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Two-Dimensional Fourier Series-Based Model
for Nonminimum-Phase Linear Shift-Invariant
Systems and Texture Image Classification

Chii-Horng Chen, Chong-Yung Chsenior Member, IEEEand Ching-Yung Chen

Abstract—In this paper, Chi's real one-dimensional (1-D) para- using the least-squares (LS) estimator based on a set of linear
metric nonminimum-phase Fourier series-based model (FSBM) is  equations formed from autocorrelations [second-order statistics
extended to two-dimensional (2-D) FSBM for a 2-D nonminimum- (SOS)] of the given 2-D data. Assuming that the given 2-D

phase linear shift-invariant system by using finite 2-D Fourier se- .
ries approximations to its amplitude response and phase response,data are Gaussian, Kashyap and Chellappa [2] proposed an

respectively. The proposed 2-D FSBM is guaranteed stable, and its @pproximate maximum-likelihood (AML) algorithm that

complex cepstrum can be obtained from its amplitude and phase iteratively updates 2-D AR parameter estimates by solving a
parameters through a closed-form formula without involving com-  set of linear equations also formed from autocorrelations of
plicated 2-D phase unwrapping and polynomial rooting. ~~  {he given 2-D data to avoid excessive computational load. In

A consistent estimator is proposed for the amplitude estimation . : .

of the 2-D FSBM using a 2-D half plane causal minimum-phase [4], the 2'D DFT of 2-D MA n_mdel .'S obtained by "fl I'nea_r

linear prediction error filter (modeled by a 2-D minimum-phase ~geometric transform of a one-dimensional (1-D) function. With
FSBM), and then, two consistent estimators are proposed for the the assumption that the 2-D DFT of the given 2-D data is
phase estimation of the 2-D FSBM using the Chieet al.2-D phase independent identically distributed (i.i.d.) complex Gaussian,
equalizer (modeled by a 2-D allpass FSBM). The estimated 2-D 16 1_p function is estimated using an ML algorithm. Then, the

FSBM can be applied to modeling of 2-D non-Gaussian random . - S
signals and 2-D signal classification using complex cepstra. Somez'D MA model obtained from the estimated 1-D function is

simulation results are presented to support the efficacy of the three applied to synthesis of texture images in [4]. Due to the fact that
proposed estimators. Furthermore, classification of texture images SOS are blind to the system phase, these approaches cannot

(2-D non-Gaussian signals) using the estimated FSBM, second-,completely characterize 2-D data, and thus, their performance
and higher order statistics is presented together with some experi- o1 he limited without using the system phase information.
mental results. Finally, we draw some conclusions. Higher order statistics (HOS) known as cumulants [5], which
Index Terms—Higher order statistics, 2-D Fourier series-based jnclude both amplitude and phase information of non-Gaussian
model, 2-D non-Gaussian signals, 2-D nonminimum-phase linear ranqom fields, have been used for the estimation of 2-D non-
shift-invariant systems. minimum-phase asymmetric noncausal AR or ARMA models
[6]-[8], [11]. For instance, as reported in [8], Gaussianity and
I. INTRODUCTION linearity tests indicate that a texture image can be modeled as a
WO-DIMENSIONAL (2-D) parametric models for linear 2-D LS system (2-D texture image quel) df"’e.” by ani.i.d.
shift-invariant (LSI) systems such as autoregressive (A gn-Gaussmn rgndo_m field. Inverse filter criteria have been
moving average (MA) and autoregressive moving avera éopos.,ed for estimating par ameter; of ARMA moc?e'ls [6], [7_]'
(ARMA) models, have been widely used in a variety of 2- ug_nalt [6] proposed three inverse filter criteria for jointly esti-
statistical signal processing applications, such as 2-D specmﬂtmg AR and MA parame;ers, whereas. only AR parameters
estimation, texture image synthesis, and classification [1]—[ fe gsed for.textur.e synthe3|s: HaI.I and Giannakis 7] proposed
[6]-[9], [11]. Usually, model parameters are estimated fro o inverse filter cntenaforesumgtmg AR parameters,where.as
the given 2-D data (e.g., digital images) using a stationa parameters are estimated either by a closed-form solution

random field model, and then, the estimated model paramet ng cumulants or by cumulant matching. Then, estimated

are further used in the application of interest. There have b parameters are used as a feature vector for texture image

a number of algorithms reported for the estimation of mod& assification. Hall and Giannakis [8] also estimate ARMA

parameters. In [1]-[3], 2-D AR parameters are estimaté’(ilramemrS by ponspectra}I matching, whereas only AR param-
eters are used for texture image synthesis. Moreover, Tsatsanis
and Giannakis [9] also proposed a nonparametric cumulant
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Recently, Chi [12], [13] proposed a real 1-D Fourier seriesvhere$2(p;, p2), which is the region of support for both the real
based model (FSBM) as an approximation to an arbitrary nommplitude parametets;, ;, and real phase parametgks ;. , is
minimum-phase linear time-invariant (LTIl) system. Chi’s 1-Ix truncated nonsymmetric half plane (TNSHP) [14], [15] given
FSBM is potentially preferable to the 1-D ARMA model inpy
1-D statistical signal processing applications because of the f&- e N .
lowing two characteristics of the former. (prp2) = {(ind2) sir = 1, p1oi2 = =P, p2}

C1) The 1-D FSBM, which can be causal or noncausal, U{(é1,42) 141 = 0,02 =1,...,p2} (4)
minimum-phase or nonminimum-phase, is guarantegd, - (0, 0) does not belong
stable. ' '

C2) Without involving phase unwrapping and polynomialy - 1yyo-Dimensional Minimum-Phase (MP)-Allpass (AP)
rooting (needed for finding poles and zeros of thBecomposition

1-D ARMA model), the complex cepstrum of the 1-D ]
FSBM can be easily obtained from the 1-D FSBM The 2-D FSBM given by (1) can also be expressed as
~parameters via a closed-form formula. . H(wy,wa) = H*(—wy, —ws)

In this paper, a real 2-D FSBM, which is a straightforward _y H 5
extension of the 1-D FSBM, is proposed for approximation to = Hyp(w1,w2) - Hap(wr,w2) ©)
an arbitrary 2-D nonminimum-phase LSI system. CharacterwhereH]W(whwQ) is a 2-D minimum-phase FSBM given by
tics C1) and C2) of the 1-D FSBM also apply to the 2-D FSBM. .

Then, we presentidentification and estimation of the 2-D FsBMIMP (w1, w2) = Hyp(—wi, —ws2)
with the given 2-D non-Gaussian data followed by its applica-
tion to classification of texture images. =exp Z Z Qi i

The paper is organized as follows. Section Il presents the (31,i2)EQ(p1,p2)
real 2-D FSBM. Then, three iterative algorithms for estimating (6)
the parameters of the 2-D FSBM are presented in Section I, i )
together with the consistency of the three estimators. ffdHar(wi,w2) is a2-D allpass FSBM given by
Section IV, some simulation results are presented to support theH _ 1
efficacy of the three proposed algorithms. Section V presents ap(w1,w2) = Hap(—wi, —ws)
texture image classification using the estimated 2-D FSBM
parameters, second-, and higher order statistics, followed by = exp {j ZZ (0yiy + Biria)

(i1,%2)C2p1,p2)

e*j(il witizws)
2

some experimental results with real texture image data. Finally,
we draw some conclusions.

ll. Two-DIMENSIONAL FSBM x sin(iiwr + dow2) o - (7)

Assume thath(m,n) is a real stable 2-D LS| system ) _ )
with the frequency responsB(w:,w,). The proposed 2-D It can be easily shown that the_reg|on of support pf the min-
FSBM for H(w;,w2) can be expressed as the following twdmum-phase systeryp(m, n) given by (6) is the right half

decompositions. plane (i.e.£2(co, 00)) andhmr(0,0) = 1.
The 2-D FSBM given by (1) and (5) is potentially a better
A. Two-Dimensional Magnitude (MG)-Phase (PS) choice for modeling arbitrary 2-D LSI systems than the 2-D
Decomposition ARMA model in statistical signal processing applications men-
" tioned in Section | due to two characteristics that are discussed
H(wl, CUQ) =H (—wl, _CUQ)
as follows.

