the system magnitude distortion leading to
Z Z HHM(wku wiy)| — ‘H[i—l}(wkl’ Wi, ) } > ex See(wr, we) much flatter thanS,, (w1, w2). In other

k1 =0 k=0

Step 3) Estimation off (w1, w2).

words, the dynamic range of the former is much
smaller than that of the latter, and the associated 2-D
LS| systemh[ny, nz2] * a[n1, no] is typically closer
to an allpass system (a phase-distortion system) to be
equalized by the 2-D SE algorithm tharin;, no].
. On the other hand, the iterative procedurestrep 2

and‘ ‘t?/e phase estl;ma;ezrg[H (bw"‘l’ “(’j"?.)] S: for magnitude estimation converges fast, regardless of
I)alg(iwklingz)]k[ yr )]Oolt?"n'e Lm— ;ep whether or not the preprocessing of the LPE filter is
P 1’“1j . ~k2L'— 11are_obtai;1eéi a5 ’ involved by our experience.

2= 5 ’ With the 2-D LSI system estimat# (w;, w2) obtained by

then go tos2).

With the system magnitude estimaltél (w, ,
wr,)| = [HV(wk,, wr,)| obtained in Step 2)

H(wy,, wi,) = |H Y (wy,, wi,)| - exp{—j arg[V(wi, . wy, )]} the proposed BSlalgorithm, an MMSE equali¥ersp(w:, w2)

(35) and an MMSE signhal enhancement filter, which is denoted by

and the associated estimziibzl, no] is the (L x H(w1, we), can be estimated fronﬁ(wl, w9) and the 2-D LPE

L)-point 2-D IFFT of A (wr, , wi, ). filter' A(wy, wa). The MMSE equalizebysr(wi, we) for esti-
Three worthy remarks regarding the proposed BSI algorithatingu[n., n2] can be estimated as
are as follows. . H* (w1, w2)
R3) The proposed 2-D BSI algorithm is a frequency-do- YMsr(wi, w2) = z7————= [by (24)] (38)
main estimation algorithm that provides estimates Ayy(“b“?) ,
H(wy, = 20ki/L, wp, = 2xka/L), ki = 0, 1, =H" (w1, w2)|A(w1, w2)|” [Py (31)] (39)
o L=1,k =01,---, L — 1 with the given 1o a scale factor and a space shift.

non-Gaussian (real or complex) measurements; js known that the noncausal zero-phase MMSE signal en-

yln1, no]. When measuremenign,, n] are real, the hancement filter for estimating the noise-free signial;, n.]
LPE filter a[ny, n2] and the inverse filteo[ni, no] in g given by [24]

T1) of Step 1 are also real; as mentioned in Section I,
the latter obtained by the 2-D SE algorithm is the H(wy, ws) = _
same for allp > 0, ¢ > 0 and oddp + ¢ (> 3). On ’ Syy (w1, w2) Syy (w1, w2)
the other hand, the region of support associated with =Vuse(wi, w2)H(wy, we) [by (24)]  (40)

Sea(wi,w2)  on|H(wy,wz)|?
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Fig. 1. Simulation results of Example 1 fof x N = 256 x 256 and SNR= 5 dB (lowpass Gaussian noise). (a) True systém, n.]. (b) and (c) Average

h[n1, ns] associated with Tugnait's method and the proposed BSI algorithm, respectively. (T2, n2]. (€) and (f) Averag@se[n1, n2] associated
with Tugnait's method and the proposed BSI algorithm, respectively.

which leads to the MMSE signal enhancement filter estimateoved version oft[ny, ns]. The proposed TSM includes the
given by (up to a scale factor) following four steps:

& Step 1) Obtain the texture image modéh, , n,] and the
> _ Sacac(wlv w?) . . .
H(ws, w2) = T oo (41) 2-D LPE filter A(w;, w-) associated witly[n1, n,]
Ayy(wl’ ws2) X using the proposed 2-D BSI algorithm.
=Vuse(wy, w2) - H(wy, w2) [by (40)]. (42)  Step2) Obtain the MMSE equalizer estimate

