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Two-Dimensional Frequency-Domain Blind System
Identification Using Higher Order Statistics with

Application to Texture Synthesis
Chong-Yung Chi, Senior Member, IEEE,and Chii-Horng Chen

Abstract—In this paper, Shalvi and Weinstein’s super-exponen-
tial (SE) algorithm using higher order statistics for blind decon-
volution of one-dimensional (1-D) linear time-invariant systems is
extended to a two-dimensional (2-D) SE algorithm. Then, a 2-D fre-
quency-domain blind system identification (BSI) algorithm for 2-D
linear shift-invariant (LSI) systems using the computationally effi-
cient 2-D SE algorithm and the 2-D linear prediction error filter is
proposed. In addition to the LSI system estimate, the proposed BSI
algorithm also provides a minimum mean square error (MMSE)
equalizer estimate and an MMSE signal enhancement filter esti-
mate. Then, a texture synthesis method (TSM) using the proposed
BSI algorithm is presented. Some simulation results to support the
efficacy of the proposed BSI algorithm and some experimental re-
sults to support the efficacy of the proposed TSM are presented.
Finally, some conclusions are drawn.

Index Terms—Higher order statistics and texture synthesis, 2-D
blind system identification, 2-D super-exponential algorithm.

I. INTRODUCTION

ESTIMATION of a two-dimensional (2-D) linear shift-in-
variant (LSI) system with only a given 2-D

system output random field is a blind system iden-
tification (BSI) problem that is essential in a variety of 2-D
statistical signal processing applications, such as 2-D spectral
estimation, texture image synthesis, classification, and image
restoration [1]–[9], [11]–[16]. Parametric models, such as
autoregressive (AR), moving average (MA), and autoregressive
moving average (ARMA) models, have been widely used for

, and thus, the BSI becomes a parameter estimation
problem that often leads to mathematically tractable solutions
with predictable performance [1]–[8], [11]–[15]. There have
been a number of second-order statistics (SOS)-based algo-
rithms reported for the estimation of parameters of ,
such as linear prediction based methods [1]–[3], least-squares
(LS) solution based methods [4]–[6], and maximum-likelihood
(ML) methods [5], [7]–[9]. In [4]–[6], 2-D AR parameters
are estimated by the LS solution of a set of linear equations
formed from autocorrelations (SOS) of . Assuming
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that is Gaussian, Kashyap and Chellappa [5] and
Sharma and Chellappa [7] estimate AR parameters using an
ML estimator. Takelpet al. [8] proposed an image restoration
method using an ARMA model for which the AR and MA
parts correspond to the image model and the blur system,
respectively. They estimate the ARMA parameters by also
using an ML estimator with the assumption that the driving
input of the image model is white Gaussian. Eom [9] uses
a one-dimensional (1-D) function as an approximation to a
2-D MA model. The 1-D function is estimated also using an
ML algorithm with the assumption that the 2-D spectrum of

is independent identically distributed (i.i.d.) complex
Gaussian. Then, the 2-D MA model obtained from the esti-
mated 1-D function is applied to synthesis of texture images.
Due to the fact that SOS are blind to the system phase, only the
magnitude information of 2-D LSI systems can be extracted by
the SOS-based approaches mentioned above.

Higher order statistics (HOS), known as cumulants [10],
which include both magnitude and phase information of
non-Gaussian random fields, have been used for the estimation
of 2-D AR or ARMA models that can be nonminimum-phase,
asymmetric, and noncausal [11]–[16]. Bhattacharyaet al. [11]
estimate AR parameters by the LS solution of a set of linear
equations formed from third-order cumulants of the given 2-D
random field . Swami and Mendel [12] also estimate
AR parameters by the LS solution of a set of linear equations
formed from higher order ( ) cumulants of . Then,
MA parameters are estimated via a closed-form solution using
cumulants of the residual signal obtained by removing the
AR part from . Inverse filter criteria [13], [14] have
been reported for estimating ARMA parameters. Tugnait [13]
proposed three inverse filter criteria for jointly estimating
AR and MA parameters, whereas only the estimated AR
parameters are used for texture synthesis. Hall and Giannakis
[14] proposed two inverse filter criteria for estimating AR
parameters, whereras MA parameters are estimated either by
a closed-form solution using higher order cumulants or by
cumulant matching. Then, the estimated AR parameters are
used for texture synthesis and classification. Hall and Gian-
nakis [15] also estimate ARMA parameters by polyspectral
matching, whereas only AR parameters are used for texture
synthesis. On the other hand, Tsatsanis and Giannakis [16]
proposed a nonparametric cumulant matching method for
texture image classification. The computational load of the
preceding HOS-based methods increases rapidly with the
assumed model order, especially for those methods that find the
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optimum model parameters through iterative nonlinear search
procedure such as the aforementioned inverse filter criteria.

