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Linear Prediction Based Semiblind Channel Estimation for
Multiuser OFDM with Insufficient Guard Interval

Parthapratim De, Tsung-Hui Chang, and Chong-Yung Chi

Abstract—To meet the demand of high data rate trans-
missions for multimedia wireless communications, orthogonal
frequency division multiplexing (OFDM) systems in conjunction
with multiple-input multiple-output (MIMO) signal processing
have been considered one of the central techniques in advanced
wireless communications. In the paper, two semiblind channel
estimation algorithms are proposed for the uplink multiuser
OFDM systems with insufficient guard interval, in contrast to
sufficient guard interval assumed in most of the prior works.
A zero-padding OFDM system, which zero-pads rather than
cyclicly prefixing each block, is considered in this paper. By
utilizing the relation between the linear prediction error filters
(LPEFs) of the received signal with multiple prediction orders
and the transmitted data sequence, the first proposed algorithm,
namely the multistage LP (MLP) based algorithm, can estimate
the MIMO channel coefficients, with only a single pilot OFDM
block used. To reduce the sensitivity of the proposed algorithms
to the channel order overestimation, it is proposed to implement
the LPEFs with a QR-decomposition based approach. This QR-
decomposition based approach alternatively computes the LPEFs
without direct inversion of the received signal correlation matrix,
thus exhibiting robustness against channel order overestimation.
Some simulation results are presented to demonstrate the effec-
tiveness and robustness of the proposed algorithms.

Index Terms—Orthogonal frequency-division multiplexing
(OFDM), multiple-input multiple-output (MIMO), blind channel
estimation, linear prediction (LP), QR decomposition.

I. INTRODUCTION

MULTIMEDIA applications in wireless communications
require very high data rate transmissions. This has em-

phasized the importance of orthogonal frequency division mul-
tiplexing (OFDM) systems as well as multiple-input multiple-
output (MIMO) signal processing techniques [1]. Blind and
semiblind channel estimation for OFDM [2]–[7] has been of
great interest and central importance. This class of channel
estimation methods estimates the channel coefficients either
using only the received signal or using both the received signal
and a small number of pilot signals, thereby achieving higher
spectral efficiency (higher data transmission rate).

For MIMO-OFDM or multiuser OFDM systems where
usually a large amount of channel coefficients are involved, ef-
fective blind and semiblind channel estimation becomes much
more challenging and has attracted much attention recently
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[2]–[5]. Specifically, the semiblind channel estimation meth-
ods in [3] and [4] are developed for MIMO-OFDM systems
in which the guard interval between successive transmitted
data blocks is larger than the length of multipath channels.
These methods can estimate the channel coefficients up to
a matrix ambiguity without requiring precise knowledge of
the channel length. Some other works [6]–[8], [10], however,
focus on OFDM systems in which the guard interval is shorter
than the length of multipath channels. This might be necessary
for spectral efficiency consideration (to achieve higher data
rates by shortening cyclic prefix or zero padding length), or
because the multipath channel length is underestimated at
the transmitter. The associated blind and semiblind channel
estimation problems are much more difficult. For example,
when the guard interval is less than the channel length, the
semiblind subspace method developed in [3] can only estimate
the channel coefficients up to a polynomial matrix ambiguity.
The identifiability of this subspace method thereby is still
in question [3]. Another problem rising in the insufficient
guard interval scenario is that the rank of the channel matrix
depends on the multipath channel order. Corresponding blind
and semiblind channel estimation methods require knowledge
of the multipath channel order a priori; for example, the
blind subspace method in [6] for single-input multiple-output
(SIMO) OFDM systems requires the exact knowledge of the
channel order.

In the paper, we consider the semiblind channel estimation
problem for uplink multiuser OFDM systems with insufficient
guard interval. A zero-padding OFDM system, which zero-
pads rather than cyclicly prefixing each block, is considered
in this paper. A multistage linear prediction (MLP) based
semiblind channel estimation method is first developed. We
show that the minimum mean squared error (MMSE) linear
prediction error filter (LPEF) of the received signal contains
the transmitted data sequence up to an ambiguity matrix.
By computing these LPEFs of the received signal with dif-
ferent prediction orders, and by utilizing their relation to
the transmitted data sequence, we show that a single pilot
OFDM block is sufficient to resolve the ambiguity matrix
and the MIMO channel coefficients can be estimated using a
simple input-output-cross-correlation (IOCC) method. To the
best of our knowledge, the proposed approach is the first to
successfully achieve this insufficient guard interval semiblind
channel estimation by using only one pilot block.

