
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 4, APRIL 2008 1637

Maximum-Likelihood Detection of Orthogonal
Space-Time Block Coded OFDM in

Unknown Block Fading Channels
Tsung-Hui Chang, Wing-Kin Ma, Member, IEEE, and Chong-Yung Chi, Senior Member, IEEE

Abstract—For orthogonal space-time block coded orthogonal
frequency division multiplexing (OSTBC-OFDM) systems, many
of the existing blind detection and channel estimation methods
rely on the assumption that the channel is static for many
OSTBC-OFDM blocks. This paper considers the blind (semiblind)
maximum-likelihood (ML) detection problem of OSTBC-OFDM
with a single OSTBC-OFDM block only. The merit of such an
investigation is the ability to accommodate channels with shorter
coherence time. We examine both the implementation and iden-
tifiability issues, with a focus on BPSK or QPSK constellations.
In the implementation, we propose reduced-complexity detection
schemes using subchannel grouping. In the identifiability analysis,
we show that the proposed schemes can ensure a probability
one identifiability condition using very few number of pilots.
For example, the proposed semiblind detection scheme only re-
quires a single pilot code for unique data identification; while the
conventional pilot-based channel estimation method requires
pilots where denotes the channel length. Our simulation results
demonstrate that the proposed schemes can provide performance
close to that of their nonblind counterparts.

Index Terms—Blind and semiblind detection, maximum likeli-
hood detection, MIMO systems, OFDM, space-time block code.

I. INTRODUCTION

I N frequency selective fading channels, space-time coded
orthogonal frequency division multiplexing (OFDM) [1]

is a popular approach to providing transmit diversity and
coding gains; e.g., space-time trellis coded OFDM [2], [3],
and space-time block coded OFDM [4]–[13]. In particular, the
combination of orthogonal space-time block codes (OSTBCs)
and OFDM, or simply OSTBC-OFDM [5]–[13], has drawn
much attention because it attains the maximum transmit di-
versity and has a simple maximum-likelihood (ML) receiver
structure given channel state information (CSI) at the receiver.
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Recently, there have been considerable interests in techniques
requiring no CSI at the receiver; e.g., blind (semiblind) channel
estimation [5]–[7], [11], [12] and the differential schemes
[8]–[10]. Many of the existing blind channel estimators, such
as those based on second order statistics [5]–[7], assume that
the channel is static over many OSTBC-OFDM blocks. For
example, the blind subspace-based estimator in [5] uses at least
150 OSTBC-OFDM blocks in the simulations. Thus, these
estimators may not be applicable if the channel changes in a
block-by-block1 manner. When the channel can be invariant for
at least two blocks, differentially encoded OSTBC-OFDM is a
convenient scheme for no-CSI detection. It, however, incurs a
3-dB performance loss in terms of signal-to-noise ratio (SNR).

On the other hand, we have seen significant progress in the
blind ML detection techniques for OSTBCs in flat fading chan-
nels. In essence, by exploiting the special OSTBC characteris-
tics one can simplify the blind ML receiver realization problem
considerably. This has led to various realization methods, such
as the low-complexity cyclic ML method [14], [15], the simple
norm relaxation method [16], [17], optimal sphere decoding
[17], [18], and the efficient quasi-optimal semidefinite relax-
ation (SDR) method [17], [19]. Extensions to unknown noise co-
variance and time-selective fading have also been considered in
[15] and [18], respectively. These successes have recently moti-
vated investigation of blind ML OSTBC identifiability, a crucial
fundamental aspect that determines conditions under which a
blind OSTBC scheme can operate properly. A blind ML identifi-
ability analysis with a focus on BPSK/QPSK constellations has
been provided in [20]. This work not only proves that there exist
OSTBCs having very relaxed identifiability conditions (say, ca-
pability of unique code identification with one receive antenna
only), it also develops a construction method for such OSTBCs
with BPSK/QPSK constellations. Meanwhile, the concurrent
works [18], [19] have concentrated on an OSTBC scheme de-
sign using dual MPSK constellations, which is also found to
attain excellent identifiability. It is worth mentioning that OS-
TBCs are beneficial not just to the blind ML approach. In the
parallel developments of the blind subspace approach, OSTBCs
are also found to be a good class of space-time codes bringing
about simple estimator structure and attractive identifiability;
see [16], [21]–[23] for the details, and see [17] for some dis-
cussions comparing the ML and subspace approaches.

The purpose of this paper is to extend the above described
blind ML OSTBC technique to the OSTBC-OFDM scenario,

1In the rest of this paper we assume the tacit understanding that “block”
simply stands for “OSTBC-OFDM block”, for the sake of convenience.
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Fig. 1. OSTBC-OFDM system structure diagram.

with an emphasis on BPSK/QPSK constellations. A straight-
forward approach is to treat the OFDM subchannels as if
they were mutually independent flat fading channels. This
subchannel-wise approach enables direct application of the pre-
viously described flat-fading based blind ML techniques, but it
typically works well only when the channel remains static over
many (OSTBC-OFDM) blocks. This work follows a different
approach that has only been applied to the single-input-mul-
tiple-output OFDM scenario so far; see [24] and the references
therein, and [25]. The idea is to exploit the intersubchannel
relationship, specifically by linking the suchannels through
their time-domain characterization. By doing so we establish
a subchannel dependent ML approach that can perform well
with just one block. The advantages of this approach are the
ability to handle block fading channels (i.e., channels that vary
from one block to another), and short detection latency which
is favorable for delay-constrained applications.

