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Abstract—In this paper, Chi’s real one-dimensional (1-D) para-
metric nonminimum-phase Fourier series-based model (FSBM) is
extended to two-dimensional (2-D) FSBM for a 2-D nonminimum-
phase linear shift-invariant system by using finite 2-D Fourier se-
ries approximations to its amplitude response and phase response,
respectively. The proposed 2-D FSBM is guaranteed stable, and its
complex cepstrum can be obtained from its amplitude and phase
parameters through a closed-form formula without involving com-
plicated 2-D phase unwrapping and polynomial rooting.

A consistent estimator is proposed for the amplitude estimation
of the 2-D FSBM using a 2-D half plane causal minimum-phase
linear prediction error filter (modeled by a 2-D minimum-phase
FSBM), and then, two consistent estimators are proposed for the
phase estimation of the 2-D FSBM using the Chienet al.2-D phase
equalizer (modeled by a 2-D allpass FSBM). The estimated 2-D
FSBM can be applied to modeling of 2-D non-Gaussian random
signals and 2-D signal classification using complex cepstra. Some
simulation results are presented to support the efficacy of the three
proposed estimators. Furthermore, classification of texture images
(2-D non-Gaussian signals) using the estimated FSBM, second-,
and higher order statistics is presented together with some experi-
mental results. Finally, we draw some conclusions.

Index Terms—Higher order statistics, 2-D Fourier series-based
model, 2-D non-Gaussian signals, 2-D nonminimum-phase linear
shift-invariant systems.

I. INTRODUCTION

T WO-DIMENSIONAL (2-D) parametric models for linear
shift-invariant (LSI) systems such as autoregressive (AR),

moving average (MA) and autoregressive moving average
(ARMA) models, have been widely used in a variety of 2-D
statistical signal processing applications, such as 2-D spectral
estimation, texture image synthesis, and classification [1]–[4],
[6]–[9], [11]. Usually, model parameters are estimated from
the given 2-D data (e.g., digital images) using a stationary
random field model, and then, the estimated model parameters
are further used in the application of interest. There have been
a number of algorithms reported for the estimation of model
parameters. In [1]–[3], 2-D AR parameters are estimated
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using the least-squares (LS) estimator based on a set of linear
equations formed from autocorrelations [second-order statistics
(SOS)] of the given 2-D data. Assuming that the given 2-D
data are Gaussian, Kashyap and Chellappa [2] proposed an
approximate maximum-likelihood (AML) algorithm that
iteratively updates 2-D AR parameter estimates by solving a
set of linear equations also formed from autocorrelations of
the given 2-D data to avoid excessive computational load. In
[4], the 2-D DFT of 2-D MA model is obtained by a linear
geometric transform of a one-dimensional (1-D) function. With
the assumption that the 2-D DFT of the given 2-D data is
independent identically distributed (i.i.d.) complex Gaussian,
the 1-D function is estimated using an ML algorithm. Then, the
2-D MA model obtained from the estimated 1-D function is
applied to synthesis of texture images in [4]. Due to the fact that
SOS are blind to the system phase, these approaches cannot
completely characterize 2-D data, and thus, their performance
can be limited without using the system phase information.

Higher order statistics (HOS) known as cumulants [5], which
include both amplitude and phase information of non-Gaussian
random fields, have been used for the estimation of 2-D non-
minimum-phase asymmetric noncausal AR or ARMA models
[6]–[8], [11]. For instance, as reported in [8], Gaussianity and
linearity tests indicate that a texture image can be modeled as a
2-D LSI system (2-D texture image model) driven by an i.i.d.
non-Gaussian random field. Inverse filter criteria have been
proposed for estimating parameters of ARMA models [6], [7].
Tugnait [6] proposed three inverse filter criteria for jointly esti-
mating AR and MA parameters, whereas only AR parameters
are used for texture synthesis. Hall and Giannakis [7] proposed
two inverse filter criteria for estimating AR parameters, whereas
MA parameters are estimated either by a closed-form solution
using cumulants or by cumulant matching. Then, estimated
AR parameters are used as a feature vector for texture image
classification. Hall and Giannakis [8] also estimate ARMA
parameters by polyspectral matching, whereas only AR param-
eters are used for texture image synthesis. Moreover, Tsatsanis
and Giannakis [9] also proposed a nonparametric cumulant
matching method for texture image classification. Recently,
Chi and Chen [10] proposed a nonparametric 2-D frequency
domain blind system identification algorithm with application
to texture synthesis. These methods can characterize a broader
class of texture image representations than phase-insensitive
SOS-based approaches, whereas AR parameters appear more
suitable for texture image classification and synthesis than both
the MA and ARMA models.