= Huve(wy,wz) - Hps(wi,wz) @) C3) Becausé (w;,w,) (with parameters;;, ;, and;, ;,)

where Hyig (w1, w») is a 2-D zero-phase FSBM given by is a 2-D contlnuogs periodic function af; andws

with the same period dir, the LSI systenh(m,n)
Hyig(wr,ws) is absolutely summable by the property of Fourier se-

ries and, thus, is stable. Moreover, the inverse system
1/H(w;,w2) is also a 2-D FSBM (with parameters
_ v . p 2 —a;, i, and—p;, ;,) and, thus, is stable as well.
=Py Z&Zz: vz COS(wy +i2wz) 0 (2) C4) Let h(m,n) denote the complex cepstrum of
(i1,i2) G821 p2) h(m,n), i.e., the 2-D inverse Fourier transform

= Hua(—wi, —w2)

and Hpg(w1,ws) is a 2-D allpass FSBM given by of In{H(wy,w2)} [16]-[18]. It can be easily shown
from the MP-AP decomposition of the 2-D FSBM
Hps(wy,w2) given by (5) that
1 - - -
h(m,n) = hyp(m,n) + hap(m,n) (8)

- Hpg(—wi, —ws)
where

= €Xp 1 Z Z [3i1,i2 Sin(ilwl + i2w2) (3) h (m 7’L) _ A on, (m,n) € Q(pbpg) (9)
(ir ,i2)€Qp1 ,p2) MPAT 0, otherwise
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and present the estimation of amplitude parameters;, followed
. by the estimation of phase parametgrs;, .
hap(m,n)
—(1/2)(mn + Bryn), (m,n) € Qp1,p2) A. Estimation of Amplitude Parameters

m
- { (()1/2)(0‘_’"7_" + Fom,—n); (t_hm’ _.n) € 2p1,p2) The estimation of the amplitude parameters;, , (i1,%2) €
’ otherwise Q(p1, p2) is equivalent to the estimation of the minimum-phase
(10) FsBM Hyip (w1, w2) given by (6). The minimum-phase FSBM

- - . Hyp(w1,ws) can be estimated using SOS-based 2-D linear pre-
Similarly, the complex cepstrum(m,n) using the diction error (LPE) filters,

MG-PS decomposition of th? 2-D FSBM given by (1) Letvnmp(m, n) be a 2-D IIR filter with the region of support
can also be shown to be a simple closed-form formu&zzl(aO ~0) U (0,0), and let
Of (.o AN G, . o B
Besides the above two characteristics, the 2-D FSBM pog{m, n)
sesses another characteristic as follows.
C5) As the 2-D LSI systenk(m,n) (with frequency re- . L p p
sponseH (wy,ws)) is not(a 2—)D FSBM (e.g., a 2-D = a(m,n)+ ‘ ZZ vmp (i, i2)a(m — i1, — i2)
ARMA model), the larger the chosen values fgrand (i) €€2(00,00)

= z(m,n) * vmp(m, n)

po of the 2-D FSBMH (w1, w2 ), the better the approx- 12)
imation H (w1, w2) to the true systert(w:, ws). be the output of the filter with the input(m,n), where
Let us conclude this section with the advantages of the prg;,(0,0) = 1. The optimum Wiener filteroyp(m, n) by

posed 2-D FSBM as follows. By C3), the stability issue is nevesiinimizing E[c?(m,n)] is the well-known minimum-phase
existent since the 2-D FSBM is always stable. By C4), the cal-p LPE filter of infinite length [14], [15]. Specifically, let us

culation of the complex cepstrum of the 2-D FSBM is verynodel the 2-D LPE filteyp(m, n) as a 2-D minimum-phase
simple and straightforward without the need for phase unwrapsm as

ping and polynomial rooting that must be performed for the 2-D
ARMA model, and therefore, it is suitable for applications usingv o < (iwitisws)
2-D complex cepstra of signals. Complex cepstra of speech sigMP(wl’ wa) = exp Z Z Yir,iz©

nals with the vocal tract-filter modeled as a minimum-phase AR (1,72)€0pr,2)

model have been widely used in speech recognition and speaker (13)
identification [16]-[18]. Similarly, the 2-D FSBM can also berpe optimum LPE ﬁlteﬂ}l\{P(UwaQ) by minimizing

used for modeling of texture images [8], and meanwhile, its

complex cepstrum obtained by (8) can be used as features for Juse(&) = Ele*(m,n)] (14)
classification of texture images that will be presented later (in . . o

Section V). hered is a vector consisting ok;, ;,,V(i1,42) € Q(p1,p2),

is described in the following theorem, which is 2-D extension
of Theorem 1 reported in [13].

Theorem 1:Assume thatz(m,n) is a stationary random
Assume that:(m, n) is a stationary random field that can befield given by (11) satisfying the Assumptiosl) and A2)

Ill. ESTIMATION OF 2-D FSBM FARAMETERS

modeled as in the absence of noise. Lefm,n) be the prediction error
given by (12), where the LPE filteFyp(wy,w2) is a 2-D
a(m,n) = “(g’”);h(m’”) +w(m, n) minimum-phase FSBM given by (13). Thefysg(a) defined
_ Z Z h(i, Fyulm — 6,1 — 5) + w(m, n) by (14) is minimum if and only if
P=—00 j=—0c0 1) Vup(wi,w2) = 1/Hyp(wr, w2) (15)
i.e., dil,iz = —ail’iz,V(il,ig) € Q(pl,pg) and Inin{JMSE
with the following assumptions for the 2-D LS| systéifin, n), (&)} = o2.
the driving inputu(m, n) and the Gaussian nois&m, n). Based on Theorem 1, the following algorithm is proposed for

Al) h(m,n)isa2-D FSBM given by (1) or (5) with; and the estimation otv;, ;,.
po known in advance. Algorithm 1: Estimation ofc;, ;,:

A2) wu(m,n) is a real, zero-mean, stationary, iid.,  Find the optimumd;, ;, by minimizing Jyse(&)
non-Gaussian 2-D random field with varianeg and given by (14). Then, obtaity;, ;, = —d, 4,,V(i1,%2) €
Mth-order(M > 3) cumulantCh;{u(m,n)} # 0. Q(p1, pa), i,e,,Hl\qP(wl,wz) = 1/171\,1p(w1,w2).

A3) w(m,n)is areal, zero-mean, stationary, (white or col- Next, let us discuss how to find the optimuinusing Algo-
ored) Gaussian 2-D random field with variancg. rithm 1. Becausdysg(&) is a highly nonlinear function at, it

With a given set of measurements(m,n),m = isnotpossibletofind a closed-form solution for the optimam

0,1,...,.N —1,n = 0,1,...,N — 1, we desire to esti- Therefore, one has to resort to gradient-type iterative optimiza-

mate the amplitude parameterg, ;, and phase parametersion algorithms, such as iterative Fletcher-Powell (FP) algorithm
Bi, i, of the 2-D FSBM for all(¢1,¢2) € Q(p1,p2). Next, letus [19].
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Let us present the computation of the gradightisp (&) /&
needed by gradient-type iterative optimization algorithms.
(12) and (13), we obtain

de(m,n

)_ 1 / /
_ X
: @) ] (w1, w2)
x {M} AT )

adil7i2
1 ™ U
= W/w 77TX(CU1,CU2)V]\,1P(CU1,CU2)
% ejwl(rn—il)—l—jwz(n—iz) dC(J1 de

(i1,12) € Qp1,p2).

8di17i

e(m —iy,n —iz),

(16)
By (14) and (16), we further obtain
8JMSE(64) - ae(m, 7’L)
D s 2F |e(m,n) e
= 2E[e(m,n)e(m — i1, n — iz)]
(i1,42) € Qp1,p2). (17)

Moreover, one can see from (16) and (17) thdt sk(&)/0&
depends only or(m,n) and that the local minimundysg (&)
occurs when

Ele(m,n)e(m—i1,n—i2)] =0, (i1,i2) € Qp1,p2)- (18)

Let us conclude the amplitude parameter estimation with
following two remarks.
R1) The optimum prediction erra(m,n) that is orthog-
onal toe(m — i1,n — i2) for all (i1,i2) € Qp1,p2)
by (18) is a 2-D white random field as

e(m,n) = z(m,n) * opmp(m,n) = u(m,n) = hap(m,n).
(19)
In other wordsoyp(m,n) is a 2-D whitening filter,
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g(m,n) = T(m,n) * vap(m,n), wherevap(m,n) is a 2-D

Ballpass filter. Then, the absoluldth-order(}/ > 3) cumulant
|Car{7(m, n)}| of §(m,n) is maximized if and only if
arg{Vap(wi,w2)} = —arg{ H(w1,ws)} +71w1 + Tows (20)

wherer; andr; are unknown integers.
Specifically, letvsp(m, n) be a 2-D allpass FSBM given by

Vap(wi,w2)
s ¥
(i1,32) EQ(p1,p2)

and lety be a vector consisting of;, ;,,V(i1,42) € Q(p1, p2).
Let

Viy ip SIN(E1 w1 + igwg)} (21)

(22)
(23)

wheree(m, n) is the amplitude equalized signal given by (19),
and

y1(m,n) = e(m,n) * vap(m,n)

ya(m,n) = xz(m,n) xvap(m,n)

Jeum(v) = [Cu{y(m, n)}

whereM > 3andy(m,n) = y1(m,n)ory(m,n) = ya2(m,n).
Then, we have the following two facts, assuming thét:, »)
in (11) is a 2-D FSBM given by (1) or (5) withy andp, known
in advance.
theF1) Fory(m,n) = wyi(m,n), Jouym(y) is maximized
if and only if arg{Vap(wi,w2)} —arg{Hap
(w17w2)}! i'e'17i1,i2 = _(ail,iz +/3i1,i2)7v(i17i2) €

(24)

Qp1,p2).

