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Turbo Source Extraction Algorithm and
Noncancellation Source Separation

Algorithms by Kurtosis Maximization
Chong-Yung Chi, Senior Member, IEEE, and Chun-Hsien Peng

Abstract—The kurtosis maximization criterion has been effec-
tively used for blind spatial extraction of one source from an in-
stantaneous mixture of multiple non-Gaussian sources, such as the
kurtosis maximization algorithm by Ding and Nguyen, and the fast
kurtosis maximization algorithm (FKMA) by Chi and Chen. By
empirical studies, we found that the smaller the normalized kur-
tosis magnitude of the extracted source signal, the worse the per-
formance of these algorithms. In this paper, with the assumption
that each source is a non-Gaussian linear process, a novel blind
source extraction algorithm, called turbo source extraction algo-
rithm (TSEA), is proposed. The ideas of the TSEA are to exploit
signal temporal properties for increasing the normalized kurtosis
magnitude, and to apply spatial and temporal processing in a cyclic
fashion to improve the signal extraction performance. The pro-
posed TSEA not only outperforms the FKMA, but also shares the
convergence and computation advantages enjoyed by the latter.
This paper also considers the extraction of multiple sources, also
known as source separation, by incorporating the proposed TSEA
into the widely used multistage successive cancellation (MSC) pro-
cedure. A problem with the MSC procedure is its susceptibility to
error propagation accumulated at each stage. We propose two non-
cancellation multistage (NCMS) algorithms, referred to as NCMS-
FKMA and NCMS-TSEA, that are free from the error propagation
effects. Simulation results are presented to show that the NCMS-
TSEA yields substantial performance gain compared with some ex-
isting blind separation algorithms, together with a computational
complexity comparison. Finally, we draw some conclusions.

Index Terms—Blind source separation (BSS), kurtosis maxi-
mization, multistage successive cancellation (MSC) procedure,
noncancellation multistage (NCMS) algorithms, turbo source
extraction algorithm (TSEA).

I. INTRODUCTION

BLIND source separation (BSS) (or independent component
analysis) has been a widely known problem in science and

engineering areas such as array signal processing, wireless com-
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munications, and biomedical signal processing [1]–[5]. With
a given set of sensor measurements, denoted as a
vector , the BSS problem
is to extract unknown source signals, denoted as a

vector , based on the fol-
lowing instantaneous (or memoryless) multiple-input multiple-
output (MIMO) model

(1)

where is an unknown mixing ma-
trix and is a noise
vector. There have been a number of BSS algorithms reported in
the open literature basically including algorithms using second-
order statistics (SOS) (known as correlations) [3]–[5], [7], [8],
algorithms using higher order statistics (HOS) (known as cumu-
lants) [1], [2], [4], [6], [9]–[16], [18] and a variety of linear and
nonlinear algorithms using principles such as maximum-likeli-
hood method and maximum entropy [1], [2], [19], or using char-
acteristics and features of either of source signals and the mixing
matrix such as nonstationarity and nonnegativity or their com-
binations [20]–[24].

Some statistical assumptions about the sources and some
conditions about the unknown mixing matrix are required by
most existing algorithms using either SOS or HOS. For instance,
the source signals are required to be temporally colored
and spatially uncorrelated with different power spectra by SOS
based algorithms such as the algorithm for multiple unknown
signals extraction (AMUSE) proposed by Tong et al. [4], [7], the
second-order blind identification (SOBI) algorithm proposed by
Belouchrani et al. [5], and the matrix-pencil approach proposed
by Chang et al. [8]. The AMUSE and SOBI algorithm further
require and the noise correlation matrix given or es-
timated in advance, while the matrix-pencil approach requires

instead of without need of the noise correla-
tion matrix in the mean time [8]. On the other hand, algorithms
using HOS generally do not require temporal conditions or as-
sumptions about the sources . For instance, Cardoso’s [10]
fourth-order blind identification (FOBI) algorithm (which ig-
nores the noise effect) and Tong, Liu, Soon, and Huang’s [4]
extended FOBI (EFOBI) algorithm (which takes the noise ef-
fect into account) using HOS require that source signals be
mutually independent with distinct fourth-order moments, and
that . Hyvärinen and Oja’s [2], [11] fast fixed-point al-
gorithm (also called the FastICA) using kurtosis (a fourth-order
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cumulant), and Ding and Nguyen’s kurtosis maximization al-
gorithm (KMA) [12], [14] require that source signals be
non-Gaussian (either temporally independent identically dis-
tributed (i.i.d.) or colored) and mutually independent, and that

.
The KMA works well, but it is basically a gradient-type iter-

ative algorithm which is not very computationally efficient. Chi
and Chen [15], [16] then proposed a fast kurtosis maximiza-
tion algorithm (FKMA) which is computationally efficient with
a super-exponential convergence rate. Both KMA and FKMA
only involve spatial processing, regardless of whether the source
signals are colored or not. As reported in [12], we also em-
pirically found that the smaller the normalized kurtosis magni-
tudes of source signals, the worse the performance of the KMA
and FKMA. This observation motivates us to use an additional
process, namely temporal process (linear filter), to transform the
original source signals into temporally processed source signals
with higher normalized kurtosis magnitudes, thereby improving
the signal extraction performance.

