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The Equivalence of Semidefinite Relaxation MIMO
Detectors for Higher-Order QAM
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Abstract—In multi-input multi-output (MIMO) detection,
semidefinite relaxation (SDR) has been shown to be an efficient
high-performance approach. For BPSK and QPSK, it has been
found that SDR can provide near-optimal bit error probability
performance. This has stimulated a number of recent research en-
deavors that aim to apply SDR to the high-order QAM cases. These
independently developed SDRs are different in concept, structure
and complexity, and presently no serious analysis has been given
to compare these methods. This paper analyzes the relationship
of three such SDR methods, namely the polynomial-inspired
SDR (PI-SDR) by Wiesel et al., the bound-constrained SDR
(BC-SDR) by Sidiropoulos and Luo, and the virtually-antipodal
SDR (VA-SDR) by Mao et al. Rather unexpectedly, we prove that
the three SDRs are equivalent in the following sense: The three
SDRs yield the same optimal objective values, and their optimal
solutions have strong correspondences. Specifically, we establish
this solution equivalence between BC-SDR and VA-SDR for any
� -QAM constellations, and that between BC-SDR and PI-SDR
for 16-QAM and 64-QAM. Moreover, the equivalence result holds
for any channel, problem size, and signal-to-noise ratio. Our
theoretical findings are confirmed by simulations, where the three
SDRs offer identical symbol error probabilities. Additional sim-
ulation results are also provided to demonstrate the effectiveness
of SDR compared to some other MIMO detectors, in terms of
complexity and symbol error performance.

Index Terms—Convex optimization, multi-input multi-output
(MIMO) detection, semidefinite programming (SDP), semidefinite
relaxation (SDR).

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) detection
using semidefinite relaxation (SDR) [1]–[14] has

recently received increasing attention. Being a symbol-constel-
lation dependent technique, SDR has been shown to provide
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considerably better symbol error performance than some
suboptimal MIMO detectors such as the linear and deci-
sion-feedback receivers. SDR is not an optimal approach from
a maximum-likelihood (ML) perspective, but it guarantees
a polynomial-time complexity in the problem dimension. In
comparison, the currently best known methods for optimal ML
MIMO detection, namely sphere decoding [15], [16], do not
have such a guarantee [17].1

SDR was first proposed for the BPSK constellation [1], [2],
and the same idea can easily be carried forward to the QPSK
constellation (or 4-QAM) [6], [7]. For BPSK and QPSK, simu-
lation results have indicated that SDR can provide near-optimal
bit error performance. This intriguing finding has stimulated a
number of works. Theoretically, it is shown recently [13] that
SDR can achieve the full receive diversity in the BPSK case. An
equally interesting but totally different analysis is given in [14],
where the SDR approximation gap is examined using random
matrix theory. Apart from theoretical analysis, there has been
interest in various aspects such as fast implementations [19],
[20] and soft-in-soft-out MIMO detection [7], [21].

However, what attracts more attention in SDR is possibly its
extension to more general symbol constellations, especially the
higher order QAM. SDR for higher order PSK has been con-
sidered in [3]. For higher order QAM which is the focus of this
paper, the first endeavor is by Wiesel et al. [9], who proposed
a polynomial-inspired SDR (PI-SDR) method for 16-QAM. In
that work, the authors also showed that PI-SDR is a bidual of
the optimal ML MIMO detector (or achieves an optimal La-
grangian dual lower bound of the ML metric). The drawback of
PI-SDR is that its extension to larger QAM sizes would be in-
creasingly complex to handle. Later, Sidiropoulos and Luo pro-
posed a bound-constrained SDR (BC-SDR) method [9] for any
QAM constellation. BC-SDR aims at simplicity and appears to
be less sophisticated than PI-SDR. For instance, the BC-SDR
problem structure is virtually the same for any QAM size. The
simple, special structures of BC-SDR make fast implementa-
tions [22] particularly favorable. More recently, Mao et al. [10]
developed a virtually-antipodal SDR (VA-SDR) method for any

-QAM (where ). As its name implies, VA-SDR has a
strong connection to the SDR used in BPSK/QPSK. VA-SDR is
structurally less complex than PI-SDR, but involves more opti-
mization variables than BC-SDR.

It is worthwhile to mention two more recent developments.
Mobasher et al. formulated a class of SDR problems that is ap-
plicable to any kind of symbol constellations [12]. As a price

1As a short aside, the complexity limitation of optimal sphere decoding has
recently motivated interest in some suboptimal but reduced-complexity variants;
e.g., the Fano decoder [16] and the fixed-complexity sphere decoder [18].
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for their generality, Mobasher’s formulations are considerably
more complex than the other SDRs. This translates into a higher
computational requirement. Yang et al. [11] proposed a tight-
ened version of BC-SDR for the 16-QAM case. Interestingly,
they showed that their tightened BC-SDR can provide a better
approximation than the 16-QAM PI-SDR.