1053–587X/02$17.00 © 2002 IEEE
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Recently, Chi [12], [13] proposed a real 1-D Fourier series-
based model (FSBM) as an approximation to an arbitrary non-
minimum-phase linear time-invariant (LTI) system. Chi’s 1-D
FSBM is potentially preferable to the 1-D ARMA model in
1-D statistical signal processing applications because of the fol-
lowing two characteristics of the former.

C1) The 1-D FSBM, which can be causal or noncausal,
minimum-phase or nonminimum-phase, is guaranteed
stable.

C2) Without involving phase unwrapping and polynomial
rooting (needed for finding poles and zeros of the
1-D ARMA model), the complex cepstrum of the 1-D
FSBM can be easily obtained from the 1-D FSBM
parameters via a closed-form formula.

In this paper, a real 2-D FSBM, which is a straightforward
extension of the 1-D FSBM, is proposed for approximation to
an arbitrary 2-D nonminimum-phase LSI system. Characteris-
tics C1) and C2) of the 1-D FSBM also apply to the 2-D FSBM.
Then, we present identification and estimation of the 2-D FSBM
with the given 2-D non-Gaussian data followed by its applica-
tion to classification of texture images.

The paper is organized as follows. Section II presents the
real 2-D FSBM. Then, three iterative algorithms for estimating
the parameters of the 2-D FSBM are presented in Section III,
together with the consistency of the three estimators. In
Section IV, some simulation results are presented to support the
efficacy of the three proposed algorithms. Section V presents
texture image classification using the estimated 2-D FSBM
parameters, second-, and higher order statistics, followed by
some experimental results with real texture image data. Finally,
we draw some conclusions.

II. TWO-DIMENSIONAL FSBM

Assume that is a real stable 2-D LSI system
with the frequency response . The proposed 2-D
FSBM for can be expressed as the following two
decompositions.

A. Two-Dimensional Magnitude (MG)-Phase (PS)
Decomposition

(1)

where is a 2-D zero-phase FSBM given by

(2)

and is a 2-D allpass FSBM given by

(3)

where , which is the region of support for both the real
amplitude parameters and real phase parameters , is
a truncated nonsymmetric half plane (TNSHP) [14], [15] given
by

(4)

to which (0, 0) does not belong.

B. Two-Dimensional Minimum-Phase (MP)-Allpass (AP)
Decomposition

The 2-D FSBM given by (1) can also be expressed as

(5)

where is a 2-D minimum-phase FSBM given by

(6)

and is a 2-D allpass FSBM given by

(7)

It can be easily shown that the region of support of the min-
imum-phase system given by (6) is the right half
plane (i.e., ) and .

The 2-D FSBM given by (1) and (5) is potentially a better
choice for modeling arbitrary 2-D LSI systems than the 2-D
ARMA model in statistical signal processing applications men-
tioned in Section I due to two characteristics that are discussed
as follows.

C3) Because (with parameters and )
is a 2-D continuous periodic function of and
with the same period of , the LSI system
is absolutely summable by the property of Fourier se-
ries and, thus, is stable. Moreover, the inverse system

is also a 2-D FSBM (with parameters
and ) and, thus, is stable as well.

C4) Let denote the complex cepstrum of
, i.e., the 2-D inverse Fourier transform

of [16]–[18]. It can be easily shown
from the MP-AP decomposition of the 2-D FSBM
given by (5) that

(8)

where

otherwise
(9)
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and

otherwise
(10)

Similarly, the complex cepstrum using the
MG-PS decomposition of the 2-D FSBM given by (1)
can also be shown to be a simple closed-form formula
of and .