Shalvi and Weinstein [17], [18] proposed a family of blind
deconvolution criteria to obtain the optimum 1-D inverse filter
(linear equalizer) using two cumulants of the inverse filter
output signal with two different cumulant orders. It has been
shown [17] that under the two assumptions [a1) signal-to-noise
ratio (SNR) is infinite and a2) the linear time-invariant (LTI)
channel is stable and its inverse filterINV exists], the
optimum inverse filter is a zero forcing (ZF) equalizer (i.e.,

INV ). However, one has to resort to iterative
nonlinear optimization algorithms to find the optimum . Re-
cently,FengandChi [19]–[21] reportedperformanceanalysesfor
the optimum inverse filter associated with Shalvi and Wein-
stein’s blind deconvolution criteria for finite SNR. The optimum
inverse filter possesses three properties [19]–[21] for finite
SNR, including a relation between the minimum mean square
error (MMSE) equalizer and the optimum , the stability
property, and perfect phase equalization property. Based on the
three propertiesof the optimum ,Chi and Feng [22] proposed
a blind channel estimation (BCE) algorithm, and meanwhile, the
MMSE equalizer and MMSE signal enhancement filter can be
readily estimated from the obtained channel estimate.

Shalvi and Weinstein [23] also proposed an iterative super-ex-
ponential (SE) algorithm using higher order cumulants for 1-D
blind channel equalization. At each iteration, the SE algorithm
finds the 1-D inverse filter by solving a set of linear equa-
tions formed from autocorrelations of measurements and higher
order cross-cumulants between the equalized signal and mea-
surements. Under the assumptions a1) and a2) mentioned above,
the computationally efficient 1-D SE algorithm converges at a
super-exponential rate, and the resultant turns out to be a
ZF equalizer.

In this paper, Shalvi and Weinstein’s 1-D SE algorithm [23] is
extended to the 2-D SE algorithm for blind deconvolution of 2-D
LSI systems. Then, a computationally efficient 2-D frequency-
domain BSI algorithm is proposed for estimating the unknown
LSIsystem using thewell-known2-D linearprediction
error (LPE) filter and the inverse filter obtained by the
computationally efficient 2-D SE algorithm. The proposed 2-D
BSI algorithm is robust against Gaussian noise, and the obtained
system estimate is applied to texture synthesis.

The paper is organized as follows. Section II presents the 2-D
SE algorithm for 2-D blind deconvolution of 2-D LSI systems
needed by the proposed 2-D BSI algorithm that is presented in
Section III. Then, a texture synthesis method (TSM) using the
proposed 2-D BSI algorithm is presented in Section IV. Some
simulation results to support the efficacy of the proposed BSI
algorithm and some experimental results to support the efficacy
of the proposed TSM are presented in Section V. Finally, we
draw some conclusions.

II. TWO-DIMENSIONAL SUPER-EXPONENTIAL ALGORITHM

For ease of later use, let cum denote the
joint cumulant of random variables, [10] and

cum cum (1)

Assume that we are given a set of measurements
modeled as

(2)

where is the noise-free output signal of an LSI system
driven by an unknown input signal , i.e.,

(3)

and is additive measurement noise. Let us make
the following assumptions about , , and

, respectively.

A1) is stationary complex, zero-mean, i.i.d., non-
Gaussian with variance and nonzero th-order
cumulant

cum (4)

where and are non-negative integers, ,
and the superscriptdenotes complex conjugation.