While a number of SDR methods have been proposed for
higher order QAM, their comparisons have not been seriously
considered at present. This paper focuses on analyzing the
relationship of the PI-SDR, BC-SDR, and VA-SDR methods.
We obtain a result that is intuitively not so obvious: PI-SDR,
BC-SDR, and VA-SDR are actually equivalent, despite the fact
that they exhibit rather different structures and complexities.
Specifically, our analysis reveals the following:

1) for 16-QAM and 64-QAM, there exists an equivalence be-
tween the feasible sets of PI-SDR and BC-SDR;

2) for any -QAM, there exists an equivalence between the
feasible sets of VA-SDR and BC-SDR.

This feasible set equivalence directly translates into equivalence
of the solution sets of the three SDRs. Hence, the three SDRs
are expected to provide the same symbol error probability. This
is further illustrated by simulations. Moreover, the equivalence
result is quite general in the sense that it holds for any channel,
problem size, and signal-to-noise ratio (SNR).

This paper is organized as follows. In order to give insights
into the three SDRs, we use the relatively simple case of
16-QAM to provide the problem statement in Section II, and to
review the three SDR methods in Section III. This is followed
by Section IV, where we provide numerical comparisons of the
three SDRs. In particular, the complexity and performance of
the three SDRs will be shown and compared. Then, in Section V
we prove the 16-QAM SDR equivalence, with an emphasis
on illustrating the main ideas (which would be difficult to see
for the more complex cases of larger QAM sizes). As a step
further, Section VI proves the SDR equivalence for larger QAM
sizes. Some simulation results are provided in Section VII for
demonstrating the SDR performance.

II. PROBLEM STATEMENT

The MIMO detection problem may be most easily described
by considering the standard scenario of spatial multiplexing (or
V-BLAST) over a frequency-flat channel [23], [24]. In that sce-
nario, we have the transmitter and receiver equipped with and

antennas, respectively, and each transmitter antenna sends an
independent data symbol at each symbol interval. The received
spatial signal can be modeled by the following formula:

(1)

Here, is the MIMO channel, is the re-
ceived signal vector, is a noise vector assumed to be zero-mean
circular white Gaussian, and is the transmitted symbol
vector where denotes the symbol constellation set. For
the 16-QAM constellation, is given by

It should be emphasized that detection techniques for (1),
or simply MIMO detection, is a very meaningful topic with
relevance not only to spatial multiplexing but also to many
other scenarios. In CDMA multiuser detection [25], for in-
stance, the respective detection problem can be formulated in
the same form as (1) (with becoming the number of users).
Likewise, in the decoding of some space–time block codes
[26] and space–frequency block codes [27], we are confronted
with a detection problem in which the model can eventually be
formulated as (1). For a detailed description of these, we refer
the reader to [15], [16] which provide an excellent coverage of
how the simple model in (1) can be relevant to many different
detection problems in communications.

It is convenient to reformulate the complex-valued model in
(1) to a real-valued one. Let

, and . Equation (1) is equivalent to

(2)

where and is defined in the same way as .
The ML detection problem for the MIMO model in (2) is shown
to be an optimization problem

(3)

in which the globally optimal solution serves as the ML deci-
sion. Note that in (3) stands for the vector 2-norm. ML
detection is known to provide superior detection performance,
but the major challenge lies in solving (3) which is a computa-
tionally hard problem. Presently, the best known optimal solver
for (3) is sphere decoding [15], [16]. While sphere decoding has
been empirically found to be computationally very fast for small
to moderate problem sizes (say, for for 16-QAM), it has
been revealed [17] that the sphere decoding complexity would
be prohibitive for large and/or low SNRs.

III. REVIEW OF THREE 16-QAM SDR DETECTORS

SDR is a suboptimal approach to ML, using a class of poly-
nomial-time solvable convex optimization problems known as
semidefinite programs. In this section, we review three SDR
methods for the 16-QAM constellation, namely PI-SDR [8],
BC-SDR [9], and VA-SDR [10]. (Their extensions beyond
16-QAM will be considered later in the paper.)