This paper deals with two important issues that were not
addressed in the previous studies. First, we consider re-
duced-complexity implementation by proposing subchannel
grouping OSTBC-OFDM (SGOO) blind/semiblind detec-
tion schemes. This development is essential because full
OSTBC-OFDM (FOO) blind/semblind ML detection is usually
a large scale problem. Specifically the FOO problem size is
proportional to the discrete Fourier transform (DFT) size, the
latter of which is very large in practice; e.g., 128 for IEEE
802.11a and 2048 for DVB-H2. SGOO works by breaking the
FOO problem into smaller subproblems, and then by handling
each subproblem individually. Further improvement can be
obtained by using the low-complexity cyclic ML method to
fuse the SGOO solutions to yield a refined solution. We found
that this combined method works very well, as the simulation
results in Section VI will demonstrate.

Second, we perform a theoretical analysis for blind ML iden-
tifiability of OSTBC-OFDM. While an identifiability analysis
for OSTBCs in flat fading channels has been given in [20], its
implications are not sufficient enough to deal with its OSTBC-
OFDM counterpart. We provide a generalization of the existing
results, and more importantly we derive new results that connect
the blind ML identifiability conditions of OSTBC and OSTBC-
OFDM. With these results, we are able to design blind and

2DVB-H: Digital video broadcasting-handheld [26].

semiblind SGOO schemes that guarantee unique identifiability
in a probability one sense. The designed schemes require few
number of pilots; for example, in our semiblind SGOO scheme,
only one pilot OSTBC is needed. This is in sharp contrast to the
conventional pilot-aided channel estimation methods [13], [27],
in which unique channel identification requires at least pilot
codes where denotes the channel length.

This paper is organized as follows. Section II reviews
the OSTBC-OFDM signal model with an emphasis on
BPSK/QPSK constellations. Section III describes the sub-
channel dependent blind ML detection approach, and the
SGOO detection method. The proposed blind and semiblind
SGOO schemes are also introduced in that section. Sections IV
and V respectively deal with the implementation and identi-
fiability issues, based on a unified framework covering both
the SGOO and full OSTBC-OFDM problems. In Section VI,

simulation results are presented to demonstrate the perfor-
mance advantages of the proposed methods. Finally, some con-
clusions are drawn in Section VII.

II. BACKGROUND

In this review section, we first describe the OSTBC-OFDM
system model under consideration in the first subsection. Then,
we briefly explain the subchannel-independent blind ML ap-
proach and discuss its drawbacks in the second subsection.

A. OSTBC-OFDM System Model

Consider an OSTBC-OFDM system [12], [5] equipped with
transmit antennas and receive antennas as illustrated in

Fig. 1. As seen in the figure, denotes the discrete Fourier
transform (DFT) size of OFDM, or the number of subchan-
nels. Moreover, the length of the employed space-time codes
is denoted by . As a common assumption in space-time-fre-
quency coding, we assume that the channel can at least remain
static for OFDM symbols. Each subchannel, indexed by

, has a preassigned OSTBC encoder denoted by a
mapping
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where is the number of bits per code3. Over a time frame
of OFDM symbols or simply an OSTBC-OFDM block, each
subchannel will transmit one space-time matrix according to

. The model of the resultant received signal can be for-
mulated as

(1)

where , and is the OSTBC-OFDM
block index. Here, is the received code ma-
trix in the th block at subchannel is the
transmitted data vector sequence for subchannel

is the MIMO channel frequency response matrix in the
th block at subchannel , and is an AWGN ma-

trix with the average power per entry denoted by . It should
be stressed that the notation implies a block fading en-
vironment4 where the channel may change from one block to
another.

Our focus in this work is on BPSK/QPSK constellations. In
this case, each OSTBC function takes the linear dispersion
form [28]

(2)

where is the th entry of , and
are the basis matrices of . The basis matrices are

specially designed such that for any ,

(3)

where is the identity matrix.

B. Subchannel-Wise Blind ML Detection for Slow Fading
Channels

Let us consider a slow fading environment where is
static over consecutive (OSTBC-OFDM) blocks, say

for all subchannels . If we treat each as an
independent deterministic unknown, then blind ML detection
associated with the observations in (1) for is
given by independent subproblems:

(4)

for . The objective of (4) is to find a pair of
channel and symbols that gives the least squares approxima-
tion error to the observations. In essence, each subproblem in
(4) is equivalent to that of blind ML OSTBC detection in flat-

3In the coherent scenario we usually use the same OSTBC encoder for all
subchannels. But, in the blind scenario, we shall see that allowing a different
OSTBC for each subchannel has some advantage from a blind identifiability
standpoint.