A2) Both and its inverse systemINV
are stable LSI systems.

A3) is stationary complex, zero-mean, colored
Gaussian with variance given by

(5)

where is complex zero-mean white Gaussian
with variance , and is a stable LSI system.
Moreover, is statistically independent of

.
Note that is white Gaussian when is an all-
pass system and that is also a stationary non-Gaussian
random field with correlation function

(6)

and continuous power spectrum (discrete-time Fourier trans-
form of )

(7)

where and are the frequency responses of
the 2-D LSI systems and , respectively. Next,
let us briefly review Shalvi and Weinstein 1-D SE algorithm
[21], [23] before presenting the proposed 2-D SE algorithm.

A. Review of the 1-D SE Algorithm

Assume that , are the corresponding
1-D measurements modeled by (2). Let be
the 1-D causal inverse filter of order ( th-order causal FIR
filter). The 1-D inverse filter output is given by

(8)
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where ,
, and

(9)

is the overall system after deconvolution. The 1-D SE algorithm
iteratively finds the inverse filter by solving the following
linear equations:

cum

(10)

where and are non-negative integers, and . At
the th iteration, by expressing (10) in matrix form, the 1-D SE
algorithm updates with ( norm of ) via

(11)

where and

cum
(12)

in which is the equalized signal ob-
tained at the th iteration, where is the inverse
filter associated with .

As converges, the associated is the obtained 1-D in-
verse filter . It has been shown [23] that the amount of inter-
symbol interference ISI defined as [17],
[23]

ISI (13)

decreases to zero ( for all ) at a super-
exponential rate for and sufficiently large.

B. Two-Dimensional SE Algorithm

Let be the 2-D inverse filter with a truncated quarter
plane (TQP) region of support given by [1], [2]

TQP
(14)

Let input to the 2-D FIR filter and
be the corresponding output signal, i.e.,

(15)

where

(16)

is the 2-D overall system after deconvolution (equalization).

The 2-D SE algorithm, that is, a direct 2-D extension of the
1-D SE algorithm, iteratively finds the inverse filter
by solving the following linear equations:

cum

(17)

where and are non-negative integers, and .
Let denote “ modulo ,” let denote the largest in-

teger less than or equal to, and let

(18)

including the filter coefficients for all
. At the th iteration, by expressing (17) in a

matrix form, the 2-D SE algorithm updates the unknown
parameter vector with via

(19)

where is a autocor-
relation matrix with the th element given by

(20)

and is a vector with the th element
given by

cum

(21)

where is the equalized signal obtained at the
th iteration, i.e.,

(22)

in which is the 2-D inverse filter associated with
.

As converges, the associated is the obtained 2-D
inverse filter . As the 1-D SE algorithm, it can also be
shown that ISI [which
is the 2-D counterpart of ISI given by (13)] decreases to
zero ( for all ) at a super-
exponential rate for SNR and and sufficiently large.
That is, the obtained inverse filter INV

is a 2-D ZF equalizer. However, when the SNR
is finite, the obtained can be shown to possess the
following two properties as and are sufficiently large.

P1) The inverse filter (2-D discrete-time
Fourier transform of ) is related to the
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2-D MMSE equalizer [24], which is denoted by
, via

(23)

where is a nonzero constant

(24)

and is the 2-D discrete-time Fourier trans-
form of the 2-D sequence , which is given by

(25)

where is given by (16).
P2) For the case of complex and , the

phase response is related to the system
phase by

(26)

where and are unknown integers, and is an
unknown constant. On the other hand, for the case of
real , (26) is also true with , as is
odd.

The proofs of P1) and P2) are given in Appendices A and B,
respectively.

We remark that the 2-D (1-D) SE algorithm is also applicable
when the given measurements ( ) are real, and it is
the same for all , , and , and surely, the
obtained 2-D inverse filter ( ) is real as well. Let us
conclude this section with the following two remarks regarding
the 2-D SE algorithm.