F2) For y(m,n) = wy(m,n), Jeum(y) is maxi-
mized if and only ifarg{Vap(wi,ws)} = —arg
{Hps(wi,wa)}, i€, Yiri, = —Biyiy,V(i1,12)
€ Qp1,p2).

Because the proofs of F1) and F2) are quite similar, let us only

ande(m,n) is an amplitude equalized signal with 3rove F2) as follows.

flat power spectral density equal &G .

When the 2-D LSI systerhi(m,n) is a 2-D FSBM
with unknownp; andp., the obtainedlffl\qp(wl,w)
is merely an approximation téfyp(wy,ws) if the
chosen values fop; andps in (13) are smaller than
the true values of; andps. This implies that as the
2-D LSl systemh(m, n) is not a 2-D FSBM, the larger
the chosen values fgr, andp- in (13), the better the
approximationHl\qp(wl,w2) to the minimum-phase
system associated with(m, n).

R2)

B. Estimation of Phase Parameters
The estimation of the phase parametgs;,, (i1,42) €

Q(p1,p2) is equivalent to the estimation of the 2-D allpass

Proof of F2): Since the HOS of Gaussian processes
(due tow(m,n) in (11)) are equal to zero, the Gaussian noise
w(m,n) is negligible in the following proof. By Theorem 2,
(), and (21), we have

arg{Vap(wi,w2)} + arg{ Hps(w1,w2)}
Z Z (Yivyis + Biy i) sin(irwr + dawa)

(i1,42)EQ(p1,p2)

|w1|§7r, |CU2|S7T
= TiWw1 + Tawa, |w1| <m, |CU2| <7
= Z Z biy 4y Sin(i1w1 + tows)
(41,82 ) EQ(o0,00)
|w1| S m, |CU2| S m (25)

(26)

FSBM Hps(wi,w2) given by (3) from z(m,n), as well wherer, andr, are integers, and

as equwalent_ to the estimation of the 2-D allpass l_:SBM 1)+l =0 and i; >0

Hap(wyi,ws) given by (7) from the amplitude equalized signal b — fi(_l)izﬂ =0 and 4. >0

e(m,n) given by (19). The estimation of botHps(w;,ws) ‘1,02 Oiz ’ oltherwise 2

andH sp(w1,w2) are based on the following theorem proposed - ’ . . .

by Chienet al. [20] for phase equalization using HOS. are cpefﬂuents_of the Fourier series expansion of the sum of the
Theorem 2 [Theorem 1 in [20]]: Assume thats(m, n) = two linear functionsw; andr,w;. From the second and fourth

u(m,n) * h(m,n), where u(m,n) satisfies the assump-N€s Of (25), one can see that

tion A2), and h(m,n) is a real stable 2-D LSI system. Let b =0, V(i1,i2) € Qoo,00) — Qp1,p2) 27)

11,12
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which, together with (26), leads ta = 7 = 0, i.e., R6) When the 2-D LSI systemi(m,n) is a 2-D FSBM
. L with unknown p; and ps, the obtained estimates
biriz =0, W(iy,2) € (00, 00). (28) Hap(wi,ws) and Hps(wy,w;) are merely an ap-
Therefore, from (25) and (28), one can obtajp ;, = proximation to Hap(wi,ws) and Hpg(wi,ws),
—Biy.iy, Y11, 12) € Q(p1, p2). a respectively, if the chosen values far andp, in (21)
Next, let us present the two algorithms for estimating the pa- are smaller than the true valuespafandp..
rameters of the 2-D FSBM based on F1) and F2), respectively. The optimum estimatdﬁf(wl,m) can be obtained either
Algorithm 2: Estimation off3;, ;, based on F1): using Algorithms 1 and 2 or using Algorithms 1 and 3.
S1) Find the optimurdg by maximizingJcuy () defined However, when the 2-D LSI systefi(m,n) (with frequency
by (24) withy(m,n) = yi(m,n). responsé(w;,ws)) is not a 2-D FSBM, the larger the chosen
S2) Obtain Hyp(wi,w2) by Hap(wi,wz) = 1/Vap valuesforp, andps, the better the approximatiad (w, , w2) to
(wi,w2) and By, i, = —Hiyin — iy, V(i1,i2) € thetrue systerfi(w;,ws2), except for an unknown linear phase

Q(p1,p2), Whered,, ,,,V(i1,i2) € Q(p1,p2) are the (a 2-D space shift), as mentioned in C5) and R4).

amplitude parameter estimates obtained by Algorithm Finally, let us conclude this subsection with a discussion for

1. the computational complexity of the proposed Algorithms 1,
Algorithm 3: Estimation ofg;, ;, based on F2): 2, and 3. In practice, the second-order cumulant used by Al-
gorithm 1 [see (14)] and the higher order cumulants used by
Algorithms 2 and 3 [see (24)] must be replaced with the as-
sociated sample cumulants. The computation of hoth, »)
for the former andy(m, ) for the latter can be efficiently per-

As Jusr(@) used by Algorithm 1, the objective functionformed_ using 2-D FFT bepause the 2-D FSBM is a pf:lrametrlc

Joum(y) is also a highly nonlinear function of parameter%nooIeI in frequency domain. Moreover, bath(m, n)/94, i,

~iv s, . For instanceJeuw(7) is given by see (16)] for the former anay(m,@)/a%hiz [see (30)] for
’ the latter have a parallel structure suitable for software and hard-

S1) Find the optimumy by maximizingJcum () defined
by (24) withy(m,n) = y2(m,n).

82) Obtain ﬁps(&dl,wg) by ﬁps(wl,wg) = 1/VAP
(w17w2) andﬁhﬂz = _’?ilyi27v(i17i2) € Q(p17p2)'

Jeum(y) ware implementation of the three proposed algorithms. Next, let
_ [1E[*(m,n)], for M = 3 (29) us investigate the consistency of the three proposed estimators.
“ LIE (m, n)] = 3{E[y*(m,n)]}?|, for M =

Therefore, we also need resort to the gradlent type |terat|$/:e Consistency of the Proposed Estimators

optimization algorithms such as the iterative FP algorithm for Recall that the second- and higher order cumulants used

finding a local maximum of/cuy () that needs in Algorithms 1, 2, and 3 must be replaced by the associ-
dy(myn) 1 ated sample cumulants in practice. L&tn,n) be a 2-D
——— = {ylm+i,n+i2) —ylm —iy,n —iz)} N x N zero-mean stationary non-Gaussian signal and

i i Cr{é(m,n)} (M > 2) be the associated sample cumulant of
(30) ' the Mth-order cumulant o{(m n). For instance

to compute the gradierd@Joun(v)/8y. The proof of (30) is —1N-—

similar to that of (16) and, thus, is omitted here. Co{é(m,n) N2 Z Z £2(m,n) (32)
Four worthy remarks regarding the proposed Algorithms 2 m=0 n=0

and 3 are as follows. R —1N—
R3) Prior to using Algorithm 2, the amplitude parametelc?f{g(m N2 Z Z & (m,n) (33)

m=0 n=0

estimatesy;, ,, of the 2-D FSBM, and the optimum T

prediction error(m, n) must be obtained using Algo- 2
rithm 1. This is not required by Algorithm 3. Cs {&(m N2 ZO E:O ¢ (m.n) CQ{S(m mh
R4) When the LSI systerh(m, n) is not a 2-D FSBM, the mE = (34)

unknown linear phase termg 1 + we7> may affect ) )
the resultant estimaté®, p(w; , ws) andHps(wy,we).  1N€ consistency of the three proposed estimators can be proved

This can be easily verified from (25) in the proof offollowing the same procedure as the proof of [7, Prop. 3] with
F2). Algorithm 3 may well end up with the optimumthe following proposition used.