In the paper, we propose a novel blind source extraction
algorithm also by kurtosis maximization, referred to as turbo
source extraction algorithm (TSEA), which extracts one source
signal through a spatial processing (for source extraction), and
a temporal processing (for conversion of the extracted source
into a filtered source with larger normalized kurtosis magni-
tude) cyclically. For the extraction of all the unknown sources
using either the FKMA or the proposed TSEA, the widely
used multistage successive cancellation (MSC) procedure [15],
[16], [25]–[27] has been an effective approach in spite of error
propagation effects accumulated from stage to stage [27]. Fur-
thermore, two new noncancellation multistage (NCMS) BSS
algorithms, referred to as NCMS-FKMA and NCMS-TSEA,
which outperform the corresponding BSS algorithms involving
the MSC procedure, are also proposed together with some
simulation results including a computational load comparison,
in addition to a performance comparison with some existing
BSS algorithms through simulation.

The remaining parts of this paper are organized as follows.
A review of the FKMA and the MSC procedure is presented
in Section II together with some performance observations of
the FKMA. Section III presents the proposed TSEA. Then the
proposed NCMS-FKMA and NCMS-TSEA are presented in
Section IV together with some analytic results. Then, some sim-
ulation results are provided to verify the efficacy of the proposed
algorithms in Section V. Finally, some conclusions are drawn in
Section VI.

II. REVIEW OF FKMA AND MSC PROCEDURE

For ease of later use, let us define the following notations:

convolution operation
of discrete-time (scalar,
vector, or matrix) signals;

expectation operator;

Euclidean norm of vectors
or matrices;

zero vector;

identity matrix;

Superscript “ ” complex conjugation;

Superscript “T” transpose of vectors or
matrices;

Superscript “H” complex conjugate
transpose (Hermitian)
of vectors or matrices;

range space of matrix ;

null space of matrix ;

dimension of ;

fourth-order joint
cumulant of random
variables , and

;

kurtosis of random
variable ;

SNR signal-to-noise ratio.

Some general assumptions that are also made in the paper for
the MIMO system model given by (1) are as follows:

A1) The unknown mixing matrix is of full column
rank with (i.e., ), and is known
a priori.

A2) Each source signal , is a non-
Gaussian linear process, i.e., can be modeled as
the output of a causal stable linear time-invariant system

as follows:

(2)

where is a stationary zero-mean non-Gaussian
i.i.d. process with nonzero (real) kurtosis [9] given by

(3)

and and are statistically independent for all
.

A3) is zero-mean Gaussian, and statistically indepen-
dent of .

Let be a source extraction filter (a spatial filter) with
the input being . Its output is then

(4)

The source separation process includes the design of a set of
source extraction filters, each of which extracts a distinct

source signal. Next, let us briefly review the FKMA proposed
by Chi and Chen [15], [16], which is basically for the extrac-
tion of one of the source signals, i.e., where
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, followed by some observations about its
performance.

A. FKMA

The FKMA is an iterative algorithm for finding the optimum
spatial filter by maximizing the following objective function
[12], [14]:

(5)

which is also the magnitude of normalized kurtosis of .
Given and obtained at the th iteration,

at the th iteration is obtained through the following two
steps.

Step 1) Update by

(6)

where

(7)

and

(8)

Then obtain the associated .
Step 2) If , go to the next iteration; oth-

erwise update through a gradient-type optimiza-
tion algorithm, i.e.,

(9)

such that where is a step size
parameter, and then obtain the associated

.
An initial condition (which can be arbitrarily chosen

with ) is needed to initialize the FKMA, and is
usually updated in Step 1) before convergence. It can be easily
shown, from (5), that

(10)

Note, from (8), (9), and (10), that required for com-
puting (see (10)) in Step 2) has been obtained in
Step 1), and the correlation matrix is the same at each it-
eration, indicating simple and straightforward computation for
updating in Step 2). The efficacy of the FKMA is supported
by the following two facts.

Fact 1: With the assumptions A1) and A2), and the noise-
free assumption, given in (5) attains maximum (either
locally or globally) if and only if

(11)

where is an unknown nonzero constant and the unknown
integer [14].

Fact 2: The FKMA is also a hybrid algorithm using the super-
exponential algorithm [17], [18] in Step 1 for fast convergence
(basically with super-exponential convergence rate) and a gra-
dient-type algorithm in Step 2) for the guaranteed convergence
for finite data length and finite SNR.