R1) By P2), the resultant overall system
can be a zero-phase system

(i.e., ) if the 2-D space
shift and constant phase shiftcan be com-
pensated. Moreover, it can be easily shown from (25)
that when is zero phase, is also
zero phase (i.e., ).

R2) The property P2) also implies that a space shift
and a complex scale factor may exist between

and . However, the 2-D space
shift between and is
always equal to because the location
for which ,

is always invariant for all as SNR
[23]. Therefore, the following convergence rule for
the 2-D SE algorithm is suggested:

(27)

where is the complex conjugate of the transpose
of , and is the assigned convergence toler-
ance. On the other hand, an initial condition
is needed to initialize the 2-D SE algorithm. By our ex-
perience, is a good
choice, where is in the proximity of the center of

because most energy of can

rapidly spread over , and thus,
approaches the resultant in a more efficient
manner.

III. T WO-DIMENSIONAL BLIND SYSTEM IDENTIFICATION

ALGORITHM

First of all, let us briefly review the 2-D LPE filter that is
widely used in statistical signal processing, which, together with
the inverse filter obtained by the 2-D SE algorithm, is
needed by the 2-D BSI algorithm for the magnitude estimation
of the 2-D LSI system . Let be a 2-D LPE
filter associated with measurements with leading co-
efficient and a truncated nonsymmetric half plane
(TNSHP) region of support given by [1], [2]

(28)

The prediction error, which is denoted by , is the output
signal of the 2-D LPE filter driven by , i.e.,

(29)

The optimum LPE filter coefficients for all
, except by minimizing

, can be obtained by solving the following 2-D
Yule–Walker (linear) equations [1], [2]

(30)

Moreover, for sufficiently large and , performs
as a whitening filter or an amplitude equalizer, i.e.,

[by (7)].

(31)

As a remark, given by (14) rather than
given by (28) can also be used as the region

of support of the 2-D LPE filter, as long as the resultant
is flat.

From (23), (24), and (31), it can be easily shown that

(32)

where is a positive constant, and

(33)

Based on (32) and P2) for the magnitude estimation and phase
estimation of , respectively, the following 2-D FFT-
based frequency-domain BSI algorithm is proposed.
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A. Two-Dimensional BSI Algorithm

Step 1) Blind deconvolution.
T1) With finite data , obtain the inverse filter

using the 2-D SE algorithm presented in
Section II and the 2-D LPE filter using the
2-D Yule–Walker equations given by (33).

T2) Compute , , and
given by (30) using the -point 2-D FFT,
where and ,

, .
Step 2) Magnitude estimation.
S1) Set . Set initial values for

and a convergence tolerance .
S2) Set . Compute

and its -point 2-D IFFT .
S3) Compute using (25) with

and its -point 2-D FFT
.

S4) Compute

(34)

by (32), and then, is obtained
as normalized by

.
S5) If

then go to .
Step 3) Estimation of .

With the system magnitude estimate
obtained in Step 2)

and the phase estimate
[by P2)] obtained in Step

1), , ,
are obtained as

(35)
and the associated estimate is the

-point 2-D IFFT of .
Three worthy remarks regarding the proposed BSI algorithm

are as follows.

R3) The proposed 2-D BSI algorithm is a frequency-do-
main estimation algorithm that provides estimates

,
, with the given

non-Gaussian (real or complex) measurements
. When measurements are real, the

LPE filter and the inverse filter in
of are also real; as mentioned in Section II,

the latter obtained by the 2-D SE algorithm is the
same for all , and odd ( ). On
the other hand, the region of support associated with

the estimate can be arbitrary as long as the
2-D FFT size is chosen sufficiently large so
that aliasing effects on the resultant are
negligible.