A. Polynomial Inspired SDR

PI-SDR was the first application of the SDR principle [28] to
16-QAM ML detection, to the best of our knowledge. To present
its idea, consider a reformulation of the ML problem in (3)

(4)
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where is a slack variable, is the set of real sym-
metric matrices, denotes the element of , and
is the trace operator. PI-SDR was inspired by the fact that

By turning the constraints to a polynomial form,
Problem (4) is further reformulated as

(5)

where is the diagonal operator (i.e.,
), and is the -dimensional

all-one vector. The reformulated ML problem in (5) is still
hard, where the difficulty lies in the nonconvex constraints

and which restrict and to be of rank 1.
In PI-SDR, we relax the polynomial ML formulation in (5) to

(6)

where means that is positive semidefinite (PSD).
The idea is to replace the hard constraint by a convex
constraint , and similarly to . There are two
basic advantages with such a relaxation. First, Problem (6), or
the PI-SDR problem is a semidefinite program (SDP) which is
convex and does not suffer from local minima. Second, as an
SDP the PI-SDR problem can be solved by available interior-
point methods [29], [30] in a polynomial-time fashion.

Once we solve the PI-SDR problem in (6), we can make a
symbol decision by simple rounding of the PI-SDR solution as-
sociated with . A better alternative to this simple rounding is
the Gaussian randomized rounding; see [2], [8], and [9] for the
details.

B. Bound Constrained SDR

BC-SDR is possibly the simplest among the various 16-QAM
SDR methods. It relaxes the ML problem in (4) to an SDP

(7)

where the original constraint is replaced by the PSD
constraint (as in PI-SDR), and the discrete set
is relaxed to an interval .

The BC-SDR problem in (7) exhibits particularly simple SDP
problem structure. This has enabled us to develop a specialized
interior-point algorithm for (7) that runs many times faster than
some general-purpose interior-point software [22]. The com-
plexity of BC-SDR is shown to be [22].

C. Virtually Antipodal SDR

VA-SDR was proposed by Mao et al. [10].2 The idea stems
from the fact that

Hence, the 16-QAM ML problem can be re-expressed in a vir-
tually antipodal form

(8)

where we denote

By applying the same SDR as in BPSK/QPSK constellations,
VA-SDR is obtained

(9)

In terms of problem structure, VA-SDR is exactly the same
as the SDR for BPSK/QPSK. Hence, VA-SDR can be imple-
mented by directly applying interior-point algorithms designed
for BPSK/QPSK SDR [20], [29].

IV. NUMERICAL COMPARISONS OF THE THREE 16-QAM SDRS

In order to shed some light into the performance and com-
plexity of the three 16-QAM SDR methods, let us use simu-
lations to compare the three methods before proceeding to the
theoretical analysis in the next section. The simulation setting
follows that of a standard MIMO system, where the channel ma-
trix is independent and identically distributed (i.i.d.) complex
circular Gaussian distributed with zero mean and unit variance.
The MIMO system size is . For PI-SDR and
BC-SDR, we employ the simple rounding procedure; i.e., if
is the PI-SDR/BC-SDR solution associated with , then

is the detected symbol vector where is the elementwise
decision function for the discrete set . For VA-SDR,
there are two possible ways of doing simple rounding. Let

, , be the VA-SDR solution asso-
ciated with . We can detect either by

(10)

where denotes the elementwise sign function, or by

(11)

2In fact, an earlier work by Steingrimsson et al. [7] was close to finding
VA-SDR. In that paper, a symbol is considered as a linear transformation of
antipodal bits, which is exactly how VA-SDR works. But we should emphasize
that it was Mao et al. [10] who first described the use of VA-SDR for higher
order QAM and put the method to the test.
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Fig. 1. Performance comparison of PI-SDR, BC-SDR, and VA-SDR in an
8� 8 16-QAM system. (a) Symbol error rates versus SNRs. (b) Optimal
objective values versus SNRs. (c) Optimal objective values versus problem
sizes.

We call (10) and (11) simple rounding I and simple rounding II,
respectively.

The simulated symbol error performance of the three
SDRs is given in Fig. 1(a). In the figure the SNR is defined
as the received signal-to-noise ratio per QAM symbol; i.e.,

. One can see that for VA-SDR, simple

Fig. 2. Comparison of complexities of PI-SDR, BC-SDR, and VA-SDR in a
16-QAM system.

rounding II gives better performance than simple rounding I,
but, more importantly, the performance of PI-SDR, BC-SDR,
and VA-SDR (with simple rounding II) is identical. To get
further insights, we evaluated the respective optimal objective
function values achieved by the three SDRs. The result, shown
in Fig. 1(b) indicates that they all look identical. In Fig. 1(c)
the optimal objective values of the three SDRs are plotted with
respect to the problem size , where the same phenomenon
is seen. From these observation it is reasonable to suspect that
there are strong connections between the three SDRs.