Besides the above two characteristics, the 2-D FSBM pos-
sesses another characteristic as follows.

C5) As the 2-D LSI system (with frequency re-
sponse ) is not a 2-D FSBM (e.g., a 2-D
ARMA model), the larger the chosen values forand

of the 2-D FSBM , the better the approx-
imation to the true system .

Let us conclude this section with the advantages of the pro-
posed 2-D FSBM as follows. By C3), the stability issue is never
existent since the 2-D FSBM is always stable. By C4), the cal-
culation of the complex cepstrum of the 2-D FSBM is very
simple and straightforward without the need for phase unwrap-
ping and polynomial rooting that must be performed for the 2-D
ARMA model, and therefore, it is suitable for applications using
2-D complex cepstra of signals. Complex cepstra of speech sig-
nals with the vocal tract-filter modeled as a minimum-phase AR
model have been widely used in speech recognition and speaker
identification [16]–[18]. Similarly, the 2-D FSBM can also be
used for modeling of texture images [8], and meanwhile, its
complex cepstrum obtained by (8) can be used as features for
classification of texture images that will be presented later (in
Section V).

III. ESTIMATION OF 2-D FSBM PARAMETERS

Assume that is a stationary random field that can be
modeled as

(11)

with the following assumptions for the 2-D LSI system ,
the driving input and the Gaussian noise .

A1) is a 2-D FSBM given by (1) or (5) with and
known in advance.

A2) is a real, zero-mean, stationary, i.i.d.,
non-Gaussian 2-D random field with variance and

th-order cumulant .
A3) is a real, zero-mean, stationary, (white or col-

ored) Gaussian 2-D random field with variance.
With a given set of measurements

, we desire to esti-
mate the amplitude parameters and phase parameters

of the 2-D FSBM for all . Next, let us

present the estimation of amplitude parameters followed
by the estimation of phase parameters .

A. Estimation of Amplitude Parameters

The estimation of the amplitude parameters
is equivalent to the estimation of the minimum-phase

FSBM given by (6). The minimum-phase FSBM
can be estimated using SOS-based 2-D linear pre-

diction error (LPE) filters.
Let be a 2-D IIR filter with the region of support

, and let

(12)

be the output of the filter with the input , where
. The optimum Wiener filter by

minimizing is the well-known minimum-phase
2-D LPE filter of infinite length [14], [15]. Specifically, let us
model the 2-D LPE filter as a 2-D minimum-phase
FSBM as

(13)

The optimum LPE filter by minimizing

(14)

where is a vector consisting of ,
is described in the following theorem, which is 2-D extension
of Theorem 1 reported in [13].

Theorem 1: Assume that is a stationary random
field given by (11) satisfying the AssumptionsA1) and A2)
in the absence of noise. Let be the prediction error
given by (12), where the LPE filter is a 2-D
minimum-phase FSBM given by (13). Then, defined
by (14) is minimum if and only if

(15)

i.e., and
.

Based on Theorem 1, the following algorithm is proposed for
the estimation of .

Algorithm 1: Estimation of :

Find the optimum by minimizing
given by (14). Then, obtain

, i.e., .
Next, let us discuss how to find the optimumusing Algo-

rithm 1. Because is a highly nonlinear function of , it
is not possible to find a closed-form solution for the optimum.
Therefore, one has to resort to gradient-type iterative optimiza-
tion algorithms, such as iterative Fletcher-Powell (FP) algorithm
[19].
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Let us present the computation of the gradient
needed by gradient-type iterative optimization algorithms. By
(12) and (13), we obtain

(16)

By (14) and (16), we further obtain

(17)

Moreover, one can see from (16) and (17) that
depends only on and that the local minimum
occurs when

(18)

Let us conclude the amplitude parameter estimation with the
following two remarks.

R1) The optimum prediction error that is orthog-
onal to for all
by (18) is a 2-D white random field as

(19)
In other words, is a 2-D whitening filter,
and is an amplitude equalized signal with a
flat power spectral density equal to .