R4) The obtained estimate is robust against
Gaussian noise because (32), on which the magnitude
estimation is based, and , on which the phase esti-
mation is based, are true, regardless of the value of
(or the value of SNR), although magnitude responses
of the inverse filter and the 2-D LPE filter

obtained in Step 1 depend on SNR.
R5) Assume that is the inverse filter obtained by

processing the 2-D LPE filter output signal
[see (29)] with the 2-D SE algorithm. Then, the inverse
filter in can also be obtained by

(36)

We empirically found that the 2-D SE algorithm al-
ways converges faster by processing than
by processing when the dynamic range of

is large. The reasons for this are as fol-
lows. By (2), (3) and (29), the signal can be
expressed as

(37)

As mentioned above, the 2-D LPE filter basically
performs as an amplitude equalizer that significantly
removes the system magnitude distortion leading to

much flatter than . In other
words, the dynamic range of the former is much
smaller than that of the latter, and the associated 2-D
LSI system is typically closer
to an allpass system (a phase-distortion system) to be
equalized by the 2-D SE algorithm than .
On the other hand, the iterative procedure in
for magnitude estimation converges fast, regardless of
whether or not the preprocessing of the LPE filter is
involved by our experience.

With the 2-D LSI system estimate obtained by
the proposed BSI algorithm, an MMSE equalizer
and an MMSE signal enhancement filter, which is denoted by

, can be estimated from and the 2-D LPE
filter . The MMSE equalizer for esti-
mating can be estimated as

[by (24)] (38)

[by (31)] (39)

up to a scale factor and a space shift.
It is known that the noncausal zero-phase MMSE signal en-

hancement filter for estimating the noise-free signal
is given by [24]

[by (24)] (40)
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Fig. 1. Simulation results of Example 1 forN �N = 256� 256 and SNR= 5 dB (lowpass Gaussian noise). (a) True systemh[n ; n ]. (b) and (c) Average
h[n ; n ] associated with Tugnait’s method and the proposed BSI algorithm, respectively. (d) Truev [n ; n ]. (e) and (f) Averagev [n ; n ] associated
with Tugnait’s method and the proposed BSI algorithm, respectively.

which leads to the MMSE signal enhancement filter estimate
given by (up to a scale factor)

(41)

[by (40)]. (42)

One can also obtain different MMSE equalizer estimates and
MMSE signal enhancement filter estimates using (38) and
(41), respectively, with obtained by different 2-D
power spectral estimation methods such as the 2-D averaged
periodogram [1].

IV. TSM

Assume that we are given a noise-free real texture image
(finite gray levels) and that is the mean re-

moved version of . The proposed TSM includes the
following four steps:

Step 1) Obtain the texture image model and the
2-D LPE filter associated with
using the proposed 2-D BSI algorithm.

Step 2) Obtain the MMSE equalizer estimate
using (39), and then, obtain the

MMSE estimate of the driving input by

(43)

Step 3) Generate a random field that has the
same histogram as . Then, obtain a
zero-mean synthetic texture image by

(44)
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Fig. 1. (Continued.)Simulation results of Example 1 forN �N = 256� 256 and SNR= 5 dB (lowpass Gaussian noise). (g) and (h) RMS error� [n ; n ]
associated with Tugnait’s method and the proposed BSI algorithm, respectively. (i) and (j) RMS error� [n ; n ] associated with Tugnait’s method and the
proposed BSI algorithm, respectively.

where the scale factor is chosen such that
.

Step 4) Obtain the synthetic texture image by
adding to .

Note that the scale factor in Step 3 is chosen such that the
synthetic texture image and the original texture image

have the same variance due to the noise-free assump-
tion for . Let us conclude this section with the fol-
lowing remark.

R6) The proposed TSM basically follows the texture syn-
thesis procedure reported in [6] and [13]–[15], except
that the MMSE equalizer estimate in-
stead of the ZF equalizer estimate

is used in Step 2. The MMSE equalizer
estimate is preferable to the ZF equalizer estimate be-
cause the latter may enhance the noise due to modeling
error in practical applications, although they are the
same for the noise-free case [24].

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, some simulation results are presented to sup-
port that the proposed 2-D BSI algorithm is effective, and some
experimental results are presented to support the efficacy of the
proposed TSM. In both the simulation and the experiment, the
synthetic measurements and the texture images used
were real, and the parameters used by the proposed 2-D BSI
algorithm were as follows. In Step 1, the 2-D SE algorithm
was employed to find the real 2-D inverse filter with

and . In Step 2,
for all and , FFT size in the simulation,

in the experiment, and were
used.