In practice, sample cumulants and , and
sample correlation matrix , which are consistent estimates
regardless of the SNR [28], are used by the FKMA. It is widely
known that the performance of any source extraction (or separa-
tion) algorithms, including the FKMA is better either for higher
SNR or for larger data length . Furthermore, we empirically
found that performance of the FKMA is also dependent upon
temporal properties of source signals to be presented next.

It can be easily shown by A2) that

(12)

which leads to

by (5) (13)

where

(14)

which is also an “entropy measure” of the stable sequence
[27] (with larger indicating smaller entropy of ,
and for , a unit sample sequence,
for all and integer ). Note that the larger the value
of , the larger the value of . In other words,

can be thought of as a measure of distance of
from a Gaussian process [29]. These characteristics of the non-
Gaussian source signal account for the following empirical
observation [12].

Observation 1: The FKMA itself is an exclusive spatial
processing algorithm. The smaller the value of (i.e.,
the smaller the distance of from a Gaussian process),
the worse the performance of the FKMA for finite SNR and
finite data length (i.e., the lower estimation accuracy of the
extracted source ), although the asymptotic performance
of the FKMA as and SNR is independent of the
value of by Fact 1.

Some simulation results to justify Observation 1 will be pre-
sented in Section V later. Next, let us review the MSC procedure
for the extraction of all the source signals using the FKMA.



2932 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 8, AUGUST 2006

B. MSC Procedure

Estimates (possibly in a nonsequen-
tial order) of all the source signals can be obtained using the
FKMA through the MSC procedure [15], [16], [25], [27] that
includes the following two steps at each stage:

T1) Obtain a source signal estimate (where is un-
known) using a source extraction algorithm, and then
obtain the associated channel estimate (see (1)) given
by

(15)

T2) Update by , namely, cancellation of
the contribution of from .

Note that the above MSC procedure is also equivalent to the
Gram–Schmidt orthogonalization method reported [14] which,
however, never involves the estimation of the mixing matrix .
The resultant BSS algorithm that uses the FKMA in T1) is re-
ferred to as MSC-FKMA. Note that imperfect cancellation in
T2) usually results in error propagation effects accumulated in
the ensuing stages. Therefore, as any other source separation
algorithms involving the MSC procedure, an inevitable disad-
vantage of the MSC-FKMA is given in the following remark:

R1) The estimates s obtained at later stages are usually
less accurate due to error propagation effects from stage
to stage.

III. TURBO SOURCE EXTRACTION ALGORITHM

By Observation 1, the FKMA, which only involves spatial
processing, performs better for larger , and meanwhile

characterizes the temporal property of the source
signal about its distance from an i.i.d. non-Gaussian
process. Advisable temporal processing of can lead to the
processed source with . This moti-
vates that the source extraction processing should include not
only spatial processing but also temporal processing, although
the measurement vector given by (1) is merely a spatial
mixture of non-Gaussian sources.

Instead of the source extraction filter (spatial filter) used by
the FKMA, the following source separation filter:

(16)

is considered where is a spatial filter (source extraction
filter) and is a single-input single-output (SISO) temporal
filter of order equal to . Then the output of the source
separation filter is

(17)

in which

(18)

(19)

Note from (17) and (19) that the spatial filter is used to ex-
tract a colored source signal (i.e., removing the spatial
interference due to the mixing matrix ), and is a filter
to further process such that its output is a better ap-
proximation to an i.i.d. non-Gaussian process than (i.e.,

).
Again, the criterion given by (5) is used for the de-

sign of the optimum source separation filter .
Let . However, it is almost for-
midable to find a closed-form solution for the optimum by
solving . Surely, one can resort to
gradient-type iterative algorithms (which are not very com-
putationally efficient) for finding the optimum . Instead, the
proposed TSEA is a cyclically iterative algorithm as shown in
Fig. 1, which basically makes use of the computationally effi-
cient FKMA for the design of and (denoted as
and in Fig. 1). As shown in Fig. 1, the proposed
TSEA consists of two steps at the th cycle as follows.

S1)
a) Temporal Processing: Compute

(20)

b) Spatial Processing: Process using the
FKMA (with as the initial condition for

) to obtain the optimum and

by the first line of (17)

(21)

S2)
a) Spatial Processing: Compute

(22)

where .
b) Temporal Processing: Find the optimum

and

(23)

(by (22) and the second line of (17)) using the
FKMA (with as the initial condition for ),
where .

An initial condition for (spatial processing) and one for
(temporal processing), which can be arbitrarily chosen with
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Fig. 1. Signal processing procedure of the proposed TSEA.

unity norm, are needed to initialize the proposed TSEA. Two
worthy remarks regarding the proposed TSEA are as follows:

R2) The FKMA is employed in a cyclic fashion like a turbine
to process the measurement vector for finding both
of the optimum spatial filter in S1) and temporal filter

in S2), and meanwhile the objective function
increases whenever either the spatial filter or the tem-
poral filter is updated. Therefore, for each cycle, both
of the FKMA and FKMA also converge at super-ex-
ponential rate by Fact 2.