One can also obtain different MMSE equalizer estimates and ‘I\;]\K/TE(EM’ t@) tUSi??h (3d9)', and t:uen, obtaibn the
MMSE signal enhancement filter estimates using (38) and estimate of the driving input[n,, n2] by
(41), respectively, withb,, (w1, w2) obtained by different 2-D . _ .

power spectral estimation methods such as the 2-D averaged iyseln, na] = yln, nal + duselna, na]- (43)

periodogram [1]. Step 3) Generate a random fieldn,, ns] that has the
V. TSM same histogram a&ysg[n1, n2]. Then, obtain a

zero-mean synthetic texture image by
Assume that we are given a noise-free real texture image A
Z[n1, n2] (finite gray levels) and thag[n,, ns] is the mean re- gln1, no] = @[ny, na] * yhni, nol (44)
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Fig. 1. (Continued.)Simulation results of Example 1 fé¥ x N = 256 x 256 and SNR= 5 dB (lowpass Gaussian noise). (g) and (h) RMS esidn,, ns]
associated with Tugnait's method and the proposed BSI algorithm, respectively. (i) and (j) RMBxggEdr;, no] associated with Tugnait's method and the
proposed BSI algorithm, respectively.

where the scale factory is chosen such thatp + ¢ = 3 andesg = 1073, In Step 2,|H% (wy,, wi,)| = 1

E{|g[n1, o]} = E{Jylna, no] P} for all k; andk,, FFT sizeL x L = 32 x 32 in the simulation,
Step 4) Obtain the synthetic texture imagpi, na] by L x L = 256 x 256 in the experiment, andy = 10~° were
addingE{z[n1, na]} to g[ny, nal. used.

Note that the scale factoy in Step 3 is chosen such that the For comparison, the results obtained using Tugnait's method
Synthetictexture irnagé[n17 712] and the 0rigina| texture image [13] that maximizes the fO”OWIng inverse filter criterion

&[n1, na2] have the same variance due to the noise-free assump- lcum{e[ny, ns): 4}
tion for &[ny, no]. Let us conclude this section with the fol- Ju,2(0) = (E{c [y, nol} 2 (45)

lowing remark.
are also presented, where the parameter vétiocludes AR

R6)  The proposed TSM basically follows the texture Syna'tnd MA parameters of the unknown 2-D LSI system. The it-

thesis procedure repo_rted n .[6] and [13]-[15], EXCErative Fletcher—Powell algorithm [25] was used to obtain the
that the MMSE equalizer estimaté sg(w;, ws) in- . . . .

: L optimum@. To initialize the Fletcher—Powell algorithm, the ini-
stead of the ZF equalizer estimatgr(w;, wa) =

tial condition for@ was set to true model parameters in the sim-

1/H(wy, wy) is used in Step 2. The MMSE equalizer 1 11 the experiment, & x 5 nonsymmetric AR model

estimate is preferable to the ZF equalizer estimate bv(\a/i'th region of suppor[2, 2] [see (B.1) in Appendix B] was as-

cause the latter may enhance the noise due to mOde“snLﬂned , and the initial condition férwas obtained by Kashyap

error in pracchI applications, although they are thgnOl Chellappa’s approximate ML (AML) approach [5] (which
same for the noise-free case [24]. . ; .
yields symmetric AR parameters). Next, let us present the sim-