Yiria = —Biv i + bivin, Vi1, i2) € Qpy,p2) for py Proposition 1 [Theorem 2a in [21]]: As N —
andp, chosen sufficiently large, leading to a 2-D space CM{g(m n)} "B Cpde(m,n)} (35)
shift in the resultant estimate{m + 1, n + 72). This
can happen in using Algorithm 2 as well. where M > 2 anda ' b denotes 4 & converges td with
R5) By (19) and F1), the optimum phase equalized signfobability one.” O
y1(m,n) obtained by Algorithm 2 is also a decon- Firstofall, letus prove that;, ;, obtained by Algorithm 1 are
volved signal using the inverse ﬁ|té}‘INV(wl,w2) — consistent estimates. By Proposition 1 and (14), one can easily
1/H(wy,wo), ie., infer that
y1(m,n) = e(m,n) * tap(m,n) Inse(@) = Cafe(m,n)} "B ' Juse(@)

= z(m,n) * hixv(m,n) ~ w(m,n). (31) = E[¢*(m,n)] uniformly in & (36)
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asN — oo, which implies that the optimur by minimizing TABLE |
JMSE( ) converges to the optlmum by mlnlmlzmg JMSE( ) SIMULATION RESULTS FOREXAMPLE 1. THE TRUE
2-D FSBM PARAMETERS, MEAN, AND RMSE oF 30
with probability one asv. — oc. Therefore, by Algorithm 1 and INDEPENDENT ESTIMATES OF THE 2-D FSBM PARAMETERS
Theorem 1, one can infer that OBTAINED BY ALGORITHMS 1, 2AND 3, RESPECTIVELY
N 2 w.p.1 - ~ -
iy oo = — W4 7 Gy 4y = Qg ins FSBMof |FSBMof H@,.0)) | pepniof FSBM of H(w,,®,)
(i, i2) € Ap1.p2) B7)  Hwuwy [ AL e, ) | Alporitm? | Algoritim 3
mean RMSE mean RMSE mean RMSE
asN — oc. 0tg, =097 09696 | 0.0068 | By, =-027 | 02717 | 00126 | -02703 | 0.0175

Next, let us prove the consistency of the phase parameter €, _ =—o5] 04987 | 00085 |B,_, =-095| -0952 | 00103 | 0949 | 00230
tlmatesﬁZl i, obtained by Algorithm 2. By Proposition 1 and o, =104 | 10394 | 00089 | Bio =018 | 0.1784 | 00110 | 0.1774 | 00356

(24), it can be easily inferred that o =052 05199 | 00101 | B, =-092| 09232 | 00123 | —0.9304 | 0.0231
S 2 w.p.1
Joum(7) = |Crr{y(m, n)}| =7 Joum(v)
= |Cy{y1(m,n)}| uniformlyiny  (38) TABLE I
. . . .. SIMULATION RESULTS FOREXAMPLE 2. NMSEOF 30 INDEPENDENTCHANNEL
asN — oo. Equation (38) also implies that the optimum ESTIMATES OBTAINED BY ALGORITHMS 1 AND 2 AND ALGORITHMS
by maximizing.Jcum () converges to the optimumby max- 1 AND 3, RESPECTIVELY

imizing Jcum (v) with probability one asV — oc. Therefore,

by Algorithm 2, F1), and (37), we can infer that Algorithms | &2 SNRl = Algorithms 1& 3
~ w.p.1l (dB)
/311712 = 711712 iy i " " Vir,is T Vg i — /jilyiz p(=p)| 20 15 10 5 20 15 10 5
V(i1,i2) € Qp1,p2) (39) 1 {00614 | 0.0603 | 00610 | 0.0760 | 0.0593 | 0.0584 | 0.0594 | 0.0750

2 0.0077 | 0.0083 | 0.0122 | 0.0309 | 0.0078 | 0.0084 | 0.0122 | 0.0306
3 0.0043 | 0.0052 | 0.0097 | 0.0307 | 0.0047 | 0.0054 | 0.0098 | 0.0303

asN — oo.
The consistency of Algorithm 3 can be proved similarly as
we did for Algorithm 2 above and, thus, is omitted here.

Example 1—Estimation of the 2-D FSBM 2-D FSBM
H(wq,ws) given by (1) with parameters

In this section, three simulation examples are to be presented
to justify the efficacy of the three proposed algorithms for th@o.t = —0-97 11 =-0.5 a1 =104 a1, =0.52
estimation of the 2-D FSBM parameters. In the three example®,1 = —0.27 31,1 =-0.95 B10=0.18 p;=-0.92

the driving input signak(m, n) was a zero-mean, exponentlally( = p, = 1) was used in this example. The simulation results
distributed, i.i.d., random field with variane€ = 1 that was
for N = 128 and SNR= oo are shown in Table I. One can
convolved with a 2-D LSI system followed by addition of white
see, from this table, that mean valuesdgf ;, and /3“ i, are

Gaussian noise to generate the synthatis NV dataz(m, n). close to the true values afi, ;, and 3, ,,, respectively, and

Then the three proposed algorithms are used (o pragess.). the associated RMSESs are also small. These simulation results
The iterative FP algorithm was employed to obtain the optimum

support that the three proposed algorithms are effective for the
amplitude parameters;, ;, by Algorithm 1 and phase parame- estimation of the 2-D FSBM.

tersf;, ., by Algorithms 2 and 3, respectively, with the cumu- L i

lant orderM = 3. The initial condition used for the FP algo- Example 2—Approximation to_ MA. Modeh 2-D MA

rithm is a zero vector (associated with, ., — 0, ¥(iy. i») and system taken from [20] was used in this example. The system
1,22 ) ) . _ . . .

Biy i = 0,V(i1,42)). Thirty independent runs were performednput output relation is given by

in each of the three examples. z(m,n) = u(m,n) — 0.8u(m — 1,n) + 0.2u(m — 2,n)

Example 1 considers the case that the true systgm») is 1

. Su(m,n —1) — 1.44 —1,n-1

a 2-D FSBM. Examples 2 and 3 consider the caselthat, ») + 18u(m,n - 1) u(m n=1)

IV. SIMULATION RESULTS

is a 2-D MA model and the case thiatm, n) is a 2-D ARMA +0.36u(m —2,n — 1)
model, respectively. In Example 1, mean and root mean square —0.5u(m,n — 2) + 0.4u(m — 1,n — 2)
error (RMSE) of the obtained 30 amplitude and phase parameter —0.1u(m — 2,n — 2)
estimates were calculated. In Examples 2 and 3, a normalized

. ’ 0.5u(m,n — 3) —0.4u(m —1,n — 3
MSE (NMSE) [22] defined as + 0.5u(m,n — 3) u( n—3)

+0.1u(m — 2,n —3). (41)
NMSE
= E Em__lo En——lo(h(m n) — hi(m,n))2 Table Il shows the simulation results (NMSEs) obtained by

Algorithms 1 and 2 and Algorithms 1 and 3 féf = 128, and
(p1,p2) = (1,1),(2,2),(3,3) and SNR= 5,10, 15,20 dB, re-

. (40) spectively. One can see from this table that NMSEs are small
was calculated, wherk; (m,n) (normalized with the same en-and decrease as SNR or (=p2) increases. These simulation
ergy ash(m,n)) is the estimaté(m, n) obtained in théth run, results support that the 2-D FSBM estimates obtained by Algo-
and the time delay betvveén(m, n) and the truév(m,n) was rithms 1 and 2 and Algorithms 1 and 3 are good approximations
artificially removed. Next, let us turn to Example 1. to the true 2-D MA system.