Now let us compare the complexities of the three SDRs. For
fairness of comparison, the three SDRs were implemented by
the same SDP solver, namely the general-purpose SDP soft-
ware SeDuMi [30]. The complexities, in term of average run-
ning time, are plotted in Fig. 2. We can see that BC-SDR yields
the lowest complexity, while VA-SDR and PI-SDR have similar
computational times with PI-SDR being slightly more expen-
sive. Thus, based on Figs. 1 and 2, we see that the application
of BC-SDR in place of VA-SDR or PI-SDR leads to an order
of magnitude reduction in computational time with no perfor-
mance degradation.

V. EQUIVALENCE OF THE THREE 16-QAM SDR DETECTORS

In this section, we prove the equivalence of PI-SDR,
BC-SDR, and VA-SDR in the 16-QAM case. In the first sub-
section, the main result will be described. Then, the analysis
leading to the equivalence result will be shown in detail in the
second and third subsections.

A. Main Result and Implications

The three SDRs can be represented by a unified expression

(12)

where
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is the objective function, and is the feasible set, the definition
of which depends on the SDR method employed. For BC-SDR,
the feasible set is defined as

(13)

(We adopt the standard notation that “ ” and “ ” mean ele-
mentwise inequalities, when applied on vectors). For PI-SDR,
the feasible set is characterized as shown in (14) and (15) at the
bottom of the page, and for VA-SDR

(16)

(17)

Essentially, the equivalence of the three SDRs lies in the fea-
sible set:

Theorem 1: The feasible sets of the three 16-QAM SDRs are
identical; that is

The proof will be described in the next two subsections. From
Theorem 1 we make the following important conclusion.

Corollary 1: For 16-QAM MIMO detection, the relaxation
problems of PI-SDR, BC-SDR, and VA-SDR [given in (6), (7),
and (9), respectively] are equivalent. In particular:

1) if is an optimal solution of PI-SDR, then
is an optimal solution of BC-SDR;

2) if is an optimal solution of VA-SDR, then
is an optimal solution of BC-SDR;

3) if is an optimal solution of BC-SDR, then there
exists such that is an optimal
solution of PI-SDR;

4) if is an optimal solution of BC-SDR, then there
exists such that
and is an optimal solution of VA-SDR.

Some further discussions are as follows.
1) From Corollary 1 we see that an optimal BC-SDR solu-

tion can be directly obtained from an optimal PI-SDR or
VA-SDR solution. In fact, our proof also reveals that an op-
timal PI-SDR or VA-SDR solution can also be constructed
from an optimal BC-SDR solution in a direct, closed-form
manner. For the construction details readers are referred to
the proof in the following subsections.

2) The three SDRs can be proven to be equivalent for larger
QAM sizes. For the equivalence of VA-SDR and BC-SDR,
the proof can be generalized using a similar principle, but,
for the equivalence of PI-SDR and BC-SDR, the proof is

much harder and tedious even for 64-QAM. This will be
elaborated upon in the next section.

The proof of Theorem 1 consists of two parts: proving that
, and .

B. First Part of the Proof of Theorem 1:

We first show that if , then
is feasible to . Given , the
PI-SDR feasibility condition implies that
for all . Hence,

for all . The inequality above is the same as
, or . This shows that .
Next, we show that for any , we can ex-

plicitly construct a such that .
Consider the following construction from :

(18)

where is the operator that outputs a diagonal
matrix with its main diagonals being the input, and is given
by

(19)

for . Since , we have . It follows
that . Moreover, from (18)–(19), one
can see that

for all . This proves that is feasible to .
The proof above indicates that whenever a point is feasible

to it is also feasible to , and vice versa. We
therefore conclude that .

C. Second Part of the Proof of Theorem 1:

Let and be two PSD matrices taking
the form

where , . By Schur
complement, the two matrices satisfy and .

(14)

(15)
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We assume , and this condition can
be expressed in a matrix form

(20)

where

(21)

Since , can always be represented in a square-root
factorization form

for some square root factor
, with (owing to

and ). Similarly, can be characterized as

for some square root factor
, . We see that (20) holds if

(22)

Let us partition

(23)

where . Substituting (22) into (21), we see
that , or equivalently

(24)

where is the column of , and is defined in a similar
way.