ulation results.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, some simulation results are presented to séip- Simulation Results
port that the proposed 2-D BSI algorithm is effective, and someTwo simulation examples are to be presented only for
experimental results are presented to support the efficacy of tHéw, , w2) given by (35) and/yisg(w:, wo) given by (39) be-
proposed TSM. In both the simulation and the experiment, thause the MMSE signal enhancement filter estirtéte; , w-)
synthetic measuremenggn;, n2] and the texture images usedyiven by (42) will become redundant. In the simulation,
were real, and the parameters used by the proposed 2-D B® driving input signak:[ny, n2] was assumed to be a real
algorithm were as follows. In Step 1, the 2-D SE algorithrmero-mean, exponentially distributed, i.i.d., random field with
was employed to find the real 2-D inverse filtgin;, n,] with  variances? = 1 that was convolved with the chosen 2-D LSI
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Fig. 2. Simulation results of Example 2 fo&f x N = 256 x 256 and SNR= 5 dB (white Gaussian noise). (a) True systefn:, n.]. (b) and (c) Average
h[n1, n2] associated with Tugnait's method and the proposed BSI algorithm, respectively. (A3, n2]. (€) and (f) Averag@wse[n1, n2] associated
with Tugnait's method and the proposed BSI algorithm, respectively.

systemh[n;, n2] to generate the noise-free syntheNcx N normalized by unit energy prior to computing[n1, n2]. In
dataz[ni, ns]. Then, the synthetig[n,, no] was obtained by the same fashion, the averaggsg[ni, n2] and the associ-
adding a real white or colored Gaussian noigl, n2] to ated RMS errofpysg[ni, ne] were also calculated from the
z[n1, n2]. Then, each of the proposed 2-D BSI algorithm andbtained 30 estimatesysg, ;[n1, 72]. Next, let us turn to
Tugnait's method was employed to procegs;, ns] to obtain Example 1.
an estimateH (w;, wo) from which (39) and the associated Example 1—ARMA Modelin this example, the unknown
estimateVl\qu(wl, wo) was obtained. 2-D LSI systemi[n;, no] used was a 2-D ARMA model with
Thirty independent runs were performed for each of the3 x 3 nonsymmetric support taken from [13] as follows:
two examples. Le‘l}i[nl, ne] and tuse, i[n1, ne2] denote the
obtained estimate{n,, ns] anddysp[ni, n2] normalized by~ #[n1, n2] — 0.004z[ny + 1, g + 1] +0.0407z[ny + 1, no]
unit energy at theth run, respectively. The 2-D space shift —0.027x[ny + 1, ngy — 1] — 0.2497z[nq, no + 1]
betweenh;[ny, no] and the trueh[ny, no] and that between — 0.568z[n1, n2 — 1] +0.1037z[ny — 1, ny + 1]
UMmsE, i[n1, n2] and the truevwse[ni, ne] were artificially
removed. Then, the averagf_e[nl, no] of the obtained 30
estimatesh;[ny, n] and the associated root mean square = u[n1, n2] —0.5u[n1 + 1, no] — 0.5u[ns, ng 4 1]
(RMS) errorpy [n1, n2] were calculated with the trugn, , o] —ufng, ng — 1] —ulny — 1, nal. (46)

—0.3328z[n1 — 1, na] + 0.1483z[n; — 1, no — 1]
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Fig. 2. (Continued.)Simulation results of Example 2 fd¥ x N = 256 x 256 and SNR= 5 dB (white Gaussian noise). (g) and (h) RMS egfr 1, ns]
associated with Tugnait's method and the proposed BSI algorithm, respectively. (i) and (j) RMBxesrdn ., no] associated with Tugnait’'s method and the
proposed BSI algorithm, respectively.

In each run, 856 x 256 syntheticy[n,, n2] was generated for z[ny, na] =ung, na] — 0.8ufny — 1, na] + 0.2ufn; — 2, no]
SNR = o2 /o2 = 5 dB andw[ny, na] assumed to be real low- +1.8ufny, no — 1] — Lddufny — 1, ny — 1]
pass Gaussian WitB(z;, z,) = (14-0.8271)-(140.82; 1) [see or T ' LT