For comparison, the results obtained using Tugnait’s method
[13] that maximizes the following inverse filter criterion

cum
(45)

are also presented, where the parameter vectorincludes AR
and MA parameters of the unknown 2-D LSI system. The it-
erative Fletcher–Powell algorithm [25] was used to obtain the
optimum . To initialize the Fletcher–Powell algorithm, the ini-
tial condition for was set to true model parameters in the sim-
ulation. In the experiment, a nonsymmetric AR model
with region of support [see (B.1) in Appendix B] was as-
sumed , and the initial condition forwas obtained by Kashyap
and Chellappa’s approximate ML (AML) approach [5] (which
yields symmetric AR parameters). Next, let us present the sim-
ulation results.

A. Simulation Results

Two simulation examples are to be presented only for
given by (35) and given by (39) be-

cause the MMSE signal enhancement filter estimate
given by (42) will become redundant. In the simulation,
the driving input signal was assumed to be a real
zero-mean, exponentially distributed, i.i.d., random field with
variance that was convolved with the chosen 2-D LSI
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Fig. 2. Simulation results of Example 2 forN � N = 256 � 256 and SNR= 5 dB (white Gaussian noise). (a) True systemh[n ; n ]. (b) and (c) Average
h[n ; n ] associated with Tugnait’s method and the proposed BSI algorithm, respectively. (d) Truev [n ; n ]. (e) and (f) Averagev [n ; n ] associated
with Tugnait’s method and the proposed BSI algorithm, respectively.

system to generate the noise-free synthetic
data . Then, the synthetic was obtained by
adding a real white or colored Gaussian noise to

. Then, each of the proposed 2-D BSI algorithm and
Tugnait’s method was employed to process to obtain
an estimate from which (39) and the associated
estimate was obtained.

Thirty independent runs were performed for each of the
two examples. Let and denote the
obtained estimates and normalized by
unit energy at theth run, respectively. The 2-D space shift
between and the true and that between

and the true were artificially
removed. Then, the average of the obtained 30
estimates and the associated root mean square
(RMS) error were calculated with the true

normalized by unit energy prior to computing . In
the same fashion, the average and the associ-
ated RMS error were also calculated from the
obtained 30 estimates . Next, let us turn to
Example 1.

Example 1—ARMA Model:In this example, the unknown
2-D LSI system used was a 2-D ARMA model with
a nonsymmetric support taken from [13] as follows:

(46)
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Fig. 2. (Continued.)Simulation results of Example 2 forN � N = 256� 256 and SNR= 5 dB (white Gaussian noise). (g) and (h) RMS error� [n ; n ]
associated with Tugnait’s method and the proposed BSI algorithm, respectively. (i) and (j) RMS error� [n ; n ] associated with Tugnait’s method and the
proposed BSI algorithm, respectively.

In each run, a synthetic was generated for
SNR dB and assumed to be real low-
pass Gaussian with [see
(5)]. In Step 1 of the proposed 2-D BSI algorithm, the region
of support for the 2-D LPE filter was ,
and the 2-D SE algorithm was employed with the initial condi-
tion and the region of support

for the 2-D inverse filter .
The proposed BSI algorithm spent only three iterations

for magnitude estimation (see Step 2) at each run. Fig. 1(a)
and (d) show the true and , respec-
tively. Fig. 1(b), (e), (g), and (i) show the obtained ,

, , and , respectively,
associated with Tugnait’s method. Fig. 1(c), (f), (h) and (j)
show the corresponding results associated with the proposed
BSI algorithm. One can see from these figures that
and shown in Fig. 1(c) and (f) associated
with the proposed BSI algorithm are quite close to the true

and , which are shown in Fig. 1(a) and
(d), respectively. Meanwhile, the associated and

shown in Fig. 1(h) and (j) are also small. Values
of and associated with the proposed
BSI algorithm are considerably smaller than those associated
with Tugnait’s method. These simulation results indicate that
the proposed 2-D BSI algorithm outperforms Tugnait’s method
for the case of the ARMA system and low SNR (5 dB).