4More precisely, the block fading assumption necessitates that the channel
coherence interval should be longer than T (N + L)T sec., where L denotes
the cyclic prefix length, and T is the sampling interval whose unit is second.

fading channels. Hence, the previously developed treatments for
the latter [12], [14]–[18], [29] can be directly applied to (4).
However, there are several reasons that would render this sub-
channel-wise blind ML detection approach unsatisfactory:

i) A moderate to large (or large data size) is usually re-
quired to achieve near coherent performance, from our
experience with the flat-fading scenario. This translates
into a long channel coherence time which may be vio-
lated in certain fast fading environments.

ii) Each blind detection subproblem in (4) is subject to a
sign ambiguity. To fix this problem, we need to place
pilot bits or even pilot codes in each subchannel. Each
subchannel is unable to take advantage of the pilots in
other subchannels.

iii) The MIMO frequency responses are actually depen-
dent. They follow a relationship called the FIR channel
parameterization. Specifically, the th entry of
is given by

(5)

where is the (finite) impulse response of
the channel between the th transmit antenna and the th
receive antenna, and is the channel length (or the cyclic
prefix length) with in practice. The subchannel-
wise approach, albeit simple, does not exploit the FIR
channel relationship.

III. BLIND ML DETECTION IN ONE OSTBC-OFDM BLOCK:
AN OVERVIEW

Starting from this section, we concentrate on the sub-
channel-dependent blind ML approach that enables detection in
one block. This section serves as an overview for this approach.
The more detailed derivations for implementations and iden-
tifiability will be provided in Sections IV and V, respectively.
In the first subsection, the problem formulation is presented. In
the second subsection, we introduce the subchannel grouping
OSTBC-OFDM (SGOO) schemes for complexity reduction.

A. Basic Problem Formulation

Recall the signal model in (1). Our problem is to blindly de-
tect the bit symbols from the associated re-
ceived signal block , thereby enabling de-
tection in one block. Under such circumstances, it is notation-
ally convenient to drop the index from (1) to form a simplified
signal model

(6)

The key ingredient of the subchannel-dependent approach is to
exploit the FIR channel parameterization in (5). Let

and be a DFT
vector and a time-domain channel vector, respectively.
Equation (5) can be reexpressed as

(7)
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Furthermore, by letting

...
. . .

... (8)

be the time-domain MIMO channel matrix, each can be
formulated as

(9)

where denotes the Kronecker product. Note that if we define

(10)

the model in (6) can be rewritten as

(11)

An interesting observation is that from a standpoint of
flat-fading based space-time coding, (11) can be viewed as
the received signal for a sequence of time-varying space-time
block codes over a flat-fading channel. The blind ML
detector for (11) is given by

(12)

There are two possible approaches for dealing with the above
minimization problem. One is to use cyclic minimization [15].
The idea is to cyclically update the channel and symbol esti-
mates, denoted, respectively, by and , by solving the
following two subproblems:

(13)

(14)

The cyclic (or multistage) update continues until some stopping
criterion is satisfied; see [15] for the details. It can be shown that
(13) is a least-squares (LS) channel estimator fixing ,
and that (14) is the coherent OSTBC detector given . The two
update processes can be shown to be very simple and of low
complexity [15]. However, cyclic ML cannot operate properly
without reasonable initialization of either or .

Another approach for handling (12) is based on Boolean
quadratic program (BQP) reformulation [17]. To illustrate this,
let where is
the total number of bits to be detected. It will be shown in the
next section that (12) can be simplified to be the BQP

(15)

for some appropriate , and that determining the op-
timal estimate of from the solution of (15) is simple. The re-
formulation in (15) enables us to handle the problem by directly
applying a readily available BQP solver; e.g., the quasi-optimal

SDR solver [17], [30] which has a worst-case polynomial-time
complexity of . This approach also serves as a reliable
means of finding good initializations for cyclic ML. We should
note that the problem size is proportional to the DFT size .
For practical DFT sizes, say, or even ,
the blind ML BQP is a large scale problem meaning that di-
rect application of BQP solvers would still be computationally
too expensive. This inherent difficulty motivates the subchannel
grouping method considered in the next subsection.

B. Subchannel Grouping OSTBC-OFDM

When dealing with a large scale problem, we would often
consider decoupling the original problem into smaller subprob-
lems for complexity reduction. This is the idea behind sub-
channel grouping (SG). Essentially, we group the subchan-
nels into a number of subsets, and then apply blind ML detec-
tion to each subset individually. Suppose that we have groups,
and let be the subchannel index set for the

th group. Fixing group , we have a dimension reduced signal
model

(16)

and a group-wise blind ML problem

(17)

We call (17) the SG OSTBC-OFDM (SGOO) problem. To dis-
tinguish SGOO from the complete OSTBC-OFDM problem in
(12), we call (12) the full OSTBC-OFDM (FOO) problem.