(5)]. In Step 1 of the proposed 2-D BSI algorithm, the region + 0.36u[n1 — 2, ng — 1] — 0.5u[ny, n2 — 2]
of support for the 2-D LPE filtet[n, na] wasQtnsur[5, 5], +04u[n; — 1, no — 2] — 0.1ufny — 2, na — 2]
and the 2-D SE algorithm was employed with the initial condi- +0.5ufn1, na — 3] — 0.4u[ny — 1, ngy — 3]

tion vo[n1, n2] = 8[n1 — 2, no — 2] and the region of support
Qrgr[5, 5] for the 2-D inverse filtew[n1, ns].
The proposed BSI algorithm spent only three iteratiorla each run, 56 x 256 syntheticy[n, n2] was generated for
for magnitude estimation (see Step 2) at each run. Fig. 1&)NR = 5 dB andw[n;, n2] assumed to be real white Gaussian.
and (d) show the truéiny, ns] and vyse[n1, n2], respec- In Step 1) of the proposed 2-D BSI algorithm, the region of sup-
tively. Fig. 1(b), (), (g), and (i) show the obtainéfh,, no], portfora[n;, no] andv[n, no] and initial conditionug[ny, no]
Tmsge[n1, n2], pun[ni, n2], and pusge[ri, ne], respectively, were the same as those used in Example 1.
associated with Tugnait's method. Fig. 1(c), (f), (h) and (j) The proposed BSI algorithm spent only three iterations for
show the corresponding results associated with the proposedgnitude estimation in obtaining one estimétel, no| and
BSI algorithm. One can see from these figures #fat;, n,] four iterations in obtaining the other 29. Fig. 2(a)—(j) show the
and vysg[n1, n2] shown in Fig. 1(c) and (f) associatedsimulation results corresponding to those shown in Fig. 1(a)—()),
with the proposed BSI algorithm are quite close to the truespectively. Again, one can also see from these figures that
h[n1, na] andvnsg[n1, n2], Which are shown in Fig. 1(a) andthe obtainedh[n;, ns] andwyvsr[ni, n2] associated with the
(d), respectively. Meanwhile, the associategn;, n.] and proposed BSI algorithm are good approximation&ef;, ns]
puMsE[n1, 2] shown in Fig. 1(h) and (j) are also small. Valuesind vysg[ni, ne], respectively. Meanwhile, the associated
of py[n1, n2] and pmsk[ni, ne] associated with the proposedpy,[n1, n2] and pvsge[n1, n2] shown in Fig. 2(h) and (j) are
BSI algorithm are considerably smaller than those associatddo small. Values opy[n1, n2] and pysg[n1, 2] associated
with Tugnait's method. These simulation results indicate thatith the proposed BSI algorithm are also considerably smaller
the proposed 2-D BSI algorithm outperforms Tugnait’'s methdtan those associated with Tugnait’'s method. These simulation
for the case of the ARMA system and low SNR (5 dB). results also indicate that the proposed 2-D BSI algorithm
Example 2—MA Modelin this examplel:[n;, nz] usedwas outperforms Tugnait's method for this case of MA system and
a 2-D MA(2,3) model taken from [26] as follows: low SNR (5 dB).

+ 0.1u[ny — 2, ne — 3. (47)
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Fig. 3. Experimental results of Example 3. Windows (1,1) and (2,2) original herringbone weave and wood images, respectively; windows (1, 2yatiteti;3)
herringbone weave and wood images obtained using Kashyap and Chellappa’s AML algorithm with syfmeétdd model, respectively; windows (1,3) and
(3,1) synthetic herringbone weave and wood images obtained using Tugnait's method with nonsymmétddR model, respectively; windows (2,1) and (3,2)
synthetic herringbone weave and wood images obtained using the proposed TSM, respectively.

B. Experimental Results synthesis using the proposed TSM. The proposed BSlI algorithm

Recall that the proposed 2-D BSI algorithm is needed b':}pent 12, four, four, and four iterations for magnitude estima-

the proposed TSM. In Step 1 of the proposed 2-D BSI alghon (Step 2) in Obtai”i”_‘ﬁ(wlv wz) associated with herring-
rithm, the region of support for the 2-D LPE filtefny, n.] was bone weave, wood, raffia, and sand images, respectively. The