R2) When the 2-D LSI system is a 2-D FSBM
with unknown and , the obtained
is merely an approximation to if the
chosen values for and in (13) are smaller than
the true values of and . This implies that as the
2-D LSI system is not a 2-D FSBM, the larger
the chosen values for and in (13), the better the
approximation to the minimum-phase
system associated with .

B. Estimation of Phase Parameters

The estimation of the phase parameters
is equivalent to the estimation of the 2-D allpass

FSBM given by (3) from , as well
as equivalent to the estimation of the 2-D allpass FSBM

given by (7) from the amplitude equalized signal
given by (19). The estimation of both

and are based on the following theorem proposed
by Chienet al. [20] for phase equalization using HOS.

Theorem 2 [Theorem 1 in [20]]: Assume that
, where satisfies the assump-

tion A2), and is a real stable 2-D LSI system. Let

, where is a 2-D
allpass filter. Then, the absoluteth-order cumulant

of is maximized if and only if

(20)

where and are unknown integers.
Specifically, let be a 2-D allpass FSBM given by

(21)

and let be a vector consisting of .
Let

(22)

(23)

where is the amplitude equalized signal given by (19),
and

(24)

where and or .
Then, we have the following two facts, assuming that
in (11) is a 2-D FSBM given by (1) or (5) with and known
in advance.

F1) For is maximized
if and only if

, i.e.,
.

F2) For is maxi-
mized if and only if

, i.e.,
.

Because the proofs of F1) and F2) are quite similar, let us only
prove F2) as follows.

Proof of F2): Since the HOS of Gaussian processes
(due to in (11)) are equal to zero, the Gaussian noise

is negligible in the following proof. By Theorem 2,
(1), and (21), we have

(25)

where and are integers, and

and

and
otherwise

(26)

are coefficients of the Fourier series expansion of the sum of the
two linear functions and . From the second and fourth
lines of (25), one can see that

(27)
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which, together with (26), leads to , i.e.,

(28)

Therefore, from (25) and (28), one can obtain
.

Next, let us present the two algorithms for estimating the pa-
rameters of the 2-D FSBM based on F1) and F2), respectively.

Algorithm 2: Estimation of based on F1):

S1) Find the optimum by maximizing defined
by (24) with .

S2) Obtain by
and
, where are the

amplitude parameter estimates obtained by Algorithm
1.

Algorithm 3: Estimation of based on F2):

S1) Find the optimum by maximizing defined
by (24) with .

S2) Obtain by
and .

As used by Algorithm 1, the objective function
is also a highly nonlinear function of parameters

. For instance, is given by

for
for

(29)

Therefore, we also need resort to the gradient-type iterative
optimization algorithms such as the iterative FP algorithm for
finding a local maximum of that needs

(30)

to compute the gradient . The proof of (30) is
similar to that of (16) and, thus, is omitted here.

Four worthy remarks regarding the proposed Algorithms 2
and 3 are as follows.

R3) Prior to using Algorithm 2, the amplitude parameter
estimates of the 2-D FSBM, and the optimum
prediction error must be obtained using Algo-
rithm 1. This is not required by Algorithm 3.

R4) When the LSI system is not a 2-D FSBM, the
unknown linear phase terms may affect
the resultant estimates and .
This can be easily verified from (25) in the proof of
F2). Algorithm 3 may well end up with the optimum

for
and chosen sufficiently large, leading to a 2-D space
shift in the resultant estimate . This
can happen in using Algorithm 2 as well.

R5) By (19) and F1), the optimum phase equalized signal
obtained by Algorithm 2 is also a decon-

volved signal using the inverse filter
, i.e.,

(31)

R6) When the 2-D LSI system is a 2-D FSBM
with unknown and , the obtained estimates

and are merely an ap-
proximation to and ,
respectively, if the chosen values for and in (21)
are smaller than the true values ofand .