As mentioned earlier that in the insufficient guard interval
case, the rank of the MIMO channel matrix depends on the
multipath channel order. The existing blind and semiblind
channel estimation/data detection methods [6], [7], [11] as
well as the proposed MLP based semiblind channel estimation
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methods, therefore, require the exact knowledge of the channel
order. Since most of these approaches involve the pseudo
inversion of the received signal correlation matrix whose
rank depends on the channel order, overestimation of the
channel order would lead to noise enhancement effect due to
the inversion of small eigenvalues associated with the noise
subspace in the received signal correlation matrix. Thus the
performance of the associated channel estimation methods
can be seriously degraded. To improve the robustness of
the proposed channel estimation methods against the channel
order overestimation, we apply the QR-decomposition based
LPEF in [9], [12]. This QR-decomposition based approach
alternatively computes the LPEFs without inversion of the
received signal correlation matrix and thereby is more robust
against channel order overestimation. Simulation results are
presented to demonstrate the effectiveness and robustness of
the proposed channel estimators.

The rest of the paper is organized as follows. The problem
statement and the system model are presented in Section
II. The proposed MLP based semiblind channel estimation
method is presented in Section III. Section IV presents the
application of the QR-decomposition based LPEF. Simulation
results are provided in Section V. Finally, the conclusions are
drawn in Section VI.

II. PROBLEM STATEMENT AND SYSTEM MODEL

Consider the uplink of a multiuser OFDM system where
the base station is equipped with 𝑀 receive antennas com-
municating with 𝐾 single-antenna users over a common
frequency band. Assume that 𝐾 ≤ 𝑀 , and that all the
users are in perfect synchronization in the uplink transmis-
sions. Let s

(𝑘)
𝑖 = [𝑠

(𝑘)
𝑖 (𝑁 − 1), . . . , 𝑠

(𝑘)
𝑖 (0)]𝑇 be the 𝑖th

transmitted data vector of user 𝑘, where 𝑁 denotes the dis-
crete Fourier transform (DFT) size. The time-domain signals
u
(𝑘)
𝑖 := [𝑢

(𝑘)
𝑖 (𝑁 − 1), . . . , 𝑢

(𝑘)
𝑖 (0)]𝑇 are obtained by taking

the inverse DFT (IDFT) of s
(𝑘)
𝑖 . In OFDM systems, the 𝑖th

transmitted OFDM block symbol consists of u(𝑘)
𝑖 padded with

a guard interval of 𝑍 (≥ 0) zero samples (or preceded with a
cyclic prefix). The guard interval enables simple subcarrier-by-
subcarrier equalization in the frequency domain at the receiver
provided that the guard interval length is larger than or equal
to the order of the time-domain channel impulse response [3].
However, if the guard interval is less than the channel order
including the case of no guard interval for higher spectral
efficiency, inter-block interference (IBI) arises, making the
equalization problem much more difficult [10].

Let ℎ(𝑚,𝑘)(ℓ), ℓ = 0, 1, . . . , 𝐿, denote the time-domain
channel impulse response from user 𝑘 to the 𝑚th receive
antenna, where 𝐿 stands for the channel order. In the section,
we derive the received signal model at the base station with the
guard interval length 𝑍 < 𝐿 ≪ 𝑁 (insufficient guard interval
case) [3]. The received 𝑖th OFDM block including the guard
interval of 𝑍 zero padded samples at the 𝑚th receive antenna
is given by

𝑦
(𝑚)
𝑖 (𝑛) =

𝐾∑
𝑘=1

𝐿∑
ℓ=0

ℎ(𝑚,𝑘)(ℓ)𝑢
(𝑘)
𝑖 (𝑛− ℓ)

+
𝐾∑

𝑘=1

𝐿−𝑍−1∑
ℓ=0

ℎ(𝑚,𝑘)(𝑍 + ℓ+ 1)𝑢
(𝑘)
𝑖−1(𝑁 + 𝑛− ℓ− 1)

︸ ︷︷ ︸
IBI

+ 𝑤
(𝑚)
𝑖 (𝑛),

(1)

for 𝑛 = 0, . . . , 𝑁 + 𝑍 − 1, where the second term
is due to the IBI and is nonzero only for 𝑛 <