Qrwsue[5, 5] in the experiment, whereas the 2-D SE aIgorithrﬁXper,imef‘tal results are shown in Figs. 3 and 4._V\{indows (1,1),
was employed withig[n1, 12] = 8[n1 — 3, 72 — 3] and the re- (2,2) in Fig. 3 and thos_e in Fig. 4 show the orlglnallherrmg.-
gion of supporf2rqp|6, 6] for the 2-D inverse filtew[ny, ns)]. bone weave, wo<_3d, raffla, and sand_ images, respectively. W|_n-
Example 3—Texture SynthesiBour128 x 128 texture im- 40WS (1,2), (2,3) in Fig. 3 and those in Fig. 4 show the synthetic
ages, herringbone weave, wood, raffia, and sand taken from UpfITingbone weave, wood, raffia, and sand images, respectively,
versity of Southern California—Signal and Image ProcessifigScciated with Kashyap and Chellappa’s AML algorithm. Win-
Institute (USC-SIPI) Image Data Base were used for textuf@Ws (1,3). (3,1) in Fig. 3 and those in Fig. 4 show the synthetic
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Fig. 4. Experimental results of Example 3. Windows (1,1) and (2,2) original raffia and sand images, respectively; windows (1,2) and (2,3) &ffiatlaetic r
sand images obtained using Kashyap and Chellappa’s AML algorithm with symmetricAR model, respectively; windows (1,3) and (3,1) synthetic raffia and
sand images obtained using Tugnait's method with nonsymniexis AR model, respectively; windows (2,1) and (3,2) synthetic raffia and sand images obtained
using the proposed TSM, respectively.

herringbone weave, wood, raffia, and sand images, respectively, VI. CONCLUSIONS

associated with Tugnait's method. Windows (2,1), (3,2) in Fig. 3

and those in Fig. 4 show the synthetic herringbone weave, woodA computationally efficient 2-D SE algorithm for blind de-
raffia, and sand images, respectively, associated with the peonvolution of 2-D LSI systems with only a given non-Gaussian
posed TSM. From these figures, one can see that the four sgemdom field has been presented that is a direct extension of
thetic texture images associated with the proposed TSM guBhalvi and Weinsetin’s 1-D SE algorithm for blind equaliza-
resemble the four respective original texture images, and vidion of LTI systems. Then, a 2-D BSI algorithm for the esti-
ally, they look more similar to the four respective original texmation of an arbitrary 2-D LSI systeft{n1, nz| using the 2-D

ture images than those associated with Kashyap and Chellappdeg filter a[n;, no] and the inverse filtew[ny, ns] obtained
AML algorithm and Tugnait's method. These experimental rdyy the proposed 2-D SE algorithm, which is an FFT-based fre-
sults support the efficacy of the proposed TSM. guency-domain estimation algorithm, was presented. Step 2 of
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oo

the proposed 2-D BSI algorithm itself is an iterative algorithm

for system magnitude estimation that always converges fast by < Z Z gl bl m =l n - lQ]) :

our experience. However, its convergence analysis is needed

and left for future research. Aftefl (w;, ws) is estimated by Tk

the proposed 2-D BSI algorithm, an MMSE equalizer estimate [y, ko]

VMSE(wl, ws) and an MMSE signal enhancement filter esti- o o

mate?fl(wl, w2) can be obtained by (39) and (42), respectively. _ - Z Z B[

Moreover, a TSM using the proposed BSI algorithm was pre- P P i

sented. Then, some simulation results were provided to support (g[m — kv, n — ko)) (g"[m — ki, n— ka])?  [by A1)]

the good performance of the proposed 2-D BSI algorithm even 00 00

for low SNR (5 dB). Some experimental results were also pro- — [ip, g1 Z Z R*[ky — ny, ko —ng)

vided to support that the proposed TSM is effective. Let us em- bym 00 kim0

phasize that the proposed TSM is merely one of texture syn- . (g, k,])2(g*[ky, k2])?. (A.2)

thesis methods with the LS| model for texture images, whereas

the nonlinear model can also be used for texture images suiehthe derivation of (A.2), we have replacedn, n2] [see

as [27]. Other applications of the proposed 2-D BSI algorithi@2)] and ¢[ny, n2] [see (15)] by z[ni, no] [see (3)] and

such as image enhancement and restoration, texture image al@sr, n.] = g[ni, na], respectively, becausev[n;, ns] is

sification, and 2-D spectral estimation are left to future researc@aussian with higher order@) cumulants equal to zero [10].
Substituting cunie[m, n]: p, ¢*[m, nl: q, y*[m—n1, n—no]}
given by (A.2) into (A.1) and then taking the 2-D discrete-time