2717;):—15 27110_—15 h%(m,n)
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TABLE Il for classification of texture images where
SIMULATION RESULTS FOREXAMPLE 3. NMSEOF 30 INDEPENDENTCHANNEL N
ESTIMATES OBTAINED BY ALGORITHMS 1 AND 2 AND ALGORITHMS Csy ([, n1], [ma, nal)

1 AND 3, RESPECTIVELY 1 N—_1N—-1
= — z(m,n
Algorithms 1 & 2 Algorithms 1 & 3 N2 Z Z ( ’ )

m=0 n=0

SNR (dB)

x z(m+my,n+n)z(m+me,n+n2) (45)
p(Ep) 20 15 10 5 20 15 10 5

2 | 0.1471 | 0.1224 | 0.1268 | 0.1850 | 0.0676 | 00712 | 0.0899 | 01545 (third-order sample cumulant) and

3 |00352 00361 | 00482 ] 01058 | 00294 [ 00308 | 00431 [ 0099 0 2 {([my, ma]), [z, ma]) ¢ |mual, Ina] < I + 3k

4| 0.0244 | 0.0275 | 0.0373 | 0.0830 | 0.0232 | 0.0243 | 0.0345 | 0.0810 =12 =12 (46)
- 7 7 - 7 M

Thanks to the asymptotic Gaussianity of cumulant estimates,

Example 3—Approximation to ARMA Modek 2-D ARMA - tgatsanis and Giannakis [9] proposed an asymptotic ML classi-
system with a nonsymmetric support taken from [6] was usedgg, (in the cumulant domain) by maximizing

this example. The system input—output relation is given by

T\ (1)

x(m,n) —0.004z(m + 1,n + 1) +0.0407z(m + 1,n) 101 B B
—0.027z(m + 1,n — 1) — 0.2497z(m, n + 1) =3 {F log |Ze| + [0 — fe1] (Ze) 61 — 9c,1]}
—0.568z(m,n — 1) +0.1037x(m — 1,n + 1) (47)
—0.3328x(m —1,7) +0.1483z(m — 1,7 — 1) whered.; andZ.,c = 1,2,...,C (number of total classes)

=u(m,n) — 0.5u(m + 1,n) — 0.5u(m,n + 1) denote the mean and asymptotic covariance matrik @fsso-
—u(m,n —1) —u(m —1,n). (42) ciated with class. Note that as¥. is an identity matrix, the

. . , ML criterion reduces to a minimum Euclidean distance (MED)
Table 11l shows the simulation results of NMSEs obtained b

Algorithms 1 and 2 and Algorithms 1 and 3 féf = 128, and diterion, ie., _

(p1,p2) = (2,2),(3,3),(4,4) and SNR= 5,10, 15,20 dB, re- Jyiep(01) = 161 — 0.1 (48)
spectively. One can see from this table that NMSEs are smaligfere ||9|| denotes the Euclidean norm 6f The asymptotic
for larger SNR or largep, (=p2) asp, > 3. These simulation \|_ classifier would gain statistical efficiency over the MED
results support that the 2-D FSBM estimates obtained by Alggassifier at the expense of higher computational complexity.
rithms 1 and 2 and Algorithms 1 and 3 are good approximationgie thatd,, ; andX, can be estimated during the training phase
to the true 2-D ARMA system agg andp, are sufficient. of the classifier.

On the other hand, the SAR model [2] for thex N texture
V. TEXTURE IMAGE CLASSIFICATION USING THE2-D FSBM  image(m,n) with region of supporiR = {(m,n) : m =

This section considers the application of the 2-D FSBW1,---. N —1,n=0,1,...,. N —1}is
to texture image classification because a texture image ) = ZZ i ip (M B i1, 0 B 12) + w(m,n)
be modeled as a 2-D non-Gaussian random field given by
(11) in the absence of noise [8]. For comparison, the feature
vector, which is denoted by;, exploiting the higher order
statistical features of texture images proposed by Tsatsawiere
and Giannakis [9] and the feature vector, which is denoted® addition modulaN operator;
by 65, using toroidal lattice simultaneous AR (SAR) model 22 region of support for AR parametets, ;, ;
parameters proposed by Kashyap and Chellappa [2] were alse’(m,n) white Gaussian with varianee;,.
employed for texture image classification. Next, let us brieflikashyap and Chellappa [2] estimaig ;, and o2, using an

(1,12)C8202 (p1,p2)

(m,n) € R (49)

present the feature vecta?s andé,, respectively. AML algorithm to form the feature vector
Assume that théV x NN texture imagec(m,n) can be mod- - T
eled as the output signal of a noncausal ARNIAI) system b2 = [dT,Ui/Uﬂ (50)

driven by a zero-mean, i.i.d. non-Gaussian input sigial, n), . o .
wherek = [k1, k2] is the order of the AR part, arld= [i1, l2] where a is a vector consisting of AR parameters estimates

is the order of the MA part. Let iy in,V(i1,i2) € Qo(p1,p2), and o2 is the variance of
x(m,n). Note that a€2, is symmetric, the AR parameters are
Ce([mr, m], [ma, na]) symmetric (i.e.a;, 5, = 6_i, —i,), @s presented in [2], which

= E[z(m,n)z(m + my,n + n1)z(m +mga,n +n2)] (43) implies that the 2-D AR model is zero-phase in this case.

Next, two new feature vectors, which are denotedbhwand
84, based on the 2-D FSBM, are considered for texture image
classification. They are defined as

denote the third-order cumulant of(m,n) with lags
([m1, n1], [z, n2]). Tsatsanis and Giannakis [9] considere
the following feature vector:

th = {03-73([7”‘17”1]7 [m27n2])7v([m17n1]7 [m27n2]) € Ql} 93 = [&T7O—g O—i]T (51)
(44) 61 = (a7, Car{y(m, )}/ (Bl (m,n))Y?]" (52)
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whered is the obtained amplitude parameter vector of the 2-D TABLE IV
ESBM using Algorithm 1, an@(m,n) =y (m,n) [see (31)] EXPERIMENTAL RESULTS USING FEATURE VECTOR6
obtained by Algorithm 2or Texture size: 128x128, Misclassifications: 43 of 192
y(m’ 7’L) — x(m’ 7’L) % iLINV(ma 7’L) (53) Texture 1 2 3 4 5 6 7 8 9 10 11 12
1. grass v o 1 o o0 0 O O O 3 0 2
where EIN\r(m,n) is the inverse system of the 2-D FSBM 2. ueebark 0 15 0 0 0 0 0 0 0 1 0 0
H(wy,w,) obtained using Algorithms 1 and 3. Note that 3.straw 2 0 106 0 0 0 0 0 0 1 0 3
the second component @ is nothing but the normalized 4.heringbonel 0 0 0 16 0 0 0 0 0 0 0 0
Mth-order(M > 3) cumulant ofy(m,n), which is invariant 5. wool 0 0 0 0 9 0 7 0 0 0 0 0
for Ay(m — 71,n — 12) for any integersn, and and any 6. leather 0 6 0 06 0 12 0 0 0 0 4 0
nonzero). Next, let us present wh§; andd, can be used for 7. water 6 0 0 o0 5 0 1 0 0 0 0 0
texture image classification. 8. wood b o0 6 0 0 0 0 16 0 0 00
As mentioned in Section I, complex cepstra of speech sig. 2 raffia 6 0 0 0 0 0 0 0 1 0 00
nals with the vocal tract-filter modeled as a minimum-phase!® brickvall |2 2 0 2 0 0 0 0 0 9 0 1
AR model have been widely used in speech recognition an!!piastic o 0 0 0o 1 1 4 0 1 0. 9.0
speaker identification. This motivates the application of ampli-12-54 9 0 0 0 0 0 0 0 0 0 0 16
tude parametera of the 2-D FSBM, i.e., minimum-phase pa-
rameters in the MP-AP decomposition, to texture image classifi- TABLE V
cation simply because and the complex cepstrum,p(m, n) EXPERIMENTAL RESULTS USING FEATURE VECTOR®;

given by (9) are the same. However, the phase paramgters
of the 2-D FSBM cannot be used because of unknown 2-L
space shif{r1, ), as mentioned in R4). Nevertheless, the de-
convolved signal(m,n) approximates an i.i.d. non-Gaussian
random field characterized by HOS such as normalized highe
order cumulants. Next, let us present some experimental resul
using the proposed feature vectégsandé,.