R3) The obtained signal estimate given by (22), the
output of the spatial filter in S2), is the signal of interest
rather than the output of the source separation filter

. Moreover, the proposed TSEA reduces to the
FKMA (i.e., FKMA in S1)) as and S2) is
removed.

Next, let us discuss why the cyclic operation of spatial–tem-
poral processing of the proposed TSEA performs better than
the FKMA. The output of the optimum source separation filter

obtained by the proposed TSEA at the th cycle can
be approximated as follows:

by (22) and (23)

by (2) and (11)

(24)

where is an unknown nonzero constant and

(25)

is the overall signal model associated with . Increasing
in (S2) is equivalent to increasing

by (24) and (14)

Therefore, the SISO temporal filter performs like a “higher-
order whitening” filter because the larger the value of ,
the better approximation of to an i.i.d. non-Gaussian signal
(or the better approximation of to ). As is
sufficiently large, becomes a deconvolution filter or a linear
equalizer (which tries to remove the effects of “channel” ),
and its output turns out to be an estimate of the i.i.d. signal

(see (2)).
Another interpretation why the performance of the proposed

TSEA is superior to that of the FKMA is as follows. Note that
given by (18) is actually a mixture of filtered sources

with the same mixing
matrix associated with (see (1)). In the spatial pro-
cessing of S1) (part b) of S1)), the extraction of
by processing is much more effective than the extraction
of by processing using the FKMA because of

, thus leading to more accurate estimate
in S2). Let us conclude this section with the following

two remarks:

R4) The performance gain of the TSEA reaches the maximum
as long as the order (a parameter under our choice) of the
temporal filter is sufficiently large. The chosen value for
is sufficient as does not increase significantly be-
cause the larger the value of , the better approxima-
tion of to an i.i.d. non-Gaussian signal. On the other
hand, the asymptotic performance of FKMA approaches
that of the TSEA as and SNR by Fact 1.

R5) The proposed TSEA can surely be employed to extract
all the source signals through the MSC procedure. The
resultant BSS algorithm that uses the TSEA in T1) of the
MSC procedure (see Section II-B) is referred to as MSC-
TSEA, and it also outperforms the MSC-FKMA, at the
extra expense of the temporal processing at each stage.

IV. NONCANCELLATION MULTISTAGE SOURCE

SEPARATION ALGORITHMS

In view of the performance degradation of BSS algorithms
involving the MSC procedure due to error propagation effects



2934 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 8, AUGUST 2006

as mentioned in R1), this section presents two multistage source
separation algorithms without involving cancellation, referred
to as NCMS-FKMA and NCMS-TSEA, respectively. Next let
us concentrate on the NCMS-FKMA.

A. Proposed NCMS-FKMA

At each stage, the proposed NCMS-FKMA basically com-
prises a preprocessing of constrained source extraction and a
processing of unconstrained source extraction using the FKMA.
The former (preprocessing) designs the source extraction filter,
denoted , to extract a distinct source by imposing some con-
straint on instead of cancellation processing where the sub-
script “ ” denotes the stage number. The latter is nothing but
the source extraction using the FKMA with as the initial
condition of the source extraction filter. Next, let us present the
preprocessing.

Assume that at the end of stage , we have extracted
source signals and obtained the associated column

estimates of using (15), denoted as . Let
be a matrix defined as

(26)

and be a projection matrix for which is
orthogonal to , and . Assume that is of
full column rank, i.e., . By singular value
decomposition (SVD), can be expressed as [30]

(27)

where is a unitary matrix,
is an unitary matrix, is a

matrix with the th entry , and
(singular values of ).

The projection matrix is known as [30]

(28)

where

(29)

which is also a full-rank matrix (i.e.,
).

The optimum spatial filter to be designed in the prepro-
cessing is

(30)

where and were defined by (5) and (26), respectively.
Finding the constrained optimal given by (30) can be con-
verted into an unconstrained optimization problem by the fol-
lowing transformation:

(31)

where

(32)

in which

(33)

The associated optimum is given by

(34)

The optimum given by (34) obtained in the preprocessing
is supported by the following theorem.

Theorem 1: Let be the set of all the extracted source sig-
nals up to stage . With the assumptions 1), 2), and the
noise-free assumption, the optimum given by (34) is

(35)

where is an unknown nonzero constant and .
The proof of Theorem 1 is presented in Appendix I. The pro-

posed NCMS-FKMA is summarized as follows.
NCMS-FKMA:
F1) Set and .
F2) Update by . If , obtain by (26) followed

by its SVD, and then obtain and by (28) and
(33), respectively.

F3) a) Preprocessing (constrained source extraction): Ob-
tain and using the FKMA.
Then obtain using (15) (with replaced by

in (15)), and obtain using (31).
b) Unconstrained source extraction: Obtain the op-

timum and using the FKMA
(with as the initial condition for ).

F4) If , go to 2); otherwise, all the source signal
estimates have been obtained.