The optimum estimate can be obtained either
using Algorithms 1 and 2 or using Algorithms 1 and 3.
However, when the 2-D LSI system (with frequency
response ) is not a 2-D FSBM, the larger the chosen
values for and , the better the approximation to
the true system , except for an unknown linear phase
(a 2-D space shift), as mentioned in C5) and R4).

Finally, let us conclude this subsection with a discussion for
the computational complexity of the proposed Algorithms 1,
2, and 3. In practice, the second-order cumulant used by Al-
gorithm 1 [see (14)] and the higher order cumulants used by
Algorithms 2 and 3 [see (24)] must be replaced with the as-
sociated sample cumulants. The computation of both
for the former and for the latter can be efficiently per-
formed using 2-D FFT because the 2-D FSBM is a parametric
model in frequency domain. Moreover, both
[see (16)] for the former and [see (30)] for
the latter have a parallel structure suitable for software and hard-
ware implementation of the three proposed algorithms. Next, let
us investigate the consistency of the three proposed estimators.

C. Consistency of the Proposed Estimators

Recall that the second- and higher order cumulants used
in Algorithms 1, 2, and 3 must be replaced by the associ-
ated sample cumulants in practice. Let be a 2-D

zero-mean stationary non-Gaussian signal and
be the associated sample cumulant of

the th-order cumulant of . For instance

(32)

(33)

(34)

The consistency of the three proposed estimators can be proved
following the same procedure as the proof of [7, Prop. 3] with
the following proposition used.

Proposition 1 [Theorem 2a in [21]]: As

(35)

where and denotes “ converges to with
probability one.”

First of all, let us prove that obtained by Algorithm 1 are
consistent estimates. By Proposition 1 and (14), one can easily
infer that

uniformly in (36)
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as , which implies that the optimum by minimizing
converges to the optimumby minimizing

with probability one as . Therefore, by Algorithm 1 and
Theorem 1, one can infer that

(37)

as .
Next, let us prove the consistency of the phase parameter es-

timates obtained by Algorithm 2. By Proposition 1 and
(24), it can be easily inferred that

uniformly in (38)

as . Equation (38) also implies that the optimum
by maximizing converges to the optimumby max-
imizing with probability one as . Therefore,
by Algorithm 2, F1), and (37), we can infer that

(39)

as .
The consistency of Algorithm 3 can be proved similarly as

we did for Algorithm 2 above and, thus, is omitted here.

IV. SIMULATION RESULTS

In this section, three simulation examples are to be presented
to justify the efficacy of the three proposed algorithms for the
estimation of the 2-D FSBM parameters. In the three examples,
the driving input signal was a zero-mean, exponentially
distributed, i.i.d., random field with variance that was
convolved with a 2-D LSI system followed by addition of white
Gaussian noise to generate the synthetic data .
Then the three proposed algorithms are used to process .
The iterative FP algorithm was employed to obtain the optimum
amplitude parameters by Algorithm 1 and phase parame-
ters by Algorithms 2 and 3, respectively, with the cumu-
lant order . The initial condition used for the FP algo-
rithm is a zero vector (associated with and

). Thirty independent runs were performed
in each of the three examples.

Example 1 considers the case that the true system is
a 2-D FSBM. Examples 2 and 3 consider the case that
is a 2-D MA model and the case that is a 2-D ARMA
model, respectively. In Example 1, mean and root mean square
error (RMSE) of the obtained 30 amplitude and phase parameter
estimates were calculated. In Examples 2 and 3, a normalized
MSE (NMSE) [22] defined as

NMSE

(40)

was calculated, where (normalized with the same en-
ergy as ) is the estimate obtained in theth run,
and the time delay between and the true was
artificially removed. Next, let us turn to Example 1.