In designing a blind or semiblind SGOO scheme, there are
three factors to consider: The SG assignment, the placement of
pilots, and the choosing of the codes . A carelessly
designed SGOO scheme may have poor data identifiability,
meaning that the scheme would not operate properly even in
the absence of noise. Here we describe two SGOO schemes
that will be theoretically proven to exhibit good identifiability
(in Section V):

Semiblind SGOO Scheme: In this scheme, subchannel 1 is
assigned for pilot transmission (or is assumed to be known
at the receiver). The SG assignment is depicted in Fig. 2 and is
given by

(18a)

(18b)

where . It is assumed that . This SG assign-
ment is similar to that for coherent and differential space-time-
frequency coding [4], [9], [10], as well as for training-based
channel estimation [27], [31], [32] but there is some subtle dif-
ference. We let all the groups access subchannel 1, and thus each
SGOO problem is able to use the pilots to fix the sign ambiguity
effect. As for code selection, we can simply employ the same
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Fig. 2. Proposed SG scheme for N = 9 and P = 3.

OSTBC in every subchannel; i.e.,
.

Blind SGOO Odd-Even Scheme: In a blind scheme, only
one pilot bit is used. We employ the same SG assignment as
in (18), and assign the pilot bit to the 1st bit of the symbol
of subchannel 1, i.e., . The blind SGOO design presents
a more difficult challenge. For example, unlike the semiblind
SGOO scheme described above, a blind SGOO scheme with
universal OSTBC for all subchannels does not necessarily result
in good identifiability. In fact, simulation results in Section VI
will show that such a blind scheme could exhibit poor error per-
formance. To guarantee good identifiability in the blind case,
we employ the odd-even OSTBC arrangement, first introduced
in [20] for flat-fading blind ML OSTBC detection. The arrange-
ment is as follows: Subchannels 2 to (the data subchannels)
use a universal OSTBC, denoted by , while subchannel 1
(the pilot-embedded subchannel) uses a different OSTBC, de-
noted by ; that is, and

. Let

and assume that is even. Being the code function for carrying
most information symbols, would be chosen to be a max-
imal-rate BPSK/QPSK OSTBC [33], which often has an even

. The “odd” OSTBC function is constructed from by
taking out one bit:

Some discussions are now in order:
i) Once we solve all SGOO problems (say, in a quasi-op-

timal fashion by SDR), we can enhance the quality of the
obtained solution by applying the cyclic ML refinement
mentioned in Section III-A. Our experience with simula-
tions is that this combined method works very well, and
this will be illustrated in Section VI.

ii) If the above proposed semiblind scheme and blind
odd-even scheme are applied to the flat fading scenario
[specifically by modifying which
removes the subcarriers], the existing analysis results
[20] will be sufficient in showing that these two schemes

achieve good identifiability conditions. Such desirable
conditions do not directly carry over into the SGOO
scenario, however. The SGOO identifiability analysis
has an intricate relationship with the assigned SG pattern,
as we will see in Section V. But, in summary, it will be
proven that the SG assignment used in the two schemes
is sufficient in leading to good identifiability conditions.

IV. BLIND ML RECEIVER REALIZATION USING A UNIFIED

TREATMENT

In this section, we present the detailed derivations of the blind
ML BQP reformulation, for both SGOO and FOO. To facilitate
the development, it is desirable to establish a unified OSTBC-
OFDM (UOO) formulation for the two problems. Consider the
following generalized signal model:

(19)

(20)

Here, is a -bit OSTBC function
which admits a linear dispersion expression

(21)

where is the bit vector transmitted by ,
where is the

deterministically unknown channel, and is AWGN.
This UOO formulation is generalized in the sense that
we only assume to be distinct; i.e., for
any . We see that (19) represents FOO in (11) if

and so on. Similarly, an equiva-
lence can be established for each SGOO problem in (16).

Let us define
, and

(22)

Equation (19) can be rewritten as

(23)

and its respective blind ML problem is

(24)

where is the total number of bits. Our first
step is to investigate the inner minimization of (24). The inner
minimization is an LS problem given , which has a unique
solution

(25)
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if and only if is of full column rank. Let us study conditions
for to have full column rank. Let

...

...
...

. . .
... (26)

which is a Vandermonde matrix. By noting the following ex-
pression of :

. . .
...

where is the unit vector with the th entry equal to
1, can be rewritten as

(27)

where (a
block diagonal matrix), and is a permutation
matrix given by

It can be shown that, for any , the following com-
mutativity property holds:

(28)

Using (27) and (28), one can verify that

(29)

where . Using (29) and some standard
matrix results, we show that

(30)

We, therefore, conclude from (30) that has full column
rank if and only if .

The second step of the BQP reformulation is to substitute the
inner minimization solution in (25) into the blind ML problem
in (24). The resulting problem is given by

(31)

where is the orthogonal
projector of . Equation (31) can be simplified to a BQP, by
substituting (29) and (21) into (31). The development is concep-
tually identical to that in flat-fading blind ML OSTBC detection
[17], [18], though the derivations in this case appear to be no-
tationally more involved. Hence, for brevity, the result is given
without proof as follows:

Proposition 1: Suppose that . For the blind ML
problem in (24), an optimal symbol solution can be obtained
by solving the BQP

(32)

where has its entry given by

(33)

(34)

and

...
. . .