The texture images used for classification were taker
from University of Southern California—Signal and Image
Processing Institute (USC-SIPI) Image Data Base. Twelvey
512x 512 texture images were chosen for classification, in-"5
cluding grass, treebark, straw, herringbone, wool, leather, wate ;-
wood, raffia, brickwall, plastic, and sand. Each image was di; pjagic
vided into 16 128x 128 nonoverlapping subimages to provide {3 wand
12 classes of 16 subimages each. For each subinfageas
obtained using (45) by including 31 nonredundant third-order
cumulants in the setCs,([mq,n1], [mz2, n2]),m1 = 0,n1 = Recall that the MED criterior.ﬂlgf)ED applies to the classi-
0,1,0 < ma,ne < 3,([m1,n1], [m2,n2]) # ([0,0],[0,1])} fier using any one ob;,i = 1,2,3,4, whereas the ML cri-
(since Cs5,([0,0],[0,1]) = C5.([0,1],[0,0]) is redun- terion JIE}:)L is only applicable a#; is used. For obtaining re-
dant), 6§, was obtained using the AML algorithm withliable 6.; (31x 1 vector) and=. (31x 31 matrix) forc =
Qo ={(,5):1=-2,...,2,j=-2,....,2,(4,5) # (0,0)}, 1,2,...,C = 12, we further divided each 128 128 subimage
including 13 nonredundant entries, ayandd,, were obtained into four 64x 64 nonoverlapping sub-subimages to obtain a
with p; = p» = 2 andp; = p» = 3, respectively. Note that larger sample space. Theth,; andX. of the class: were cal-
either off3 andd, includes 13 and 25 entries fpr = p» = 2  culated from the other 15 subimage¥ = 128) and the asso-
andp; = p» = 3, respectively. The iterative FP algorithmciated 60 sub-subimagé®’ = 64) of the class:, whereas for
with the initial condition set to a zero vector [associated witBach of the other 11 classeé?@,l andX; (¢ # ¢) were calcu-
oG, 5, = 0,Y(i1,42) and B;, s, = 0,V(i1,i2)] was used to lated from all the 16 subimagé®’ = 128) and the associated
obtainfd; andé, by the three proposed algorithms. 64 sub-subimagegV = 64).

The leave-one-out strategy [1] was then used to performThe classification results associated with the MED classifier
the classification. To perform classification with the chosemsing#d;,i = 1,2,3,4 are shown in Tables IV through XV, re-
subimage of a specific class the mean feature vectdt., spectively. Tables IV and V show the classification results using
(associated witl#;,i = 1,2,3,4) and covariance matri®,. feature vectors,; andf,, respectively. Table VI shows the clas-
(which is only needed by; with the ML criterion used) was sification results using feature vectty for p; = p; = 2. Ta-
calculated from the other 15 subimages of the ctasghereas bles VII and VIII show the classification results using feature
for the other 11 classes, tﬁgi andX; (¢ # c) were calculated vectord, for p; = p» = 2 associated with Algorithms 1 and 2
from all 16 subimages of each class. The classification proder the cumulant orded = 3 andM = 4, respectively, and
dure was repeated fd6 x 12 = 192 subimages. The numberthe corresponding results associated with Algorithms 1 and 3 for
of misclassifications out of 192 classification operations is uséd = 3 andM = 4 are shown in Tables IX and X, respectively.
as the performance index. The results corresponding to those shown in Tables VI-X for

Texture size: 128128, Misclassifications: 31 of 192
Texture 1 2 3 4 5 6 7
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TABLE VI TABLE IX
EXPERIMENTAL RESULTS USING FEATURE VECTOR 83 ASSOCIATED EXPERIMENTAL RESULTS USING FEATURE VECTOR 84 ASSOCIATED
WITH ALGORITHM 1 FORp; = pgy = 2 WITH ALGORITHMS 1 AND 3FORM = 3 AND p; = ps = 2
Texture size: 128x128, Misclassifications: 10 of 192 Texture size: 128x128, Misclassifications: 8 of 192
Texture 1 2 3 4 5 6 7 8 9 10 11 12 Texture 1 2 3 4 5 6 7 8 9 10 11 12
1. grass 4 0o 0 0 o 1 O O O O 0 1 1. grass 5 0 0 0 0O 1 0 O O O O o
2. treebark 0o 16 0 0 0O 0 O 0O O 0O 0 O 2. treebark o 16 0 0 0 0O O O O 0 0 o0
3. straw 2 0 13 0 0 0 O O O 0 0 1 3. straw 2 0 131 0 O O O O O 0 O
4 herringbone, 0 0 ©0 16 0 O 0 O 0 O 0 O 4. herringbonel 0 0 0 16 0 0 0 0 0 O 0 O
5. wool o 0 0 o0 15 0 0 0 O 0 1 o0 5. wool o 0 0 0O 16 0 0 O O 0 0 O
6. leather o 0 ¢ 0 0 16 0 0 0 0 0 o0 6. leather o 0 0 0O 0 16 0 0 O 0 0 o0
7. water 0 00 0 0 0 13 0 0 3 0 0 7. water o 0 0 0 0O 0 13 0 0 3 0 o0
8. wood o 0 0 0O 0 0 0 16 0 0 0 O 8. wood 0 0 0 0 0 0 0 16 0 0 0 O
9. raffia o 0o o 0 O O O o0 16 0O 0 0 9. raffia 0 6 0 0 0 0 0O 0 16 0 0 O
10. brickwall o 1 0 0 O 0O O 0 O 15 0 O 10. brickwall o 0 0 0 0 0 0 0O 0 16 0 0
11. plastic o 0o 0 0 0 0 0 O 0 16 0 11. plastic o 1 0 0 0 0 0 0 0 15 0
12. sand o 0 0 0 0 0 0 O 0 0 16 12. sand o 0 0 0 0 0 0 0 0 0 0 16
TABLE VII TABLE X
EXPERIMENTAL RESULTS USING FEATURE VECTOR 84 ASSOCIATED EXPERIMENTAL RESULTS USING FEATURE VECTOR 84 ASSOCIATED
WITH ALGORITHMS L AND 2 FORM = 3 AND p; = pg = 2 WITH ALGORITHMS L AND 3FORM = 4 AND p; = ps = 2
Texture size: 128x128, Misclassifications: 7 of 192 Texture size: 128128, Misclassifications: 8 of 192
Texture 1 2 3 4 5 6 7 8 9 10 11 12 Texture 1 2 3 4 5 6 7 8 9 10 11 12
1. grass 5 0 0 0 O 1 0 O O 0 0 o0 1. grass 5 ¢ 0 0 0 1 0 O O 0 0 o0
2. treebark 0O % 0 0O 0O ¢ O 0 O 0 0 O 2. treebark o 16 0 0 0 O O O O 0 O0 O
3. straw 1 1 131 0 0 O O O O O O 3. straw 1 0 13 0 0 1 0 O O 0 0 1
4 herringbone] 0 0 0 16 0 O O O 0 O 0 O 4. herringbonel 0 0 0 16 0 O 0 O O O 0 0
5. wool o o0 0 O 16 0 O 0 o0 0 0 O 5. wool o 0 0 0 16 0 0 0 0 0 o0 o0
6. leather o 0 0 0O 0 16 0 0 0O 0 0 O 6. leather o 0 0 0O O 16 0 0 0 0 0 o0
7. water o o 0 O O O 13 0 0 3 o0 o0 7. water o 0 0 0 O 0 13 0 0 3 0 O
8. wood o o 0 0 O O O 16 0O 0 0 O 8. wood o 0 o0 0 0 O o0 16 0 0 O O
9. raffia o 0 0o 0 O 0O O 0 16 0 0 O 9. raffia o 0 o0 0 0 O 0 0 16 0 0 O
10. brickwall o 0 0 0 O O 0 0 0 16 0 O 10. brickwall o 0 o0 ¢ 0 0 0 O 0 16 0 0
11. plastic o 0 0 0 0 0 0 O 0 16 0 11. plastic o 1 0 ¢ O O O O O 0 15 0
12. sand o 0 0 0 0 0 0 O 0 16 12. sand o 0 0 0 0 0 0O 0 0 0 0 16
TABLE VIII TABLE XI
EXPERIMENTAL RESULTS USING FEATURE VECTOR 8, ASSOCIATED EXPERIMENTAL RESULTS USING FEATURE VECTOR #3 ASSOCIATED
WITH ALGORITHMS 1 & 2 FORM = 4 AND p1 = p3 = 2 WITH ALGORITHM 1 FORp; = pes = 3
Texture size: 128x128, Misclassifications: 8 of 192 Texture size: 128x128, Misclassifications: 5 of 192
Texture 1 2 3 4 5 6 7 8 9 10 11 12 Texture 12 3 4 5 6 7 8 9 10 11 12
1. grass s 0 o0 o 0 1 0 O O O O O 1. grass 66 0 0 0 0 O O O 0 0 0 o
2. treebark o 16 0 0 O 0 O O O 0 0 O 2. treebark o 16 0 0 0 0 0 0 O 0 0 O
3. straw 1 0 131 0 t O O O O O O 3. straw it 0 3 0 0 1 0 O 0 0 0 1
4. herringbone| 0 O 06 16 0 0 0 O O 0 0 O 4.herringbonel 0 0 0 16 0 O 0 O O O O O
5. wool o 0 0 0 16 0 0 0 0 0 0 O 5. wool o 0 0 0 16 0 0 O O 0 0 0
6. leather o 0 0 0O O 16 0 0 O 0 0 O 6. leather o 0 0 0O O 16 0 O 0 0 0 O
7. water o 0 o0 0 0 0 12 0 0 3 0 1 7. water o 0 0 o0 O o0 151 0 O 0 O
8. wood o 0 0 0O O O O0 16 0O 0 0 O 8. wood 0 0 0 0 0 0 0 16 0 0 0 0
9. raffia o 0 o0 0o O O O O 16 0 0 O 9. raffia 0O 0 0 0 0 0 0 0 16 0 0 0
10. brickwall o 0 o0 O O O O O o0 16 0 O 10. brickwall o 0 0 0 0 O 0 0O 0 16 0 0
11. plastic o 0 0 0O 0 0 0 O 0 16 O 11. plastic 0o 1 0 0 0 0 0 o 0 15 0
12. sand ¢ 0 0 0 O 0 O 0 O 0 o0 16 12. sand o 0 0 0 0 0 0 O 0 0 16