Three remarks about the proposed NCMS-FKMA are worth
mentioning as follows.
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R6) The FastICA using kurtosis [2], [11] obtains the
prewhitened signal through eigende-
composition (or SVD) of such that

and then performs source separation
by kurtosis maximization. Contrasting with the FastICA
using kurtosis, the SVD in F2) is for obtaining the pro-
jected data rather than any prewhitening process.

R7) The proposed NCMS-FKMA with only preprocessing F3a)
alone (i.e., removal of F3b)) itself is also a BSS algorithm
which can extract a distinct source (by Theorem 1). How-
ever, its performance depends on the estimation accura-
cies of the channel estimates (used in the
constraint of (see (30))). Although these
channel estimates are never perfect for finite SNR and data
length, F3a) provides a well-designed initial condition
for the unconstrained source extraction filter in F3b).

R8) The unconstrained source extraction filter in F3b) with
a suitable initial condition obtained by F3a) accord-
ingly leads to one distinct source estimate obtained
at each stage neither involving cancellation nor imposing
any constraints on the source extraction filter, as well as
faster convergence of F3b) than F3a). Therefore, the pro-
posed NCMS-FKMA outperforms the MSC-FKMA due to
no error propagation effects at each stage, but moderately
extra computational expense for the constrained source ex-
traction F3a) is required. Moreover, only FKMA is em-
ployed for the source extraction in F3a) and F3b) at each
stage, the proposed NCMS-FKMA is also a fast multistage
BSS algorithm.

B. Proposed NCMS-TSEA

The NCMS-TSEA, which is basically obtained by replacing
the FKMA used in 3-a) and 3-b) of the proposed NCMS-
FKMA by the proposed TSEA, is given as follows.

NCMS-TSEA:
T1) Set and .
T2) Update by . If , obtain by (26) followed

by its SVD, and then obtain and by (28) and
(33), respectively.

T3) a) Preprocessing (constrained source extraction): Ob-
tain

, and using the proposed
TSEA. Then obtain using (15) (with re-
placed by in (15)), and obtain using (31).

b) Unconstrained source extraction: Obtain the op-
timum

, and using the proposed
TSEA (with and as the
initial conditions for and , respectively).

T4) If , go to 2); otherwise, all the source signal
estimates have been obtained.

Two worthy remarks regarding the proposed NCMS-TSEA
are as follows.

R9) Remarks R7) and R8) regarding the constrained source
extraction F3a) and unconstrained source extraction F3b)
of the proposed NCMS-FKMA also apply to T3a) and
T3b) of the proposed NCMS-TSEA which also shares
the fast convergence of the proposed TSEA at each stage
as presented in R2), so the performance of the proposed
NCMS-TSEA is also superior to the MSC-TSEA at the
extra computational expense for the constrained source
extraction T3a).

R10) As the proposed MSC-TSEA performs better than the
MSC-FKMA (see R5)), the proposed NCMS-TSEA also
performs better than the proposed NCMS-FKMA for the
same reasons as presented in Section III at the moderate
expense of extra computational load for the temporal pro-
cessing of the TSEA.

V. SIMULATION RESULTS

To justify the efficacy of the proposed BSS algorithms, MSC-
TSEA, NCMS-FKMA, and NCMS-TSEA, two parts of simu-
lation results are to be presented. Section V-A focuses on the
performance of the proposed NCMS-FKMA and NCMS-TSEA
to manifest the superiority of the proposed TSEA to the FKMA,
and Section V-B focuses on performance comparison of the pro-
posed BSS algorithms with the existing MSC-FKMA, FastICA
using kurtosis, SOBI algorithm, and AMUSE.

The i.i.d. s used for generating s were equiprob-
able random binary sequences of and the noise vector
was real, zero-mean, spatially independent, and white Gaussian
with covariance . The synthetic was generated ac-
cording to (1) and then processed by the BSS algorithms under
test. The convergence criterion [32] used was

whenever the FKMA was employed, where was the spatial
filter obtained at the th iteration, and that for the TSEA was

where and were the obtained in S1) and
S2), respectively, at the th cycle. Moreover, the initial con-
ditions for the spatial filter and the temporal filter used were

, and , respectively,
whenever they were not specified by the BSS algorithm under
test.

Fifty independent runs were conducted for performance eval-
uation of each BSS algorithm. At the th independent run, an op-
timum spatial filter and the associated source estimate
were obtained. The estimate can be expressed as

(36)

where and for the BSS algo-
rithms without involving the MSC procedure, and that involving
the MSC procedure can be found in [27, App. B]. The average
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output signal-to-interference-plus-noise ratio (SINR) associated
with over the 50 independent runs can be calculated as

output SINR

(37)

where is the th entry of the vector . The total
averaged output SINR defined as

output SINR output SINR (38)

is used as the performance index of each BSS algorithm.