... (35)

The associated optimal channel solution is obtained by substi-
tuting the optimal solution of (32) into (25).

As mentioned earlier, the BQP problem in (32) can be ef-
fectively handled by readily available algorithms; e.g., the SDR
algorithm which yields a complexity of . Readers are
referred to [17] for detailed descriptions of SDR and the other
available BQP solvers.

The above developed blind ML framework can be easily ex-
tended to the semiblind case. In this paper, we are interested in
using only 1 pilot code. Without loss of generality, assume that

is known. Let be the un-
known data vector. The semiblind ML problem is given by

(36)

Like Proposition 1, problem (36) can be reformulated as a BQP.
That reformulation shares the same idea as that in the flat-fading
scenario [17], and its details are omitted here for conciseness.

We notice that the blind ML BQP in (32) has at least two
solutions: If is a solution of (32) then is also a solution
of (32). This sign ambiguity may be fixed by assigning one bit as
the pilot. As for the semiblind ML problem in (36), there should
be no such problem. However, it can be shown that

Lemma 1: The solution to the blind ML problem in (24) is
unique up to a sign only if . The solution to the semiblind
ML problem in (36) is unique only if .

The proof of this lemma is given in Appendix I, where we
show that the blind and semblind ML problems may give mul-
tiple solutions if .

V. BLIND ML IDENTIFIABILITY ANALYSIS

Following the development in the previous section, this sec-
tion considers blind ML identifiability analysis under the UOO
framework. Through the process we will see that the semiblind
and blind SGOO schemes proposed in Section III-B, as special
cases of UOO, have a rather relaxed probability one identifia-
bility condition. In the first subsection, we briefly review and
generalize some existing identifiability results for OSTBCs in
flat fading channels [20]. Then, in the second subsection, the
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relationship of the existing results and the UOO identifiability
conditions is explored.

A. Review and Generalization of Some Existing Results

A key result that will be used in this paper is probability one
blind/semiblind identifiability, which was developed for OS-
TBCs [20]. The essence of the result may be well described by
considering a noise-free generic MIMO problem

(37)

where is redefined as a transmitted code matrix drawn from
a (finite) codeword set , and again
and are the received signal matrix and MIMO
channel of the problem, respectively. Our treatment is general
in the sense that is not restricted to any particular class of
schemes. Hence, it may be applied not only to OSTBC, but also
to UOO as well as other space-time-frequency and space-time
coding schemes. For the UOO framework in (23), the blind
problem is equivalent to that in (37) with a codeword set

where is given in (27).
As for the semiblind problem, we have

where is fixed.
Consider applying blind ML detection to (37), in the same

way as before. To uniquely determine the true from , it is
essential that the following ambiguity situation does not hold

(38)

for any and . Simply speaking,
is said to be unique identifiable if (38) cannot be satisfied.

Consider the following definition.
Definition 1: A codeword set is said to be pairwise non-

transformable (PNT) if, for any two distinct codewords
, there does not exist a matrix such that

(39)

Moreover, is said to be PNT up to a sign (PNT- ) if (39)
does not hold for any and .

It can be verified from (38) and (39) that the PNT and
PNT- conditions are necessary for unique code identifia-
bility and unique code identifiability up to a sign, respectively.
PNT and PNT- are also sufficient identifiability conditions,
in a probability one sense. This is described in the following
theorem:

Theorem 1: Assume that is Gaussian distributed, and that
at least one column of has a positive definite covariance ma-
trix. Then, for the blind ML detection of (37):

i) the code matrix is uniquely identifiable with proba-
bility one if is PNT; and

ii) the code matrix is uniquely identifiable up to a sign
with probability one if is PNT– .

Note that the i.i.d. Rayleigh fading channels satisfy the
channel assumption in Theorem 1. The proof is presented in
Appendix II. The idea behind the proof is to show that the
ambiguity in (38) happens with probability zero, under the
premises in Theorem 1.

We should emphasize that Definition 1 and Theorem 1 are
generalization of the probability one identifiability result in [20],

which was only for orthogonal codes. In [20], we have the fol-
lowing definition.

Definition 2: Let be an BPSK or
QPSK OSTBC function, and . If is
PNT- , then is said to be strictly nonrotatable.

The use of the term “nonrotatable” was due to the observa-
tion that in (39) must be a rotation matrix if (39) is to be
satisfied by the OSTBC. An important question is where to find
a strictly nonrotatable OSTBC. This aspect has been studied in
[20], and simply speaking not all the existing OSTBCs have the
strictly nonrotatable property. But there exists a simple way of
converting a (BPSK/QPSK) OSTBC to a strictly nonrotatable
OSTBC5.

Lemma 2 (Ma [20]): Given a BPSK/QPSK OSTBC
, where is even, construct

(40)

The following concatenated code is strictly nonrotatable:

(41)

where , and
for .