p1 = p2 = 3 are shown in Tables XI-XV, respectively. Each The MED classifier using; andé. yielded 43 (Table 1V) and
row of these tables includes correct classifications (diagorgl (Table V) misclassifications, respectively. The one uging
term) and some misclassifications (off diagonal terms) over thlded ten (Table VI) and five (Table XI) misclassifications for
performed 16 subimage classifications of the associated clags. = p: = 2 andp; = p, = 3, respectively. The one using
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TABLE XV
EXPERIMENTAL RESULTS USING FEATURE VECTOR 84 ASSOCIATED
WITH ALGORITHMS 1 AND 3FORM = 4 AND p; = p3 = 3

Texture size: 128x128, Misclassifications: 4 of 192

Texture size: 128x128, Misclassifications: 4 of 192

Texture 1 2 3 4 5 6 7 8 9 10 n 12 Texture 1 2 3 4 5 6 7 § 9 10 11 12

1. grass 6 0 0 0 O O O O O 0 O O 1. grass 6 0 0 O O O O O O O 0 o0
2. treebark 0O 16 0 0 0O 0 O O O O O o 2. treebark o 6 0 0 0 0O O O O 0O 0 O
3. straw 1 0 4 0 0 1 0 O O O 0 O 3. straw 1 0 13 0 0 1 0O O O 0 O 1
4. herringbonef 0 0 0 16 O O 0 O O O 0 0 4. herringbonef 0 0 O 16 0 O 0 O 0 O O 0
5. wool o 0 0 0 16 0 O O O O O o 5. wool o 0 o0 0 16 0 0 O O O 0 O
6. leather o 0 0 0 0 16 0 O 0 0 0 O 6. leather o 0 0 0 0 16 0 0 0 0 0 0
7. water 6 0 0 0 O 0 14 1 0 1 0 O 7. water o 0 o 0 0 0 16 0 0O 0 0 O
8. wood 0o 0 0 O O O O 16 0O 0 0 O 8. wood 6o 0 o0 0 O O 0 1 0O 0 0 o0
9. raffia ¢ 0 0 O O O O O 16 0 0 O 9. raffia o 0 0 0O O 0O 0 0 1 0 0 O
10. brickwall 6o 0 0 0 0O O O O 0 16 O 0 10. brickwall o 0 0 0O O 0 O 0 0 16 0 o0
11. plastic o 0 0 0 0 O 0 0 0 0 16 O 11. plastic o 1 0 0o 0 0 0 O 0 15 0
12. sand o 0 0 0o 0 0 0O 0 O 0 0 16 12. sand o 0 o0 o O 0 0 O 0 16

TABLE Xl

EXPERIMENTAL RESULTS USING FEATURE VECTOR 64 ASSOCIATED

WITH ALGORITHMS 1 AND 2 FORM = 4 AND p1 = p2 = 3

Texture size: 128x128, Misclassifications: 6 of 192

Texture 1 2 3 4 5 6 7 8 9 10 11 12
1. grass 5 o o0 0 0 O O O O 0O 0 1
2. treebark 0 % 0 0 0 O 0 O O 0 0 ©0
3. straw 1 0o 13 0 0 1 o 0 0 0 ¢ 1
4. herringbone;l 0 0 O 16 0 0 0O O O 0O 0 O
5. wool 6 0 0o 0 186 0 O O O 0 O O
6. leather o 0 0 0 0 16 0 0 0 0 0 O
7. water 0 06 0 0 0 0 15 1 0O 0 o0 0
8. wood o 0 0 0 0O O 0 16 0 0 0 O
9. raffia o 0 0 0 0O O O 0 16 0 0 O
10. brickwall o o 0 0 0 O O 0 o0 16 0 O
11. plastic o 1 o0 0 O O O 0 O 0 15 0
12. sand o 0o 0o O 0o O O O O O 0 16
TABLE XIV
EXPERIMENTAL RESULTS USING FEATURE VECTOR 4 ASSOCIATED
WITH ALGORITHMS 1 AND 3FORM = 3 AND p; = po = 3
Texture size: 128x128, Misclassifications: 4 of 192

Texture 1. 2 3 4 5 6 7 8 9 10 11 12
1. grass 6 0 0 0 O O O O O O 0 O
2. treebark 0 16 0 0 0 0 O O 0O O 0 O
3. straw 1 0 13 0 0 1 0 0 0 0 o0 1
4. herringbone; 0 0 O 16 0 O O O O O 0 O
5. wool 0 0 0 0 16 0 0 0 0 0 0 O
6. leather 0o 0 0 0 0 16 0 0 0 0 0 O
7. water o o o 0 O O 151 0 0 0 O
8. wood 6o 0 0 0 O o0 O 16 0 0 0 O
9. raffia 0o 06 0 0 0O O 0 0 16 0 0 O
10. brickwall o 6 0 0 0 O 0 0 0 16 0 O
11. plastic o 0 0 0 0 0 O O 0 0 16 O
12. sand o o 0 0 0 O 0 0 0 O 0 16

from Tables IV-XV are as follows. The MED classifier using
either of 83 and 6, performs better for larges; = p2. The
MED classifier usingd, performs slightly better than the one
using 83, and both of them perform much better than the one
using either of); andfs. These experimental results support that
the proposed feature vectats andf, are effective for texture
image classification. Howevefz (without using higher order
cumulants) seems sufficient for this application.

Besides the results shown in Table IV associated with the
MED classifier using the feature vectéy, the ML classifier
using 8; was also tested with the same texture images where
the first term in. IE‘I:)L [see (47)] was ignored since it is negli-
gible [9]. This classifier achieved zero misclassification (perfect
classification) (with no need of showing the results by table)
over the 192 classification operations. Becaksds a 31x 31
matrix, the computational complexity associated W!ﬂ’j)L is
much higher than that associated wjlﬁ)ED [see (48)] during
the training phase and operation phase.

VI. CONCLUSION

Chi's 1-D FSBM has been extended to the 2-D FSBM [see
(1) and (5)] that can be used as an approximation (with sta-
bility guarantee) to an arbitrary 2-D LSI system, and its com-
plex cepstrum can be easily obtained from its amplitude and
phase parameters [see (8)—(10)] with no need of complicated
2-D phase unwrapping and polynomial rooting. Then, Algo-
rithm 1 was presented for amplitude parameter estimation, and
Algorithms 2 and 3 were presented for phase parameter estima-
tion, followed by the establishment of their consistency. Some
simulation results were provided to support that the three pro-
posed algorithms are effective for the estimation of the 2-D
FSBM parameters. Then, two new feature vectors [see (51) and
(52)] obtained by the three proposed algorithms were presented
for texture image classification followed by some experimental
results for demonstrating their efficacy. However, the determi-

6.4 yielded seven or eight misclassifications (Tables VII-X) andation of (p;, p2) of the 2-D FSBM is left for future research.
four to six misclassifications (Tables XII-XV) fgr, = p» =2  Other applications of the proposed 2-D FSBM such as texture
andp; = p» = 3, respectively. Some noteworthy observationsnage synthesis are also left for future research.