𝐿 − 𝑍 , and 𝑤
(𝑚)
𝑖 (𝑛) is the additive noise. Let us de-

fine y𝑖(𝑛) = [𝑦
(1)
𝑖 (𝑛), 𝑦

(2)
𝑖 (𝑛), . . . , 𝑦

(𝑀)
𝑖 (𝑛)]𝑇 ∈ ℂ𝑀 ,

u𝑖(𝑛) = [𝑢
(1)
𝑖 (𝑛), 𝑢

(2)
𝑖 (𝑛), . . . , 𝑢

(𝐾)
𝑖 (𝑛)]𝑇 ∈ ℂ𝐾 , w𝑖(𝑛) =

[𝑤
(1)
𝑖 (𝑛), 𝑤

(2)
𝑖 (𝑛), . . . , 𝑤

(𝑀)
𝑖 (𝑛)]𝑇 ∈ ℂ𝑀 , and define the

MIMO channel matrix of the ℓth tap as

H(ℓ) =

⎡⎢⎢⎢⎣
ℎ(1,1)(ℓ) ℎ(1,2)(ℓ) ⋅ ⋅ ⋅ ℎ(1,𝐾)(ℓ)

ℎ(2,1)(ℓ) ℎ(2,2)(ℓ) ⋅ ⋅ ⋅ ℎ(2,𝐾)(ℓ)
...

...
. . .

...
ℎ(𝑀,1)(ℓ) ℎ(𝑀,2)(ℓ) ⋅ ⋅ ⋅ ℎ(𝑀,𝐾)(ℓ)

⎤⎥⎥⎥⎦ ∈ ℂ
𝑀×𝐾 .

It follows from (1) that the 𝑀×1 received signal vector y𝑖(𝑛)
can be expressed as

y𝑖(𝑛) =

𝐿∑
ℓ=0

H(ℓ)u𝑖(𝑛− ℓ)

+
𝐿−𝑍−1∑

ℓ=0

H(𝑍 + ℓ+ 1)u𝑖−1(𝑁 + 𝑛− ℓ− 1) +w𝑖(𝑛).

(2)

For the signal model in (2), we aim to develop a semiblind
channel estimation technique which only requires one OFDM
block known to the base station (i.e., a single training (pilot)
OFDM block). To this end, three general assumptions are
made as follows.
(𝒜1) The symbol sequence of each user 𝑠(𝑘)𝑖 (𝑛) is temporally

white with zero mean and variance 𝜎2
𝑠 , and is statisti-

cally uncorrelated with 𝑠
(𝑞)
𝑖 (𝑛) for 𝑘 ∕= 𝑞.

(𝒜2) The noise sequences 𝑤
(𝑚)
𝑖 (𝑛) are stationary, and tem-

porally and spatially white with zero mean and variance
𝜎2
𝑤.

(𝒜3) The symbol sequences 𝑠(𝑘)𝑖 (𝑛) are statistically uncorre-
lated with the noise sequences 𝑤

(𝑚)
𝑖 (𝑛).

Note that because the IDFT matrix is unitary, the assumptions
(𝒜1) and (𝒜3) also hold for the time-domain sequences
𝑢
(𝑘)
𝑖 (𝑛). On the other hand, we assume that the channels

between the users and the base station are quasi-stationary for
𝑃 consecutive OFDM blocks. That is, the channel coefficients
H(ℓ), ℓ = 0, . . . , 𝐿, are static from u𝑖(𝑛) to u𝑖+𝑃−1(𝑛) for
𝑛 = 0, . . . , 𝑁 − 1, and it may vary in the next 𝑃 blocks.
Under this channel assumption, our goal is to estimate the
channels coefficients provided that only the block u𝑖(𝑛), 𝑛 =
0, . . . , 𝑁 − 1, is the pilot.

III. MULTISTAGE LINEAR PREDICTION BASED SEMIBLIND

CHANNEL ESTIMATION

In this section, let us present the proposed MLP based semi-
blind channel estimator for the MIMO-OFDM model (2). It is
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to be noted that prior work on linear prediction based SIMO
and MIMO channel estimators and equalizers in [11], [14] are
for conventional continuous transmission systems. Our contri-
bution in this paper is to use linear prediction for blind chan-
nel estimation in a MIMO-OFDM block transmission system
(with the guard interval shorter than the length of the multipath
channel), which has not been done earlier in literature. It will
be seen in this section that the signal model and the channel
matrix in a block transmission system are quite different from
the case of conventional continuous transmission system.

The relationship between LPEFs of the received signal and
the transmitted data sequences is first established in Section
III-A. Based on this relation, a semiblind channel estimation
method is presented in Sections III-B and III-C.