B. Identifiability of OSTBC-OFDM

We now focus on the symbol identifiability of UOO under the
following assumptions:

A1) (this is a necessary identifiability condition;
cf., Lemma 1).
A2) is Gaussian distributed and at least one column of

has a positive definite covariance matrix.
Our aim is to derive conditions under which the super-code
in (27) has the PNT/PNT– property for the semiblind/blind
case, thereby achieving the probability-1 identifiability stated in
Theorem 1. To do this, let

(42)

be a concatenation of the OSTBCs in UOO. We consider the
following condition:

C1) Let . For any
with , where , there exists an

length- index sequence such that
, and the elements in are

nonzero, i.e.,

(43)

We have the following lemma for C1).
Lemma 3: Under C1), is PNT if and only if is PNT.

Moreover, under C1) is PNT– if and only if is strictly
nonrotatable.

The proof is provided in Appendix III. Lemma 3 has profound
implication: If we can guarantee that C1) holds, then the study

5The procedure was proposed to construct the so-called nonintersecting sub-
space OSTBCs. This class of codes is a subset of the strictly nonrotatable code
class, which has added advantage in the flat fading scenario (see [20] for the
details).
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of identifiability of UOO reduces to that of its OSTBCs. Now, a
key question is whether the subcarrier sets of FOO and SGOO
satisfy C1). Fortunately, the answer is yes, through careful in-
vestigation. Consider the following two lemmas which are rel-
evant to FOO and SGOO.

Lemma 4: Suppose that

Then, the corresponding satisfies C1).
Lemma 5: Suppose that we expand the problem size of UOO

from to , and that

for some . Then, the corresponding satisfies C1).
The proofs of the two lemmas are presented in Appendices IV

and V, respectively. We note that Lemma 4 is applicable to the
FOO problem and the SGOO problem associated with [see
(18a)], and that Lemma 5 is applicable to the SGOO problems
associated with for [see (18b)]. Hence, we
conclude the following.

Remark 1: The FOO problem satisfies C1). All SGOO prob-
lems satisfy C1).

Now, the remaining problem in our identifiability analysis is
to examine the PNT/PNT– condition of in (42).

Semiblind Detection Case: The pairwise transformation
identity for , given in (39) in Definition 1, can be explicitly
expressed as

(44)

where are distinct. Since the OSTBCs have
full column rank and subchannel 1 contains only the pilot; i.e.,

, from (44) we must have . Thus, (44) can be
all satisfied only when for all . In other words, by
Definition 1, the codewords of have to be PNT in the semi-
blind case. Hence, by Lemma 3 and Theorem 1, we obtain the
following theorem.

Theorem 2: Consider the semiblind ML detection of the
UOO problem [in (36)]. Under C1), the data vector is
uniquely identifiable with probability one.

Blind Detection Case: Let us focus on the odd-even
scheme described in Lemma 2, the same arrangement used in
the blind SGOO odd-even scheme proposed in Section III-B.
Specifically, given an OSTBC with even number of bits

, choose

(45)

where is the “odd” counterpart of , defined in the
same way as (40). Since Lemma 2 indicates that the resultant

is strictly nonrotatable (or PNT– ), we have the following
theorem.

Theorem 3: Consider the blind ML detection of UOO [in
(24)], and suppose that the odd-even arrangement in (45) is
employed. Under C1), the data vector is uniquely identifiable
up to a sign with probability one.

Now we are ready to consider the identifiability of SGOO, as
a special case of UOO. Due to Remark 1 and Theorems 2 and
3, the following important conclusion is reached.

Corollary 1: In the semiblind SGOO scheme in Section III-B,
the data symbols are uniquely identifiable with probability one.
In the blind SGOO odd-even scheme in Section III-B, the data
symbols are uniquely identifiable up to a sign with probability
one. The same identifiability holds for its FOO counterpart.

VI. SIMULATION RESULTS

This section presents three simulation examples to justify the
efficacy of the proposed blind/semiblind ML methods. Either
the QPSK Alamouti code [34] or the
QPSK 4 3 OSTBC code ((120) of [33])

was used. The DFT size was 256 for all the examples.
Since the respective FOO problems are large scale optimization
problems meaning that they cannot be handled efficiently, we
consider the SGOO schemes only6. The blind or semiblind ML
SGOO BQP was handled by the SDR algorithm [17]. The ob-
tained SGOO solutions were then refined by a one-cycle cyclic
ML procedure; the relevant equations are given in (13) and (14).
We compare the proposed schemes to the coherent ML detector
(which has perfect CSI) and the pilot-based LS channel esti-
mator [13], [27], [35]. Assume that the LS method employed

pilot codes, where and divides . Following
[31], the pilot placement of LS method is given by

If not mentioned specifically, we set . The differential
OSTBC-OFDM scheme [8] was also compared, which was the
one by applying the differential OSTBC scheme [36] to each
subchannel. In the simulations, the coefficients of are zero-
mean i.i.d. complex Gaussian distributed with variance equal to
1, and change from one OSTBC-OFDM block to next. The SNR
per subchannel is defined as

where
is the DFT submatrix and

. The detector performance was evaluated
in terms of average symbol error rate (SER), and there were 10
000 trials performed in each simulation example.