APPENDIX A Fourier transform of both sides of the resultant equation with
PROOF OFP1) respect tdn;, n,] yields

Because ISlag[n, — 71, na — 72]} is invariant for alle # 0,
71, andr,, the assumption gf; — oo andps — oo (sufficiently
ggﬁr)nfotrignfh; tfe]; (19 ﬁgg%iuw iﬁ:slssoiiqal:gﬁ;%t??e where D(w1, w») is the 2-D discrete-time Fourier transform

b 9 PP ' "2 of the 2-D signakd[ny, no] given by (25). Further substituting

is doubly infinite forr;, = = = 0. With this equivalent as- . ! )
sumption, the linear equations given by (17) can be rewrittengﬁy (w1, wo) given by (7) into (A.3), one can come up with

li=—0l=—

m—ﬂl—kl,ﬂ—ﬂg—kg]

V(wr, w2)Syy(wr, w2) = pp, g+1H " (w1, w2) D(w1, wo)
(A3)

follows: 2
V(wi, we) = K. q2+1 5 T 5 (wléw) 5
oo oo T4 '11,|H(w1’w2)| +OTI|B(W1,W2)|
Z Z vk, JE{y[m, n]y*[m +k —n1, n +1—ns]} - D(wy, wy)
h=—ool=—oc = % . D(wl, wg)VMSE(wl, CUQ) (A4)
= Z Z [k, Uryylny — k, na — 1] “
k=—o0l=—o00 that is the same as (23) with = p,, 44+1/02. Thus, we have
= cumf{e[m, n]: p, *[m, n]: q, y*[m — n1, n —n2|} completed the proof of P1).
\V/ [711, 712]. (Al)
APPENDIX B
First of all, let us simplify the higher order cross-cumulant PROOF OFP2)
C_U”T{C.[m, nl: p, e*[m, n]: ¢, y*[m — n1, n — nol} on the Proving P2) is equivalent to proving that the overall system
right side of (A.1) as follows: G(wi, wy) is zero phase, assuming = 7, = x = 0 without
loss of generality. The proof to be presented below needs the
cunf{e[m, n]: p, ¢*[m, n]: ¢, y*[m — n1, n — na]} following two assumptions:
. B1) g[ni, ne] # 0 only for [ny, na] € Q[K, K] and
= cumg e[m, n]: p, *[m, n]: ¢ 9]0, 0] > 0, where
- - Qp1, p2] = {[m1, n2]: 1 = —p1 ~ p1, n2 = —p2 ~ p2}.
> 2 Wik k] (B.1)
hi=meeke=meo B2) 0 <|glK, K]| < |g[n1, no]|, V[n1, no] € QK, K],
h*[m —ny — ]fl, n—ny — /fg]} [77‘1’ 77‘2] 7& [K’ I(]7 and[nl’ 712] 7& [_K’ _K]'
Let
= > > hm—n1— ki, n—ng— k] fln1, no] = [”1’ no] *9*[ ni, —nol

E E g L17 LQ]U, mi=—Kmo=—K

I =—00 lg =—00

hor —— o0 k2——oc;0 _ Z Z glmi, ma])P(g"[m1, ma])?
.Cum{< —517”_i2]>:

-g*[m1 — n1, mg —nz] [by B1)] (B.2)
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wherep > 0, ¢ > 0, and(p + ¢) > 2. It can be easily shown, B. Realg[n;, no] with Oddp + ¢

from (23) and (24), that the 2-D discrete-time Fourier transform . aq) 9]