TABLE I
SIMULATION RESULTS FOREXAMPLE 1. THE TRUE

2-D FSBM PARAMETERS, MEAN, AND RMSE OF 30
INDEPENDENT ESTIMATES OF THE 2-D FSBM PARAMETERS

OBTAINED BY ALGORITHMS 1, 2AND 3, RESPECTIVELY

TABLE II
SIMULATION RESULTS FOREXAMPLE 2. NMSEOF 30 INDEPENDENTCHANNEL

ESTIMATES OBTAINED BY ALGORITHMS 1 AND 2 AND ALGORITHMS

1 AND 3, RESPECTIVELY

Example 1—Estimation of the 2-D FSBM:A 2-D FSBM
given by (1) with parameters

was used in this example. The simulation results
for and SNR are shown in Table I. One can
see, from this table, that mean values of and are
close to the true values of and , respectively, and
the associated RMSEs are also small. These simulation results
support that the three proposed algorithms are effective for the
estimation of the 2-D FSBM.

Example 2—Approximation to MA Model:A 2-D MA
system taken from [20] was used in this example. The system
input-output relation is given by

(41)

Table II shows the simulation results (NMSEs) obtained by
Algorithms 1 and 2 and Algorithms 1 and 3 for , and

and SNR dB, re-
spectively. One can see from this table that NMSEs are small
and decrease as SNR or increases. These simulation
results support that the 2-D FSBM estimates obtained by Algo-
rithms 1 and 2 and Algorithms 1 and 3 are good approximations
to the true 2-D MA system.
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TABLE III
SIMULATION RESULTS FOREXAMPLE 3. NMSEOF 30 INDEPENDENTCHANNEL

ESTIMATES OBTAINED BY ALGORITHMS 1 AND 2 AND ALGORITHMS

1 AND 3, RESPECTIVELY

Example 3—Approximation to ARMA Model:A 2-D ARMA
system with a nonsymmetric support taken from [6] was used in
this example. The system input–output relation is given by

(42)

Table III shows the simulation results of NMSEs obtained by
Algorithms 1 and 2 and Algorithms 1 and 3 for , and

and SNR dB, re-
spectively. One can see from this table that NMSEs are smaller
for larger SNR or larger as . These simulation
results support that the 2-D FSBM estimates obtained by Algo-
rithms 1 and 2 and Algorithms 1 and 3 are good approximations
to the true 2-D ARMA system as and are sufficient.

V. TEXTURE IMAGE CLASSIFICATION USING THE2-D FSBM

This section considers the application of the 2-D FSBM
to texture image classification because a texture image can
be modeled as a 2-D non-Gaussian random field given by
(11) in the absence of noise [8]. For comparison, the feature
vector, which is denoted by , exploiting the higher order
statistical features of texture images proposed by Tsatsanis
and Giannakis [9] and the feature vector, which is denoted
by , using toroidal lattice simultaneous AR (SAR) model
parameters proposed by Kashyap and Chellappa [2] were also
employed for texture image classification. Next, let us briefly
present the feature vectors and , respectively.

Assume that the texture image can be mod-
eled as the output signal of a noncausal ARMA system
driven by a zero-mean, i.i.d. non-Gaussian input signal ,
where is the order of the AR part, and
is the order of the MA part. Let

(43)

denote the third-order cumulant of with lags
. Tsatsanis and Giannakis [9] considered

the following feature vector:

(44)

for classification of texture images where

(45)

(third-order sample cumulant) and

(46)

Thanks to the asymptotic Gaussianity of cumulant estimates,
Tsatsanis and Giannakis [9] proposed an asymptotic ML classi-
fier (in the cumulant domain) by maximizing

(47)

where and (number of total classes)
denote the mean and asymptotic covariance matrix ofasso-
ciated with class . Note that as is an identity matrix, the
ML criterion reduces to a minimum Euclidean distance (MED)
criterion, i.e.,

(48)

where denotes the Euclidean norm of. The asymptotic
ML classifier would gain statistical efficiency over the MED
classifier at the expense of higher computational complexity.
Note that and can be estimated during the training phase
of the classifier.

On the other hand, the SAR model [2] for the texture
image with region of support

is

(49)

where
addition modulo operator;
region of support for AR parameters ;
white Gaussian with variance .

Kashyap and Chellappa [2] estimate and using an
AML algorithm to form the feature vector

(50)

where is a vector consisting of AR parameters estimates
, and is the variance of

. Note that as is symmetric, the AR parameters are
symmetric (i.e., ), as presented in [2], which
implies that the 2-D AR model is zero-phase in this case.