Simulation Example 1: Fig. 3 illustrates the results for the
QPSK 4 3 OSTBC. In Fig. 3(a), we show the BER perfor-
mance of the proposed SGOO schemes with and without the
cyclic ML solution refinement. In the legend, “CML” stands for
cyclic ML, and “Odd-Even” refers to the blind SGOO odd-even
scheme. One can see that, for both the blind and semiblind
SGOO schemes, the cyclic ML solution refinement procedure
enhances the performance of SGOO quite significantly. This

6Readers who are interested in the FOO performance are referred to [35],
where two simulation examples for FOO with smaller problem size were pro-
vided.
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Fig. 3. Performance (SER) of the proposed schemes for QPSK 4� 3 OSTBC, P = 16, (a) L = 12 and N = 3, (b) L = 8 and N = 2, (c) L = 8 and
N = 4, (d) L = 8 and SNR = 14 dB.

empirical finding implies that the SGOO solutions may pro-
vide sufficiently good initialization for cyclic ML to arrive at
a near-optimal FOO solution.

Fig. 3(b), (c), and (d) compares the performance of the pro-
posed method to that of the pilot-based LS method and the dif-
ferential scheme, under various conditions. We see that both the
semiblind and blind SGOO schemes outperform the LS method
and the differential scheme. One can also observe that the per-
formance of the two proposed schemes is close to that of the
coherent ML detector.

Simulation Example 2: This example aims to illustrate the
performance differences of identifiable and nonidentifiable
blind schemes. The QPSK Alamouti code is employed. It is
known that the Alamouti code is not identifiable in the flat
fading context, without using the odd-even arrangement [20] or
other methods [16], [18], [19]. The results are plotted in Fig. 4.
In the legend, “Blind SGOO” stands for the direct application
of the Alamouti code to SGOO (i.e., all subchannels employ the
QPSK Alamouti code), while “Blind SGOO Odd-Even” is the
proposed SGOO odd-even scheme. We should recall that “Blind
SGOO Odd-Even” works by removing only one bit symbol
from “Blind SGOO.” The figure indicates that the Alamouti
code is still nonidentifiable in the OSTBC-OFDM context,
and that the odd-even arrangement is successful in turning the
nonidentifiable blind SGOO scheme to an identifiable one. As

a reference, we also show the SER of the semiblind SGOO
scheme in Fig. 4. One can see that the semiblind SGOO scheme
achieves near-optimal performance, once again.

Simulation Example 3: In this example, we compare the
performance of the proposed ML detector and the Swindle-
hurst-Leus subspace detector [37]. The Swindlehurst-Leus
subspace detector was not developed for the block-fading
OSTBC-OFDM scenario, but we found that the detector is, in
essence, applicable to that case. However, this method works
only when some restrictive assumptions are satisfied. For
example, it requires the channel matrix to have full row
rank, which translates into the necessity of . This
requirement is impractical even when the channel length is
moderate. In contrast with the subspace method, the proposed
ML method does not suffer from this limitation, as we have
proven in Section V. It has also been verified from Fig. 3(d)
that the proposed schemes work well even when (while

). For fair comparison, the subspace method was
applied to the semiblind SGOO scheme by replacing the SGOO
ML detector with a Swindlehurst-Leus subspace counterpart.
The obtained solutions were also refined by the cyclic ML
method. Fig. 5 presents the performance comparison for the
semiblind case for QPSK Alamouti code with
and . One can see from this figure that the proposed ML
method significantly outperforms the subspace method.
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Fig. 4. Performance (SER) of the proposed schemes for QPSK Alamouti code,
P = 8; L = 8 and N = 4.

VII. CONCLUSION AND DISCUSSION

In this paper, we have developed a blind ML OSTBC-OFDM
framework that covers both the practical implementation and
theoretical identifiability issues. The proposed framework fea-
tures blind detection in one OSTBC-OFDM block, a character-
istic that is not present in most existing blind methods. We have
proposed subchannel grouping OSTBC-OFDM (SGOO) detec-
tion schemes that aim to overcome the large scale optimiza-
tion problem inherent in full OSTBC-OFDM (FOO) detection,
thereby enabling realizable implementations in practical OFDM
applications. Our analysis has shown that both the SGOO and
FOO schemes guarantee unique symbol identifiability in a prob-
ability one sense. Using simulations, we have demonstrated that
the SGOO schemes, when coupled with the cyclic ML method,
can outperform the pilot-based LS method and the differential
scheme. In fact, the simulation results indicated that the pro-
posed detectors can exhibit near-coherent performance.

Although our focus has been on BPSK/QPSK constellations,
the results can be extended to general MPSK constellations. The
implementation in this extension may be handled effectively by
incorporating the readily available MPSK quadratic program-
ming methods [18], [19], [38]. As for the identifiability, it is not
difficult to see that our semiblind identifiability result, which as-
sumes constant modulus OSTBCs only, is perfectly applicable
to the MPSK case. For a similar reason, it is likely that the ap-
plication of the dual MPSK constellation schemes [18], [19] to
OSTBC-OFDM should result in the same blind identifiability
condition as the odd-even BPSK/QPSK scheme proposed here.
Thesedirectionsprovideaninterestingavenueforfutureresearch.