Example 2—MA Model:In this example, used was
a 2-D MA(2,3) model taken from [26] as follows:

(47)

In each run, a synthetic was generated for
SNR dB and assumed to be real white Gaussian.
In Step 1) of the proposed 2-D BSI algorithm, the region of sup-
port for and and initial condition
were the same as those used in Example 1.

The proposed BSI algorithm spent only three iterations for
magnitude estimation in obtaining one estimate and
four iterations in obtaining the other 29. Fig. 2(a)–(j) show the
simulation results corresponding to those shown in Fig. 1(a)–(j),
respectively. Again, one can also see from these figures that
the obtained and associated with the
proposed BSI algorithm are good approximations of
and , respectively. Meanwhile, the associated

and shown in Fig. 2(h) and (j) are
also small. Values of and associated
with the proposed BSI algorithm are also considerably smaller
than those associated with Tugnait’s method. These simulation
results also indicate that the proposed 2-D BSI algorithm
outperforms Tugnait’s method for this case of MA system and
low SNR (5 dB).
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Fig. 3. Experimental results of Example 3. Windows (1,1) and (2,2) original herringbone weave and wood images, respectively; windows (1,2) and (2,3)synthetic
herringbone weave and wood images obtained using Kashyap and Chellappa’s AML algorithm with symmetric5� 5 AR model, respectively; windows (1,3) and
(3,1) synthetic herringbone weave and wood images obtained using Tugnait’s method with nonsymmetric5� 5 AR model, respectively; windows (2,1) and (3,2)
synthetic herringbone weave and wood images obtained using the proposed TSM, respectively.

B. Experimental Results

Recall that the proposed 2-D BSI algorithm is needed by
the proposed TSM. In Step 1 of the proposed 2-D BSI algo-
rithm, the region of support for the 2-D LPE filter was

in the experiment, whereas the 2-D SE algorithm
was employed with and the re-
gion of support for the 2-D inverse filter .

Example 3—Texture Synthesis:Four texture im-
ages, herringbone weave, wood, raffia, and sand taken from Uni-
versity of Southern California—Signal and Image Processing
Institute (USC-SIPI) Image Data Base were used for texture

synthesis using the proposed TSM. The proposed BSI algorithm
spent 12, four, four, and four iterations for magnitude estima-
tion (Step 2) in obtaining associated with herring-
bone weave, wood, raffia, and sand images, respectively. The
experimental results are shown in Figs. 3 and 4. Windows (1,1),
(2,2) in Fig. 3 and those in Fig. 4 show the original herring-
bone weave, wood, raffia, and sand images, respectively. Win-
dows (1,2), (2,3) in Fig. 3 and those in Fig. 4 show the synthetic
herringbone weave, wood, raffia, and sand images, respectively,
associated with Kashyap and Chellappa’s AML algorithm. Win-
dows (1,3), (3,1) in Fig. 3 and those in Fig. 4 show the synthetic
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Fig. 4. Experimental results of Example 3. Windows (1,1) and (2,2) original raffia and sand images, respectively; windows (1,2) and (2,3) synthetic raffia and
sand images obtained using Kashyap and Chellappa’s AML algorithm with symmetric5� 5 AR model, respectively; windows (1,3) and (3,1) synthetic raffia and
sand images obtained using Tugnait’s method with nonsymmetric5�5 AR model, respectively; windows (2,1) and (3,2) synthetic raffia and sand images obtained
using the proposed TSM, respectively.

herringbone weave, wood, raffia, and sand images, respectively,
associated with Tugnait’s method. Windows (2,1), (3,2) in Fig. 3
and those in Fig. 4 show the synthetic herringbone weave, wood,
raffia, and sand images, respectively, associated with the pro-
posed TSM. From these figures, one can see that the four syn-
thetic texture images associated with the proposed TSM quite
resemble the four respective original texture images, and visu-
ally, they look more similar to the four respective original tex-
ture images than those associated with Kashyap and Chellappa’s
AML algorithm and Tugnait’s method. These experimental re-
sults support the efficacy of the proposed TSM.