Next, two new feature vectors, which are denoted byand
, based on the 2-D FSBM, are considered for texture image

classification. They are defined as

(51)

(52)
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where is the obtained amplitude parameter vector of the 2-D
FSBM using Algorithm 1, and [see (31)]
obtained by Algorithm 2 or

(53)

where is the inverse system of the 2-D FSBM
obtained using Algorithms 1 and 3. Note that

the second component of is nothing but the normalized
th-order cumulant of , which is invariant

for for any integers and and any
nonzero . Next, let us present why and can be used for
texture image classification.

As mentioned in Section II, complex cepstra of speech sig-
nals with the vocal tract-filter modeled as a minimum-phase
AR model have been widely used in speech recognition and
speaker identification. This motivates the application of ampli-
tude parameters of the 2-D FSBM, i.e., minimum-phase pa-
rameters in the MP-AP decomposition, to texture image classifi-
cation simply because and the complex cepstrum
given by (9) are the same. However, the phase parameters
of the 2-D FSBM cannot be used because of unknown 2-D
space shift , as mentioned in R4). Nevertheless, the de-
convolved signal approximates an i.i.d. non-Gaussian
random field characterized by HOS such as normalized higher
order cumulants. Next, let us present some experimental results
using the proposed feature vectorsand .

The texture images used for classification were taken
from University of Southern California—Signal and Image
Processing Institute (USC-SIPI) Image Data Base. Twelve
512 512 texture images were chosen for classification, in-
cluding grass, treebark, straw, herringbone, wool, leather, water,
wood, raffia, brickwall, plastic, and sand. Each image was di-
vided into 16 128 128 nonoverlapping subimages to provide
12 classes of 16 subimages each. For each subimage,was
obtained using (45) by including 31 nonredundant third-order
cumulants in the set

(since is redun-
dant), was obtained using the AML algorithm with

,
including 13 nonredundant entries, andand were obtained
with and , respectively. Note that
either of and includes 13 and 25 entries for
and , respectively. The iterative FP algorithm
with the initial condition set to a zero vector [associated with

and ] was used to
obtain and by the three proposed algorithms.

The leave-one-out strategy [1] was then used to perform
the classification. To perform classification with the chosen
subimage of a specific class, the mean feature vector
(associated with ) and covariance matrix
(which is only needed by with the ML criterion used) was
calculated from the other 15 subimages of the class, whereas
for the other 11 classes, the and were calculated
from all 16 subimages of each class. The classification proce-
dure was repeated for subimages. The number
of misclassifications out of 192 classification operations is used
as the performance index.

TABLE IV
EXPERIMENTAL RESULTSUSING FEATURE VECTOR�

TABLE V
EXPERIMENTAL RESULTSUSING FEATURE VECTOR�

Recall that the MED criterion applies to the classi-
fier using any one of , whereas the ML cri-
terion is only applicable as is used. For obtaining re-
liable (31 1 vector) and (31 31 matrix) for

, we further divided each 128128 subimage
into four 64 64 nonoverlapping sub-subimages to obtain a
larger sample space. Then, and of the class were cal-
culated from the other 15 subimages and the asso-
ciated 60 sub-subimages of the class , whereas for
each of the other 11 classes, and were calcu-
lated from all the 16 subimages and the associated
64 sub-subimages .

The classification results associated with the MED classifier
using are shown in Tables IV through XV, re-
spectively. Tables IV and V show the classification results using
feature vectors and , respectively. Table VI shows the clas-
sification results using feature vector for . Ta-
bles VII and VIII show the classification results using feature
vector for associated with Algorithms 1 and 2
for the cumulant order and , respectively, and
the corresponding results associated with Algorithms 1 and 3 for

and are shown in Tables IX and X, respectively.
The results corresponding to those shown in Tables VI–X for
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TABLE VI
EXPERIMENTAL RESULTS USING FEATURE VECTOR� ASSOCIATED

WITH ALGORITHM 1 FORp = p = 2

TABLE VII
EXPERIMENTAL RESULTS USING FEATURE VECTOR� ASSOCIATED

WITH ALGORITHMS 1 AND 2 FORM = 3 AND p = p = 2

TABLE VIII
EXPERIMENTAL RESULTS USING FEATURE VECTOR� ASSOCIATED

WITH ALGORITHMS 1 & 2 FORM = 4 AND p = p = 2

are shown in Tables XI–XV, respectively. Each
row of these tables includes correct classifications (diagonal
term) and some misclassifications (off diagonal terms) over the
performed 16 subimage classifications of the associated class.