Now, suppose . Since for all
(where means that ), we have

and for
. With (23)–(24) satisfied, it holds true that

for . This translates into an that satisfies
, and this further implies that

. On the other hand, suppose . There
is no problem for (24) to be satisfied, and we find sat-
isfying (23) by resorting to the following lemma:

Lemma 1: Let , be a given vector satisfying

for some . Then there exist two unit 2-norm vectors
and such that

The proof of Lemma 1 is given in Appendix A. Essentially, the
proof shows how to construct from in a closed-form

manner. Applying Lemma 1 to (23) (with and ), for
each we obtain that satisfies (23) for any
(or ) and then achieves at the
same time. This means that the resultant [cf., (22)] has unit
2-norm columns, and as a consequence

. Hence, we have .
We have shown by construction that .

VI. GENERALIZATIONS TO LARGER QAM SIZES

Now our attention turns to more challenging cases of larger
QAM sizes. In what follows, we will prove that 1) for any

-QAM (where ), VA-SDR is equivalent to BC-SDR;
and that 2) for the 64-QAM, PI-SDR is equivalent to BC-SDR.
Details regarding 1) and 2) will be described in the first
and second subsections, respectively. Numerical results for
verifying the equivalence will then be provided in the third
subsection.

A. Equivalence of VA-SDR and BC-SDR for -QAM

For -QAM, the ML problem to be addressed is

Its virtually antipodal formulation takes the form

where

and

with for all . Again, both the VA-SDR and BC-SDR
problems in this case can be represented by the expression

where the feasible set for BC-SDR is defined as

(25)
and the feasible set for VA-SDR is

(26)

(27)

It is shown that the equivalence of BC-SDR and VA-SDR is
promised even for higher order QAM.

Theorem 2: Consider a -QAM constellation, where .
It holds true that

Authorized licensed use limited to: National Tsing Hua University. Downloaded on January 14, 2010 at 03:51 from IEEE Xplore.  Restrictions apply. 



1044 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 3, NO. 6, DECEMBER 2009

The proof of Theorem 2 is given in Appendix B. It is a gen-
eralization of its 16-QAM counterpart in Section V-C. Like the
16-QAM case, the proof reveals the possibility that an optimal
BC-SDR solution can be used to construct an optimal VA-SDR
solution in an analytical fashion, or vice versa.

B. Equivalence of PI-SDR and BC-SDR for 64-QAM

The original work of PI-SDR [8] concentrates only on the
16-QAM constellation, but it is clear from that work that the
idea can be extended to the 64-QAM constellation. To see this,
we start with the following 64-QAM ML formulation:

where . The idea is to consider
the polynomial characterization

where is the set of polynomial coefficients associated with
the roots . Like the development in 16-QAM PI-SDR, we
reformulate the ML problem as

(28)

The formation in (28) is valid because its constraints essentially
restrict , , , and

. From (28), we obtain the 64-QAM PI-SDR

(29)

For BC-SDR, the relaxation is given by

(30)

The main result here is presented as follows:
Theorem 3: Consider a general situation where the roots

are allowed to be arbitrary (not necessarily the roots in

64-QAM), and assume . The PI-SDR
problem in (29) and the BC-SDR problem in (30) are equivalent
in yielding the same feasible set corresponding to (and
thus the same optimal solutions), under the following sufficient
and necessary condition:

(31)
It can be verified that the 64-QAM roots

satisfy (31). We therefore conclude the fol-
lowing.

Corollary 2: For the 64-QAM constellation, the PI-SDR
problem in (29) and the BC-SDR problem in (30) are equivalent
in yielding the same feasible set corresponding to .

Proof of Theorem 3: The proof is far from trivial com-
pared to its 16-QAM counterpart. Consider the following lemma
shown in Appendix C:

Lemma 2: The PI-SDR problem in (29) is equivalent to the
following alternate PI-SDR problem:

(32)

in the sense that the feasible sets corresponding to are
identical for the two problems.

The proof of Lemma 2 follows the same approach as the
equivalence proof for the 16-QAM PI-SDR and BC-SDR (in
Section V-B). However, by Lemma 2 alone, we are unable to
see the equivalence of the 64-QAM PI-SDR and BC-SDR im-
mediately. To gain further insights, let us re-express the alternate
PI-SDR formulation in (32) as

where we define (33) and (34), shown at the top of the next page,
with the operator standing for

. . .
...

...
. . .

Our interest now turns to analyzing the set , which has to
be done by analyzing . Consider the following lemma proven
in Appendix D:
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(33)

(34)

Lemma 3: The set in (34) is equivalent to

(35)

where
Lemma 3 provides an interesting implication. To describe it,

let

be the convex hull of . It can be veri-
fied from (35) that , though

is generally not true.3 Conse-
quently, we have

This implies that the 64-QAM PI-SDR is no tighter than the
64-QAM BC-SDR, but we also show in Appendix E the fol-
lowing.