F(wl, CUQ) = D(wl, wg)G*(wl, CUQ) Z 0 (83)

which implies f[ni, no] = f*[-n1, —ne] and f[0, 0] >
| f[n1, n2]|. Note, from (B.2), thatf[ni, n2] # 0 only for

[n1, n2] € Q[2K, 2K] by B1). Next, let us consider the case

of complexg[ni, ns] followed by the case of regln,, ns].
A. Complexg[ny, na]withp = ¢+ 1

Forp = ¢ + 1, (B.2) can be rewritten as

K K
flny, ne] = Z Z glma, ma]|glma, ma][*?

mi=—K mo=—K

~g*[m1 — n1, m2 — nal. (B.4)
It can be easily seen from (B.4) that
f[2K7 2K] = |g[K7 K]|2qg[K7 K]g*[_Kv _K]
:f*[_2K7 _2K]
=|g[-K, —K]*¢g*[-K, —K]g[K, K] (B.5)
which implies

Again, by (B.4), simplifyingf[2K, 2K — 1] = f*[-2K,—2K
+ 1] results in
9lK, K]g*[-K, —K +1]
Hlgl-K, =K +1]]** - |¢[K, K]|**}
=g"[-K, —K]g[K, K — 1]

{lglK, K —1]** - |g[-K, -K]*}  (B.7)
which by B2) and (B.6) further gives rise to
lglk, K —1]| = |g[- K. —K +1]|. (8.8)

Moreover, it can be easily shown from (B.6)—(B.8) that

g [-K,—-K] ¢ [-K,-K+1]

Similarly, letting f[n1, n2] = f*[—n1, —n2] given by (B.4)
forn, = K+1,---,2K,n, = 0,---, 2K andn; = K,
ne = K, ---, 2K, one can end up with

V[ni, no] € QIK, K]
(B.10)

|9[”17 712]| = |9[—7117 —712]|7

and
g[nlvTL?] — 9[070] -1
g*[-n1,—n2]  ¢*[0,0] 7

Y[ni, n2] € Q[K, K]
(B.11)
[sinceg[0, 0] > 0 by B1)] that implies

V[ni, no] € Q[K, K].
(B.12)

g[nlv 712] = g*[_nlv —712],

n1, nz2|, (B.2) can be rewritten as

flnt, na)
K K
= Z Z (g[mlv mQ])p+q9[ml — Ny, Mo — 712].

mi=—Kmo=—K

(B.13)
It can be easily seen from (B.13) that
f2K, 2K] = (g[K, K])'*g[-K, —K] = f[-2K, —2K]
=(g[-K, —~K])""y[K, K| (B.14)
which implies
gk, K]| = |g[- K. ~K]|. (B.15)
By (B.13) andf[2K, 2K — 1] = f[-2K, —2K + 1], we have
glK, Klg[-K, —K + 1]
(gl K PR (g, K]
=g[-K, —K|g|K, K —1]
{(g[K, K = 1) — (g[-K, —K])P**"'} (B.16)
which, by B2) and (B.15), further gives rise to

lg[K, K —1]| =|g[-K, —K +1]| (B.17)

and
g[K,K] _ g[KvK_ 1]
g[—K,—K] g[_Kv_K"i_l]'
Similarly, letting f[n1, na] = f[—ni, —ns] given by (B.13)
forny = K+1,---,2K,n, =0, ---, 2K, andn; = K,

(B.18)

ny = K, -+, 2K, one can end up with
lg[n1, na]| =lgl—n1, —n2]l, V[ni, no] € Q[K, K]
(B.19)
and
g[n17n2] _ 9[07 0] _

1, V[?’Ll,ﬂg]EQ[K, K]
(B.20)

gl—n1, —ns] B g[0,0] B

for odd p + ¢. Therefore, g[n1, n2] =
V[ni, n2] € Q[K, K] for oddp + q.

Thus, we have completed the proof for P2) provided that the
two assumptions B1) and B2) are true. However, the two as-
sumptions can be relaxed by lettid — oc.

g[—m, —712],
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