VI. CONCLUSIONS

A computationally efficient 2-D SE algorithm for blind de-
convolution of 2-D LSI systems with only a given non-Gaussian
random field has been presented that is a direct extension of
Shalvi and Weinsetin’s 1-D SE algorithm for blind equaliza-
tion of LTI systems. Then, a 2-D BSI algorithm for the esti-
mation of an arbitrary 2-D LSI system using the 2-D
LPE filter and the inverse filter obtained
by the proposed 2-D SE algorithm, which is an FFT-based fre-
quency-domain estimation algorithm, was presented. Step 2 of
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the proposed 2-D BSI algorithm itself is an iterative algorithm
for system magnitude estimation that always converges fast by
our experience. However, its convergence analysis is needed
and left for future research. After is estimated by
the proposed 2-D BSI algorithm, an MMSE equalizer estimate

and an MMSE signal enhancement filter esti-
mate can be obtained by (39) and (42), respectively.
Moreover, a TSM using the proposed BSI algorithm was pre-
sented. Then, some simulation results were provided to support
the good performance of the proposed 2-D BSI algorithm even
for low SNR (5 dB). Some experimental results were also pro-
vided to support that the proposed TSM is effective. Let us em-
phasize that the proposed TSM is merely one of texture syn-
thesis methods with the LSI model for texture images, whereas
the nonlinear model can also be used for texture images such
as [27]. Other applications of the proposed 2-D BSI algorithm
such as image enhancement and restoration, texture image clas-
sification, and 2-D spectral estimation are left to future research.

APPENDIX A
PROOF OFP1)

Because ISI is invariant for all ,
, and , the assumption of and (sufficiently

large) for and is equivalent to the
assumption that the region of support associated with
is doubly infinite for . With this equivalent as-
sumption, the linear equations given by (17) can be rewritten as
follows:

cum

(A.1)

First of all, let us simplify the higher order cross-cumulant
cum : on the
right side of (A.1) as follows:

cum

cum

cum

[by )]

(A.2)

In the derivation of (A.2), we have replaced [see
(2)] and [see (15)] by [see (3)] and

, respectively, because is
Gaussian with higher order ( ) cumulants equal to zero [10].
Substituting cum :
given by (A.2) into (A.1) and then taking the 2-D discrete-time
Fourier transform of both sides of the resultant equation with
respect to yields

(A.3)
where is the 2-D discrete-time Fourier transform
of the 2-D signal given by (25). Further substituting

given by (7) into (A.3), one can come up with

(A.4)

that is the same as (23) with . Thus, we have
completed the proof of P1).

APPENDIX B
PROOF OFP2)

Proving P2) is equivalent to proving that the overall system
is zero phase, assuming without

loss of generality. The proof to be presented below needs the
following two assumptions:

B1) only for and
, where

(B.1)
B2) , ,

, and .
Let

[by ] (B.2)
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where , , and . It can be easily shown,
from (23) and (24), that the 2-D discrete-time Fourier transform

(B.3)

which implies and
. Note, from (B.2), that only for

by B1). Next, let us consider the case
of complex followed by the case of real .

A. Complex with

For , (B.2) can be rewritten as

(B.4)

It can be easily seen from (B.4) that

(B.5)

which implies

(B.6)

Again, by (B.4), simplifying
results in

(B.7)

which by B2) and (B.6) further gives rise to

(B.8)

Moreover, it can be easily shown from (B.6)–(B.8) that

(B.9)

Similarly, letting given by (B.4)
for , and ,

, one can end up with

(B.10)

and

(B.11)

[since by B1)] that implies

(B.12)

B. Real with Odd

For real , (B.2) can be rewritten as

(B.13)

It can be easily seen from (B.13) that

(B.14)

which implies

(B.15)

By (B.13) and , we have

(B.16)

which, by B2) and (B.15), further gives rise to

(B.17)

and

(B.18)

Similarly, letting given by (B.13)
for , , and ,

, one can end up with

(B.19)

and

(B.20)

for odd . Therefore, ,
for odd .

Thus, we have completed the proof for P2) provided that the
two assumptions B1) and B2) are true. However, the two as-
sumptions can be relaxed by letting .
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