Lemma 4: Let . We have
if and only if

As a result, PI-SDR can be equivalent to BC-SDR under the con-
dition in Lemma 4, thereby completing the proof of Theorem 3.

C. Numerical Verification of the Equivalence

Simulations were performed to verify the SDR equivalence
for the 64-QAM and 256-QAM cases. The simulation settings
are the same as those of the 16-QAM simulation example in
Section IV, and the MIMO size is . Simple
rounding is employed for the SDR methods. The results are
plotted in Fig. 3. We see that the symbol error rates (SERs)
of the PI-SDR, BC-SDR, and VA-SDR with simple rounding
II are generally identical, which corroborates our theoretical
results. It is also noticed that the performance of 64-QAM
PI-SDR slightly deviates from that of 64-QAM BC-SDR and

3By numerical test, it was found that there exists a� � � such that some of
the constituent � can be negative.

Fig. 3. Comparison of symbol error rates of PI-SDR, BC-SDR, and VA-SDR
in a 4� 4 system with either 64-QAM or 256-QAM.

VA-SDR at SNR= 45dB. We found that this was due to some
numerical problems encountered by the interior-point SDP
solver (which is SeDuMi [30] here). In fact, the polynomial
coefficients in 64-QAM PI-SDR have values ranging from

to . Such a large
dynamic range could be the cause of the numerical inaccuracy.
Moreover, Fig. 3 illustrates that VA-SDR with simple rounding
I is not working in 64-QAM and 256-QAM (see Section IV
for the definition of simple roundings I and II). This problem,
which has also been noticed by Mao et al. [10], may partially be
answered by the equivalence proof for BC-SDR and VA-SDR;
cf., Section V-C and Appendix B. In essence, the derivations
there revealed that the VA-SDR solution with respect to
may be non-unique, even though its BC-SDR counterpart
[in form of ] is unique. In particular, a key component,
namely Lemma 1 is not a unique decomposition.

VII. SOME FURTHER SIMULATION RESULTS

We provide two more sets of simulation results to demon-
strate the SDR performance compared to some benchmark
MIMO detection methods.

A. Performance Behaviors in a Generic MIMO Setting

In this simulation example, a comparison is made between
SDR and some other MIMO detectors for the 64-QAM case.
Again, the simulation setting follows that of the generic MIMO
in Section IV. The detectors tested include the zero-forcing (ZF)
detector, the optimal sphere decoder, and the lattice reduction
aided ZF (LRA-ZF) detector [31], [32]. Note that the LRA-ZF
detector has been shown to achieve the full receive diversity
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TABLE I
AVERAGE COMPUTATIONAL TIME COMPARISON OF BC-SDR AND SPHERE

DECODING. �� � �� , 64-QAM CONSTELLATION

[33]. We tested the BC-SDR method only, as the other two SDR
methods will provide identical results anyway. The BC-SDR
detector was implemented by a specialized interior-point SDP
solver developed by the authors [22]. For its solution rounding,
we employ the Gaussian randomized rounding described in [8].
The number of randomizations used is 100.

Let us examine the complexities of BC-SDR and sphere de-
coding. The test was conducted on MATLAB, using a desktop
computer with dual 2.66-GHz CPUs. The BC-SDR was written
in C mostly, with minor operations using MATLAB. The sphere
decoder was also written in C, and the algorithm employed is
that of Schnorr–Eucher [15] (which is practically found to be
a fast sphere decoder implementation). The result, shown in
Table I indicates that sphere decoding yields a better compu-
tational advantage than BC-SDR for , a small problem
size. However, as the problem size increases to , the
complexity of sphere decoding becomes unaffordable as com-
pared to BC-SDR. As an aside, the sphere decoding complexity
behaviors illustrated here confirm the analysis in [17].

In Fig. 4, we compare the symbol error rates of the various
MIMO detectors. Fig. 4(a) shows the case of ,
where we see that LRA-ZF detector gives better performance
than BC-SDR except for some low SNR values. We increase the
problem size to in Fig. 4(b). For this problem size
it is computationally too hard to run the optimal sphere decoder.
The figure illustrates that for SNRs less than 27 dB, BC-SDR
outperforms LRA-ZF. Let us further increase the problem size
to . As illustrated in Fig. 4(c), now BC-SDR
exhibits further improved performance compared to LRA-ZF.