CHEN et al.: 2-D FOURIER SERIES-BASED MODEL FOR SHIFT-INVARIANT SYSTEMS 955

(1]

(2]

(3]

[4]
(5]
(6]

(71

(8]
[9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

(17]

(18]

[19]
(20]

(21]

[22]

(23]

REFERENCES Chii-Horng Chen was born in Taiwan, R.O.C., on
December 2, 1970. He received the B.S. degree from
the Department of Control Engineering, National
Chiao Tung University, Hsinchu, Taiwan, in 1992
and Ph.D. degree from the Department of Electrical

R. L. Kashyap, R. Chellappa, and A. Khotanzad, “Texture classific
tion using features derived from random field modelattern Recognit.
Lett, vol. 1, no. 1, pp. 43-50, 1982.

R. L. Kashyap and R. Chellappa, “Estimation and choice of neighbo Engineering, National Tsing Hua University,
in spatial-interaction models of image$EEE Trans. Inform. Theory Hsinchu, in 2001.

vol. IT-29, pp. 58-72, Jan. 1983. Since October 2001, he has been with ADMtek
R. Chellappa and S. Chatterjee, “Classification of texture usin T2 Incorporated, Hsinchu, where he works on the anal-
Gaussian Markov random fieldsEEE Trans. Acoust., Speech, Signal !I" ysis, design, and implementation of the transceivers
Processingvol. ASSP-33, pp. 959-963, Apr. 1985. ' for wireless local area networks. His research inter-

K. B. Eom, “2-D moving average models for texture synthesis and anaists include wireless communications, statistical signal processing, and digital
ysis,” IEEE Trans. Image Processingpl. 7, pp. 1741-1746, Dec. 1998. signal processing.

C. L. Nikias and A. P. PetropuluHigher-Order Spectra Anal-

ysis Englewood Cliffs, NJ: Prentice-Hall, 1993.

J. K. Tugnait, “Estimation of linear parametric models of nonGaussian

discrete random fields with application to texture synthesiEEE
Trans. Image Processingol. 3, pp. 109-127, Mar. 1994.

T. E. Hall and G. B. Giannakis, “Image modeling using inverse filterin
criteria with application to textureslEEE Trans. Image Processingpl.

5, pp. 938-949, June 1996.

Chong-Yung Chi (S'83-M'83-SM’89) was born in
Taiwan, R.O.C., on August 7, 1952. He received the
B.S. degree from the Tatung Institute of Technology,
Taipei, Taiwan, in 1975, the M.S. degree from
the National Taiwan University (NTU), Taipei, in

“@i ; At : 1977, and the Ph.D. degree from the University of
, “Bispectral analysis and model validation of texture images, o h .
IEEE Trans. Image Processingol. 4, pp. 996—1009, July 1995. Slzl::il;]i?:;? ecr:]ali'rf]c;r:r';’ Los Angeles, in 1983, all in
M. K. Tsatsanis and G. B. Giannakis, “Object and texture classificaticﬂ 9 9.

. ; L . From July 1983 to September 1988, he was with
using higher order statisticdEEE Trans. Pattern Anal. Machine Intell. the Jet Propulsion Laboratory. Pasadena. CA. where
vol. 14, pp. 733-750, July 1992. P Y. A

’ . . ) o he worked on the design of various spaceborne radar
C.-Y. ch| a”‘.‘.c"_H' ch_en, _Two-d|mens|on_a|_freqt_1ency d_Om_a'n blindemote sensing systems including radar scatterometers, synthetic aperture
system |dent_|f|cat|on using hlg_herorder statl_stlcs with application to teXadars, altimeters, and rain mapping radars. From October 1988 to July 1989,
ture synthesis,TEEE Trans. Signal Processingol. 49, pp. 864-877, ne was a visiting specialist at the Department of Electrical Engineering, NTU.
Apr. 2001. Since August 1989, he has been a Professor with the Department of Electrical
A. Swami, G. B. Giannakis, and J. M. Mendel, “Linear modeling of mul£ngineering, National Tsing Hua University, Hsinchu, Taiwan. He was a
tidimensional non-Gaussian processes using cumulalisifidimen. visiting researcher at the Advanced Telecommunications Research (ATR)
Syst. Signal Processeol. 1, pp. 11-37, 1990. Institute International, Kyoto, Japan, in May and June 2001. He has published

C.-Y. Chi, “Fourier series based nonminimum phase model for secongtore than 100 technical papers on radar remote sensing, system identification
and higher-order statistical signal processingfoc. IEEE Signal and estimation theory, deconvolution and channel equalization, digital filter
Process. Workshop Higher-Order Statighp. 395-399, July 21-23, design, spectral estimation, and higher order statistics (HOS)-based signal
1997. processing. He has been a reviewer for B8inal ProcessingndElectronics
——, “Fourier series based nonminimum phase model for statistichgtters His research interests include signal processing for wireless commu-
signal processing,”IEEE Trans. Signal Processingvol. 47, pp. nicat'ion_s, statistical signal processing, and digital signal processing and their
2228-2240, Aug. 1999. applications. _ , _ .
D. E. Dudgeon and R. M. Mersereadultidimensional Digital Signal ~ Dr- Chi is an active member of Society of Exploration Geophysicists, a
Processing Englewood Cliffs, NJ: Prentice-Hall, 1984. n}eihmbgrhqf Eurlopetc_’:;ntAssfolgllatlton fcI)ES|g_naI P_roce:smg, atnd r?n_ a(it'Ve me_?ber
P ; . _ of the Chinese Institute of Electrical Engineering. He was technical committee
tSICéV' H';ﬁ‘ y’l';"gg_em Spectral Estimation Englewood Cliffs, NJ: Pren member of both the 1997 and 1999 IEEE Signal Processing Workshop on
L. R. Rabiner and R. W. SchafeRigital Processing of Speech Sig- H_|gher Order S_tat|st|cs (HOS) _and the 2001 IEEE Workshop_ on Statls_ncal
nals Englewood Cliffs, NJ: Prentice-Hall, 1978. SlgnaI_Processmg (SSP). He is _also a memt_)er of International Ad\(lsory
L R. Rabiner. K. G Pa;n and E. K Sooﬁg “On the performance Ciommlttee of TENCON 2001. He is a co-organizer and general co-chairman
o o e T ’ . % 2001 IEEE SP Workshop on Signal Processing Advances in Wireless
isolated word speech recognizers using vector quantization and €85 mmunications (SPAWC-2001). Since 1983, he has served as a reviewer for
poral energy contoursAT&T Bell Labs Tech. Jvol. 63, no. 7, pp.  geyeral international journals and conferences, such as the IREESECTIONS
1245-1260, 198_4- . . . ON SIGNAL PROCESSING IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,
A. V. Oppenheim and R. W. Schafeiscrete-Time Signal Pro- |EEE TRaNSACTIONS ON GEOSCIENCE AND REMOTE SENSING, and the |EEE

cessing Englewood Cliffs, NJ: Prentice-Hall, 1989. TRANSACTIONS ONCOMMUNICATIONS. Currently, he is an Associate Editor for
D. M. Burley, Studies in Optimizatian New York: Wiley, 1974. the IEEE TRANSACTIONS ONSIGNAL PROCESSING and Chair of the Information
H.-M. Chien, H.-L. Yang, and C.-Y. Chi, “Parametric cumulant basedheory Chapter of the IEEE Taipei Section.

phase estimation of 1-D and 2-D nonminimum phase systems by allpass

filtering,” IEEE Trans. Signal Processingol. 45, pp. 1742-1762, July
1997.

G. B. Giannakis and M. K. Tsatanis, “A unifying maximume-likelihood
view of cumulant and polyspectral measures for non-Gaussian sigi
classification and estimationlEEE Trans. Inform. Theoryol. 38, pp.
386-406, Mar. 1992.

J. K. Tugnait, “Identification and deconvolution of multichannel lineai
non-Gaussian processes using higher order statistics and inverse fi
criteria,” IEEE Trans. Signal Processingol. 45, pp. 658-672, Mar.
1997.

A. Swami, G. B. Giannakis, and G. Zhou, “Bibliography on higher-orde f l\
statistics,"Signal Processvol. 60, no. 1, pp. 65126, July 1997.

Ching-Yung Chen was born in Taiwan, R.O.C., on
November 14, 1975. He received the B.S. degree
from the Department of Electrical Engineering,
National Tsing Hua University (NTHU), Hsinchu,
Taiwan, in 1997, and is currently pursuing the Ph.D.
degree at NTHU.

His research interests include statistical signal
processing, digital signal processing, and wireless
communications.




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