TABLE IX
EXPERIMENTAL RESULTS USING FEATURE VECTOR� ASSOCIATED

WITH ALGORITHMS 1 AND 3 FORM = 3 AND p = p = 2

TABLE X
EXPERIMENTAL RESULTS USING FEATURE VECTOR� ASSOCIATED

WITH ALGORITHMS 1 AND 3 FORM = 4 AND p = p = 2

TABLE XI
EXPERIMENTAL RESULTS USING FEATURE VECTOR� ASSOCIATED

WITH ALGORITHM 1 FORp = p = 3

The MED classifier using and yielded 43 (Table IV) and
31 (Table V) misclassifications, respectively. The one using
yielded ten (Table VI) and five (Table XI) misclassifications for

and , respectively. The one using
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TABLE XII
EXPERIMENTAL RESULTS USING FEATURE VECTOR� ASSOCIATED

WITH ALGORITHMS 1 AND 2 FORM = 3 AND p = p = 3

TABLE XIII
EXPERIMENTAL RESULTS USING FEATURE VECTOR� ASSOCIATED

WITH ALGORITHMS 1 AND 2 FORM = 4 AND p = p = 3

TABLE XIV
EXPERIMENTAL RESULTS USING FEATURE VECTOR� ASSOCIATED

WITH ALGORITHMS 1 AND 3 FORM = 3 AND p = p = 3

yielded seven or eight misclassifications (Tables VII-X) and
four to six misclassifications (Tables XII–XV) for
and , respectively. Some noteworthy observations

TABLE XV
EXPERIMENTAL RESULTS USING FEATURE VECTOR� ASSOCIATED

WITH ALGORITHMS 1 AND 3 FORM = 4 AND p = p = 3

from Tables IV–XV are as follows. The MED classifier using
either of and performs better for larger . The
MED classifier using performs slightly better than the one
using , and both of them perform much better than the one
using either of and . These experimental results support that
the proposed feature vectorsand are effective for texture
image classification. However, (without using higher order
cumulants) seems sufficient for this application.

Besides the results shown in Table IV associated with the
MED classifier using the feature vector, the ML classifier
using was also tested with the same texture images where
the first term in [see (47)] was ignored since it is negli-
gible [9]. This classifier achieved zero misclassification (perfect
classification) (with no need of showing the results by table)
over the 192 classification operations. Becauseis a 31 31
matrix, the computational complexity associated with is
much higher than that associated with [see (48)] during
the training phase and operation phase.

VI. CONCLUSION

Chi’s 1-D FSBM has been extended to the 2-D FSBM [see
(1) and (5)] that can be used as an approximation (with sta-
bility guarantee) to an arbitrary 2-D LSI system, and its com-
plex cepstrum can be easily obtained from its amplitude and
phase parameters [see (8)–(10)] with no need of complicated
2-D phase unwrapping and polynomial rooting. Then, Algo-
rithm 1 was presented for amplitude parameter estimation, and
Algorithms 2 and 3 were presented for phase parameter estima-
tion, followed by the establishment of their consistency. Some
simulation results were provided to support that the three pro-
posed algorithms are effective for the estimation of the 2-D
FSBM parameters. Then, two new feature vectors [see (51) and
(52)] obtained by the three proposed algorithms were presented
for texture image classification followed by some experimental
results for demonstrating their efficacy. However, the determi-
nation of of the 2-D FSBM is left for future research.
Other applications of the proposed 2-D FSBM such as texture
image synthesis are also left for future research.
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