A. Performance of NCMS-FKMA and NCMS-TSEA

The performance comparison of the proposed TSEA and the
FKMA was conducted by virtue of the proposed NCMS-TSEA
and NCMS-FKMA without involving any constraints and can-
cellation processes. In the simulation, a 5 4 real mixing matrix

and four MA models ’s taken from [8] were used which
are given as follows:

(39)

(40)

Four cases are considered as follows:
Case 1) Output SINR versus SNR for different data length

( , and ), (or
) for all , and (the

order of the temporal filter ).
Case 2) Output SINR versus different data length for

SNR 30 dB, (or ) for
all , and .

Case 3) Output SINR versus (or ) for
all , for SNR 30 dB, , and .

Case 4) Output SINR versus , and the average of
versus , for

SNR 30 dB, , and as
well as 0.5 (i.e., as well as
0.2368) for all .

The simulation results for the four cases are shown in
Figs. 2 through 5, respectively. One can observe, from Figs. 2
and 3, that the proposed NCMS-TSEA ( ) performs better than
the proposed NCMS-FKMA ( ) for different values of SNR

Fig. 2. Simulation results (output SINR versus SNR) of Case 1).

Fig. 3. Simulation results (output SINR versus data length N ) of Case 2).

and data length . Their performance differences are larger for
either higher SNR (by Fig. 2) or smaller (by Fig. 3), and the
performance of the proposed NCMS-TSEA has saturated for

, and the asymptotic performance of the proposed
NCMS-FKMA approaches that of the proposed NCMS-TSEA
as for high SNR (SNR 30 dB) (by Fig. 3). These
results are consistent with Observation 1 and R4). On the
other hand, one can observe, from Fig. 4, that the proposed
NCMS-TSEA outperforms the proposed NCMS-FKMA for all
the values of , and their performance differences are larger
for smaller . Moreover, the performance of the former is
robust to the value of , while that of the latter is sensitive
to the value of as mentioned in Observation 1. Finally, one
can see, from Fig. 5(a), that the performance of the proposed
NCMS-TSEA has basically reached a plateau for im-
plying that the optimum performance has been attained as long
as is sufficiently large, and from Fig. 5(b), that the average of

increases with while its increase is nonsignificant
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Fig. 4. Simulation results (output SINR versus ) of Case 3).

for , implying that is sufficient (see R4)) for all the
simulations in Section V-A. Therefore, the above simulation
results verify that the performance of the proposed TSEA is
superior to that of the FKMA. As a remark, in spite of the same
source power spectra (i.e., the same for all ) for each
of the above four cases, the proposed TSEA works well with
better performance than the FKMA.

B. Performance Comparison

The simulation results to be presented include perfor-
mance tests to the proposed MSC-TSEA, NCMS-FKMA,
NCMS-TSEA, and performance comparison with the
MSC-FKMA, FastICA using kurtosis [11], AMUSE [7],
and SOBI algorithm [5].

Both of the AMUSE and SOBI algorithm design the
source separation matrix (demixing matrix)

using SOS, where is a
whitening matrix and is a unitary matrix.

All the sources are extracted simultaneously without involving
temporal processing as follows:

(41)

where is composed of
the prewhitened source signals. The whitening matrix is ob-
tained through eigen-decomposition of the correlation matrix

. On the other hand, the unitary matrix
obtained by the AMUSE is through eigen-decomposition of the
correlation matrix of the prewhitened
signal for a chosen [7], while that obtained by the SOBI
algorithm is through joint diagonalization of a set of [5].
The simulation results to be presented below were obtained with

for the AMUSE and with for the
SOBI algorithm.

Fig. 5. Simulation results of Case 4). (a) Output SINR versus the order of the
temporal filter L and (b) (1=K) J(" [n]) versus L.

The same 5 4 mixing matrix given by (39) and the
four MA models ’s given by (40) with

(or
) were used in the simulation.

The following three cases are considered.

Case A) Output versus SNR for (data
length) and (the order of the temporal filter

).
Case B) Output SINR versus SNR for and .

Case C) Output SINR versus for SNR 20 dB and .

Fig. 6 shows some simulation results for Case A), where
only source 1 is of interest. Note that source 1 was extracted
by both of the proposed MSC-TSEA and the MSC-FKMA at
stage in most of the 50 independent runs. One can see
from this figure that the proposed NCMS-TSEA ( ) performs
best (highest SINR ), the proposed MSC-TSEA ( ) second, the
proposed NCMS-FKMA ( ) third and their performances are
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Fig. 6. Simulation results (output SINR versus SNR) of Case A).

Fig. 7. Simulation results (output SINR versus SNR) of Case B).

superior to those of the MSC-FKMA ( ), FastICA using kur-
tosis ( ), AMUSE ( ), and SOBI algorithm ( ).