The comparisons above suggest that SDR has significant per-
formance advantages for large problem sizes and/or for low to
moderate SNRs.

B. Application to Multiuser MIMO CDMA Systems

We consider a simulation example where SDR and some
other MIMO detectors were compared under a uplink multiuser
MIMO CDMA scenario [34]. In this scenario, the involve-
ment of multiple users can result in a large problem size.
The problem is described as follows. The base station has
receive antennas, while there are active users, each of which
is equipped with transmit antennas and employs spatial
multiplexing to transmit parallel streams of data. Each user
uses a set of distinct, preassigned spreading code sequences

Fig. 4. Comparison of the various detectors in 64-QAM systems
(a) � ��� ��� � ��� ��. (b) � ��� ��� � ���� ���. (c) � ��� ��� � ��	� �	�.

(with length ) to send its respective streams of data. The
set of spreading code sequences is also different from one user
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Fig. 5. Comparison of the various detectors in a 64-QAM multiuser MIMO
CDMA system, with� � ��,� � ��,� � � and � � �.

to another. Under such a setting, the received space-time signal
matrix over one symbol interval can be modeled as [34]

(36)

where is the symbol vector transmitted by user ,
is the MIMO channel cor-

responding to user , is the collection of
the spreading code sequences of user , with being
the spreading code sequence for transmit antenna of user ,
and is noise. By vectorization , it can be shown
that the multiuser MIMO model in (36) can be rewritten to a
standard form

where is the collection of all symbols
to be detected, ,

( denotes the
Kronecker product), and .

In the simulation, each channel vector is assumed to be
i.i.d. complex circular Gaussian. Moreover, we assume random
spreading, where the entries of each have unit magnitude
and follow an i.i.d. uniform phase distribution. Fig. 5 displays
the simulation results for 64-QAM, , ,
and . It is worthwhile to notice that this setting results
in a 40-by-40 64-QAM system. One can see from Fig. 5 that
BC-SDR outperforms the other detectors in the test.

VIII. CONCLUSION AND DISCUSSION

This paper analyzes the relationships of three SDR-based
MIMO detection methods for high-order QAM, namely
PI-SDR, BC-SDR, and VA-SDR. We have proven that the
three SDRs are actually equivalent, despite their different

appearances and complexities. The essence of the equivalence
is that an optimal solution of one SDR can always be con-
structed from that of another SDR. The proof covers general
BC-SDR, VA-SDR with any -QAM , and PI-SDR
with 16-QAM and 64-QAM.

Since the three SDRs are now known to be equivalent, the
comparison should turn to their computational costs. Our sim-
ulation results have shown that BC-SDR is the cheapest com-
putationally, and in parallel a fast specialized interior-point al-
gorithm has been developed to support the implementation of
BC-SDR [22]. Hence, it appears that BC-SDR should be the
method of choice among the three methods. While this is our
present conclusion, our opinion is that each of the three SDRs
is interesting in its own right by the different ways they uti-
lize QAM structures. Moreover, the exposition of the PI-SDR
and VA-SDR ideas might help inspire future works for devising
better SDR methods.

This work also provides several interesting further implica-
tions. First, from the analysis one may see that the SDR equiv-
alence result established here does not depend on the objective
function. This has enabled us to apply the SDR equivalence re-
sult to a rather different problem, namely the blind ML detection
of orthogonal space-time block codes [35], [36]. In that parallel
investigation, the problem takes on a different objective struc-
ture (a Rayleigh quotient function); and the SDR equivalence
has proven to be useful in telling which SDR is the most favor-
able to employ (i.e., BC-SDR).

Second, we should mention the 16-QAM tightened BC-SDR
method by Yang et al. [11]. Yang et al. showed that their tight-
ened BC-SDR method can perform better than the 16-QAM
PI-SDR. Using the equivalence result here, we can further infer
that the tightened BC-SDR can perform better than the 16-QAM
VA-SDR as well.

APPENDIX

A. Proof of Lemma 1

The proof is constructive. Let

(37)

where is a unit 2-norm vector orthogonal to , and .
It can be verified that the in (37) satisfies . Moreover,
let

(38)

which is purposely constructed to satisfy . One
can show from (38) that the unit norm condition is
achieved when we choose

(39)

Now the remaining problem is the condition under which
. It can be verified from (39) that if

then is guaranteed.
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B. Proof of Theorem 2

The idea is similar to the proof in the 16-QAM case, described
in Section V-C. We consider two PSD matrices

that satisfy . That condition is shown
to be achievable if

(40)

where and are
square root factors of and , respectively (or ,

). The objective is to show that if ,
then we can construct a satisfying (40); and
vice versa.