APPENDIX I
PROOF OF LEMMA 1

For the blind ML problem in (24), the blind channel estimate
is unique only if is of full column rank. We have shown in
(30) that has full column rank if and only if . Now,
let us consider the case where . Since is invertible in
this case, (34) can be reduced to

(A.1)

Fig. 5. Performance (SER) comparison to the Swindlehurst-Leus subspace
method for Alamouti code, L = 3; P = 8 and N = 6.

i.e., . Substituting this result into (33), we
obtain . Subsequently, the blind BQP in
(32) reduces to independent subproblems:

(A.2)

for . Each subproblem in (A.2) is subject to a
sign ambiguity of its own. Hence, if is a solution
to (A.2) then any also serves as a solution to
(A.2). Similarly, we can find the same problem in the semiblind
case.

APPENDIX II
PROOF OF THEOREM 1

Suppose that (38) holds, and that there is no satisfying (39).
Let denote the pseudoinverse of . Premultiplying
on the both sides of (38) results in

(A.3)

where we denote , and we have used the basic prop-
erty at the right-hand side (RHS). Substituting
(A.3) into (38), we obtain

(A.4)

Let , which must not equal . The probability
that (A.4) holds is given by

(A.5)

for all . Here denotes the th column of
. Without loss of generality, suppose that is Gaussian dis-

tributed with a positive definite covariance matrix. Then one can
show that is of measure zero [39]. Hence, we
have , which is equivalent to saying that (38)
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holds with probability zero. It also follows that Theorem 1 is
true.

APPENDIX III
PROOF OF LEMMA 3

Assume that C1) holds. Proving Lemma 3 is equiva-
lent to proving the following alternative statement: Given

, there exists a matrix such that

(A.6)

if and only if there exists a matrix such that

(A.7)

The sufficiency of the statement in (A.6)–(A.7) is straight-
forward. Suppose that (A.7) holds, and let . By
recalling that , we obtain

(A.8)

Since , the RHS
of (A.8) can be reduced to that of (A.6).

To prove necessity, suppose that (A.6) holds. Equation (A.6)
can be rewritten as , which can be further ex-
panded as

(A.9)

Let the thin singular value decomposition of be
where is semiunitary, is

diagonal and invertible, and is unitary. Postmulti-
plying both sides of (A.9) by yields

(A.10)

(A.11)

We first show that is unitary, a property that will prove
useful later. Let

(A.12)

It can be shown that is semiunitary for any .
Equation (A.10) implies that

(A.13)

Since and are semiunitary, has to be unitary in
order to satisfy (A.13).

Second, we show that if for some , then
there exists a matrix such that and

. Combining this result with C1) will lead to
(A.7), the final result. From (A.10), the following two equations
are obtained:

(A.14)

(A.15)

We notice that .
By using the property
and the unitarity of , we find that

(A.16)

Postmultiplying both sides of (A.16) by results in

(A.17)

where . Similarly, premulti-
plying (A.16) by leads to

(A.18)

where . By premultiplying
(A.18) by , we achieve

(A.19)

Hence, we obtain

(A.20)

By C1) and by induction, we conclude that (A.17), (A.18), and
(A.20) holds for any with and .

APPENDIX IV
PROOF OF LEMMA 4

The corresponding satisfies . Subsequently
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since . It follows that for any with ,
we have a sequence
satisfying (43).

APPENDIX V
PROOF OF LEMMA 5

Without loss of generality, reorder such that
for , and . Its

Vandermonde matrix can be expressed as

(A.21)

where

...
...

... (A.22)

and . The above expression leads
to a partitioned form for

(A.23)

Let us consider the closed form of
. It can be shown, in the same way as the proof of

Lemma 4, that . Using the matrix inversion
lemma, we get

(A.24)

Substituting (A.24) into the submatrices in (A.23), we show that
and have simplified forms

(A.25)

(A.26)

Recall that our aim is to show C1), which says that for
any with (Note that we have ex-
tended to in this lemma), there exists a sequence

such that , and
for . To prove this, let be

the set

(A.27)

(where denotes the th element of ) and . The set
must be nonempty, since has full column rank implying that

. Moreover, it can be shown that for
, a familiar result presented in Lemma 4.

Applying the above results to (A.25)–(A.26), we locate some
nonzero elements of that are sufficient for this proof:

(A.28)

(A.29)

Our investigation is divided into two cases as follows.

Case A: Suppose that : If and
, then a feasible hopping sequence is simply

due to (A.28). If and , we can find
a hopping sequence in the following way. Let be a number
such that , and for all

. By inspection, such a always exists. Using
(A.28)–(A.29), we obtain a feasible hopping sequence

. Using the same idea, we can show that
hopping sequences exist for the remaining subcases, namely the
subcase , and the subcase .

Case B: Suppose that : If
then the hopping sequence is simply . If ,
then either one of the following possibilities must hold. In the
first possibility, there exists a number such that

, and for all . The
corresponding hopping sequence is

. In the second possibility, there exists a number such that
, and for all .

The corresponding hopping sequence is
.

Combining the results in Cases A and B, we conclude that
C1) holds.
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