Some more observations from Fig. 6 are as follows. The pro-
posed NCMS-TSEA ( ) performs much better than the pro-
posed NCMS-FKMA ( ) (without cancellation processes for
both of them). The proposed MSC-TSEA ( ) also performs
much better than the MSC-FKMA ( ) (through cancellation
processes for both of them) (as stated in R5)). In other words, the
proposed TSEA outperforms the FKMA no matter whether the
cancellation procedure is involved or not as mentioned in R10).
Moreover, the performance of the proposed NCMS-TSEA ( )
outperforms the proposed MSC-TSEA ( ) and the same ob-
servation happens to the proposed NCMS-FKMA ( ) and the
MSC-FKMA ( ). In other words, the BSS algorithm (using ei-
ther TSEA or FKMA) without involving the cancellation proce-
dure performs better than involving the cancellation procedure
as stated in R8) and R9).

Fig. 8. Simulation results (output SINR versus data length N ) of Case C).

Fig. 7 shows some simulation results (output SINR versus
SNR) for Case B). One can see from this figure that the pro-
posed NCMS-TSEA ( ) performs best (highest SINR), the pro-
posed MSC-TSEA ( ) second, FastICA using kurtosis ( ) third,
the proposed NCMS-FKMA ( ) fourth and their performances
are superior to those of the MSC-FKMA ( ), AMUSE ( ),
and SOBI algorithm ( ). All the other observations from Fig. 6
also apply to Fig. 7, except for smaller performance differences
between the proposed NCMS-TSEA ( ) and MSC-TSEA ( )
for this case because all the sources except source 1 were ex-
tracted by the latter at stage in most of the 50 independent
runs (i.e., output SINR output SINR for ). Due to
the same reason, performance differences between the proposed
NCMS-FKMA ( ) and MSC-FKMA ( ) for Case B) are also
smaller than those for Case A).

Fig. 8 shows some simulation results (output SINR versus
data length for Case C)). From Fig. 8, one can observe that
all the seven BSS algorithms perform better for larger . Both
of the proposed NCMS-TSEA and MSC-TSEA significantly
outperform the other BSS algorithms, while the FastICA using
kurtosis ( ) performs third. The performance of the proposed
NCMS-FKMA is slightly superior to the MSC-FKMA and
much better than that of the AMUSE, while the SOBI algorithm
performs worst.

Next, let us show some simulation results for source power
spectra with different overlaps. The 3 2 mixing matrix used
was the one by removing the last two rows and last two columns
of the 5 4 mixing matrix given by (39), and the transfer func-
tions of the two MA models ’s used were as follows:

Note that the larger the parameter , the smaller the spectral
overlap between the two source power spectra. The simulation
results for the following case are shown in Fig. 9.
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TABLE I
COMPLEXITY AND PERFORMANCE COMPARISON OF THE MSC-FKMA, MSC-TSEA,
NCMS-FKMA, AND NCMS-TSEA WITH THE SIMULATION RESULTS IN SECTION V-B

Fig. 9. Simulation results (output SINR versus spectral shift parameter �) of
Case D).

Case D) Output SINR versus for SNR 30 dB,
, and .

From Fig. 9, we can observe that the five BSS algorithms
using kurtosis perform well for all and significantly outper-
form the AMUSE ( ) and SOBI algorithm ( ) whose perfor-
mance degradation is larger for smaller , and meanwhile the
proposed NCMS-TSEA and MSC-TSEA perform best.

In order to compare the computational complexities of
the four kurtosis maximization based BSS algorithms, namely,
MSC-FKMA, MSC-TSEA, NCMS-FKMA, and NCMS-TSEA,
averages of the total number of iterations per source spent
by the FKMA and spent by FKMA for the simulation
results in Section V-B are shown in Table I together with
whether the MSC and SVD are involved, and performance
rank. Some observations from the results shown in Table I are
as follows. The value of associated with the MSC-FKMA

is 7.35 and that associated with the NCMS-FKMA is 14.93
(about double of the former) which is the sum of
for F3a) and for F3b), implying that the
preprocessing of constrained source extraction F3a) is of benefit
to the convergence speed of the unconstrained source extraction
F3b). On the other hand, the values of cycle and cycle
associated with the MSC-TSEA are 4.18/cycle and 3.09/cycle,
respectively, and those associated with the NCMS-TSEA
are cycle and cycle for T3a),
and cycle and cycle

for T3b), also implying the preprocessing of the con-
strained source extraction T3a) is of benefit to the convergence
speed of the unconstrained source extraction T3b). Moreover,
these values of cycle, and cycle are basically much
less than 10 indicating the fast convergence of the FKMA (as
stated in Fact 2). These results are also consistent with R8) and
R9).

One can also observe from Table I that the MSC-FKMA per-
forms worst with (i.e., the lowest computational ex-
pense) and that the NCMS-TSEA performs best at the highest
computational expense with and
(about 3.5 times the value associated with the MSC-FKMA), the
MSC-TSEA performs second with and
(about 1.6 times the value associated with the MSC-FKMA), the
NCMS-FKMA performs third with (about double
of the value associated with the MSC-FKMA).