For general -QAM where is expanded to
, (40) can be rewritten as

(41)

(42)

To achieve (42) is easy, and the nontrivial part lies in (41).
First, suppose . Then the resultant satis-
fies . The vectors satisfying (41) would then have
bounds

This means that the corresponding has
. Hence, . Second, suppose

. Let us choose, for each ,

for some . The condition in (41) becomes

(43)

Using Lemma 1, we can construct a that satisfies (43)
for any while achieving

. The resultant will therefore satisfy
for all , meaning that .
The proof of Theorem 2 is complete.

C. Proof of Lemma 2

Suppose that is feasible to the original 64-QAM
PI-SDR problem in (29). Set

(44)

for , where is a unit vector with the
nonzero element at the th element. It follows from
and (44) that for all . Moreover, (44) equals

(45)

Since , every in (45) satisfies the Hankel struc-
ture in the alternate PI-SDR problem in (32). It also follows from
(45) that the equality constraints arising from the polynomials
are satisfied. Hence, is feasible to the alter-
nate PI-SDR problem in (32).

On the other hand, suppose that is fea-
sible to the alternate PI-SDR. Set

(46a)

(46b)

(46c)

(46d)

(46e)

where is the Hadamard product, and

It can be shown that (46) satisfies the equality constraints of
the polynomials. Let us examine if . We see that

It can be shown using basic matrix results that the specially
structured matrix above is PSD if and only if

(47)

are PSD for all . By using and
and Schur complement, it is shown that (47) is indeed PSD.

We therefore conclude that is feasible to the
alternate PI-SDR problem.

D. Proof of Lemma 3

Consider a problem setting as follows. Let be a
given set of roots, and assume that the roots are distinct. Con-
sider the following two sets
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where contains the polynomial coeffi-
cients corresponding to , i.e.,
for all ; and

where , and is as-
sumed to be even. Our objective is to prove that .
Clearly, Lemma 3 is a special case of the above problem where

.
By definition, every can be parameterized by some

such that and . Let

for . Since every contains one of the true roots,
it satisfies . Hence, we have the following condition
to satisfy

(48)

The submatrix is linearly independent,
being Vandemonde with distinct roots. Subsequently, (48) can
be satisfied only when

for some coefficients . Since
, the coefficients satisfy . Moreover, by

noticing that

(49)

we have

Hence, any lies in .
Likewise, it can be verified that every lies

in : For every which can be characterized as
, , set

It follows from (49) that . Moreover, this sat-
isfies , and .

E. Proof of Lemma 4

By Lemma 3, the set can be expressed as

This set is a closed convex set, and therefore must be in form of
an interval . The proof is divided into three parts: solving

, solving , and integrating the results.
Solving the Lower Bound: We find the lower bound by

solving the problem

(50)

Let , . Using , Problem
(50) can be re-expressed as

(51)

By strong duality, solving (51) is the same as solving its dual
which can be shown to be

(52)

From the objective in (52), it is clear that if and only if
is feasible and satisfies

(53)

Let us consider the construction of a PSD satisfying (53).
Equation (53) implies that has rank no greater than 2. Thus
any such PSD can be represented by

where is such that Such an can be
parameterized as

for some , where

(One can easily check that , thereby .)
Therefore, any PSD satisfying (53) can be expressed as

(54)

where
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can be any 2 2 PSD matrix.
By substituting the matrix form in (54) into the equality con-

straints in (52), we obtain

(55)

We seek to find the sufficient and necessary conditions for sat-
isfying (55). By noticing that

Equation (55) can be decomposed to

(56)
for . Let us define a polynomial function

Since the function satisfies for
[cf., (56)], it permits a factored form

where

By expanding the factored form of to the polynomial form,
we determine (rather tediously) that

The remaining part lies in ensuring that the resultant is PSD.
We already have and , so the last condition is

by Schur complement. With some cumbersome
derivations, we show that

In order to achieve , we need

(57)

Summarizing, we have if and only if (57) holds.

Solving the Upper Bound: The method of the proof is ex-
actly the same as the previous, and hence the detailed deriva-
tions are omitted for brevity. Essentially, we consider solving
the upper bound

by solving its dual

(58)

From (58) it is shown that if and only if

(59)

where for .
Combining the Conditions: The final task is to combine the

conditions in (57) and (59). We can express (57) as

The lower bound is redundant because for any
,

Moreover, (59) can be expressed as

and again the lower bound can be shown to be automatically
satisfied. We therefore obtain the sufficient and necessary con-
dition in Lemma 4, completing the proof.
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