The computational expenses associated with the MSC and
SVD are basically not significant compared with that associated
with the FKMA. Overall speaking, Table I provides a com-
parison of performance and the computational complexities
of the four BSS algorithms (using the kurtosis maximization
criterion) based on the simulation results presented in Section
V-B, although these comparisons also depend on the values of

, and used. These results also support the efficacy of the
proposed NCMS-TSEA, NCMS-FKMA, and MSC-TSEA with
moderately higher computational load than the MSC-FKMA
as mentioned in R8) and R10).
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VI. CONCLUSION

Chi and Chen’s FKMA only involves spatial processing for
extraction of a single non-Gaussian (i.i.d. or colored) source. It
performs well with super-exponential convergence rate, but its
performance depends on the parameter (see
(14)) as stated in Observation 1. By taking the effects of
on the source extraction performance into account, we have pre-
sented a novel blind source extraction algorithm, TSEA shown
in Fig. 1, which operates cyclically using the FKMA for both of
the temporal processing and spatial processing. The proposed
TSEA outperforms the FKMA for in addition to
sharing convergence speed and computational efficiency of the
latter at each cycle. Note that the proposed TSEA is only ap-
plicable for sources that can be modeled as non-Gaussian linear
processes.

As any other source extraction algorithms, it is straightfor-
ward to apply the proposed TSEA through the MSC procedure
for the extraction of all the sources leading to the proposed
MSC-TSEA. Because of performance degradation resultant
from the error propagation in the MSC procedure as stated in
R1), we further presented two noncancellation BSS algorithms,
namely, NCMS-FKMA and NCMS-TSEA, that can extract a
distinct source at each stage. The proposed NCMS-FKMA and
NCMS-TSEA perform better than the existing MSC-FKMA
and the proposed MSC-TSEA, respectively, with moderately
higher computational complexities, as stated in R8) and R9).
Note that the number of sources was assumed known a
priori in the proposed BSS algorithms. The determination of

based on normalized kurtosis is left as a future research.
We also provided some simulation results to show the effi-

cacy of the proposed MSC-TSEA, NCMS-FKMA, and NCMS-
TSEA together with a performance comparison with some ex-
isting BSS algorithms, and a computational load comparison
with the MSC-FKMA (Table I). Two final concluding remarks
from the simulation results are as follows.
R11) The proposed TSEA outperforms the FKMA no matter

whether or not the cancellation procedure is involved.
R12) The proposed BSS algorithms using either TSEA or

FKMA without involving the cancellation procedure
performs better than involving the cancellation proce-
dure, and meanwhile all the sources are not required to
be temporally colored with different power spectra as
required by most of SOS based algorithms.

APPENDIX I
PROOF OF THEOREM 1

For ease of later use, let the mixing matrix and the source
signal vector be partitioned as

(I.1)

(I.2)

where

(I.3)

(I.4)

(I.5)

An inequality regarding matrix rank which is needed in the
proof below is as follows [31]:

(I.6)

where is a matrix and is an matrix. Moreover,
by the assumption A1), one can easily prove the following fact
(also needed in the proof below).

Fact 3: The matrices defined by (I.3) and defined
by (I.4) are of full column rank with , and

, respectively. Moreover,
.

Assume that, without loss of generality, all the source esti-
mates obtained at the end of the th stage are

under ), ), and the noise-free
assumption. Therefore, the matrix (defined by
(26)) which consists of the associated channel estimates
obtained by (15) is given by

by (1) and (15) (I.7)

Let

(I.8)

By (33) and (I.8), we have

by (1)

by (I.1)

by (I.2) and (I.8) (I.9)

where in the derivation of (I.9), we have used the fact that
because of .

The optimum , denoted , by maximizing
without any constraint on is known to be

by (I.9) and Fact 1 (I.10)

if the unknown mixing matrix associated
with (see (I.9)) is of full column rank (i.e.,

), where is an unknown nonzero constant and
is one of the source signals in . Therefore, what

remains to prove is .
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Substituting (28) into (I.8), one can obtain

(I.11)

where

by (I.4)

(I.12)

Again, by the fact of and by (28), (I.7) and
Fact 3, one can easily show that

(I.13)

i.e., because the nullity of is equal to
(by (29)) and (by Fact 3).

Next, let us prove that the matrix
given by (I.12) is of full column rank, i.e., .
The matrix (see (I.12)) is of full column rank if

by (I.12) and (29) (I.14)

leads to a unique solution of . Be-
cause of (by (I.13)), it can be easily inferred
that

(I.15)

where are scalars. Note, from (I.15), that the
vector on the left-hand side of (I.15) belongs to while
that on the right-hand side of (I.15) belongs to . Because
of (by Fact 3), one can infer, from (I.15),
that

(I.16)

which implies that because of
(by Fact 3). Thus, we have proven that

.
By (I.11) and (I.6) (with

), it can be easily inferred that the matrix
must be of full column rank with

because of (by (29)) and
. Thus, we have completed

the proof.
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