A. Linear Prediction Error Filter and Its Relationship with
the Data Matrix

Here we consider the backward linear prediction of y𝑖(𝑘)
from the received signal {y𝑖(𝑁 + 𝑍 − 1), . . . ,y𝑖(𝑘 + 1)}
in the noise-free situation (i.e., w𝑖(𝑛) = 0), for some
𝑘 ∈ {0, . . . , 𝑁 + 𝑍 − 1}. Note that the prediction order
is (𝑁 + 𝑍 − 𝑘 − 1). By stacking y𝑖(𝑛) in (2) for 𝑛 =
𝑘, . . . , 𝑁 + 𝑍 − 1, let us define

𝒚
(𝑘)
𝑖 = [y𝑇

𝑖 (𝑁 + 𝑍 − 1), . . . ,y𝑇
𝑖 (𝑘)]

𝑇 = 퓗(𝑘)𝒈
(𝑘)
𝑖 , (3)

where

𝒈
(𝑘)
𝑖 = [u𝑇

𝑖 (𝑁 − 1),u𝑇
𝑖 (𝑁 − 2), . . . ,u𝑇

𝑖 (0),

u𝑇
𝑖−1(𝑁 − 1), . . . ,u𝑇

𝑖−1(𝑁 − 𝐿+ 𝑍 + 𝑘)]𝑇

∈ ℂ
(𝑁+𝐿−𝑍−𝑘)𝐾 , (4)

and 퓗(𝑘) is the corresponding channel matrix with the dimen-
sion (𝑁 + 𝑍 − 𝑘)𝑀 × (𝑁 + 𝐿 − 𝑍 − 𝑘)𝐾 and is given by
equation (5) (shown on the top of next page).

To perform linear prediction, we partition 𝒚
(𝑘)
𝑖 in (3) as

𝒚
(𝑘)
𝑖 ≜ [(𝒚

(𝑘)
𝑖 )𝑇 ,y𝑇

𝑖 (𝑘)]
𝑇 , (6)

where 𝒚
(𝑘)
𝑖 = [y𝑇

𝑖 (𝑁 + 𝑍 − 1), . . . ,y𝑇
𝑖 (𝑘 + 1)]𝑇 . According

to (3), (4) and (5), 𝒚(𝑘)
𝑖 can be expressed as

𝒚
(𝑘)
𝑖 = 퓗̃(𝑘)

𝒈
(𝑘)
𝑖 , (7)

where 퓗̃(𝑘)
is the upper-left (𝑁 +𝑍 − 𝑘− 1)𝑀 × (𝑁 +𝐿−

𝑍 − 𝑘 − 1)𝐾 submatrix of 퓗(𝑘) in (5) (obtained by deleting
the last 𝑀 rows and last 𝐾 columns of 퓗(𝑘)), and

𝒈
(𝑘)
𝑖 = [u𝑇

𝑖 (𝑁 − 1), . . . ,u𝑇
𝑖 (0),u

𝑇
𝑖−1(𝑁 − 1), . . . ,

. . . ,u𝑇
𝑖−1(𝑁 − 𝐿+ 𝑍 + 𝑘 + 1)]𝑇 , (8)

(obtained by deleting u𝑖−1(𝑁 −𝐿+𝑍 + 𝑘) in (4)). Let P(𝑘)
LP

denote the 𝑀 × (𝑁 +𝑍−𝑘−1)𝑀 LP matrix. The prediction
error vector for (6) is given by

d
(𝑘)
𝑖 = y𝑖(𝑘)−P

(𝑘)
LP𝒚

(𝑘)
𝑖 = [−P

(𝑘)
LP ∣ I𝑀 ]𝒚

(𝑘)
𝑖 , (9)

where I𝑀 is the 𝑀×𝑀 identity matrix. The linear prediction
matrix P

(𝑘)
LP can be obtained by the MMSE criterion, i.e.,

by minimizing the E{trace{d(𝑘)
𝑖 (d

(𝑘)
𝑖 )𝐻}}. It is easy to

show that the optimum P
(𝑘)
LP can be obtained by solving the

following linear equation

P
(𝑘)
LP𝐸{𝒚(𝑘)

𝑖 (𝒚
(𝑘)
𝑖 )𝐻} = E{y𝑖(𝑘)(𝒚

(𝑘)
𝑖 )𝐻}. (10)

The LP error vector d(𝑘)
𝑖 in (9) can be shown to be related to

the transmitted data sequence u𝑖−1(𝑁 − 𝐿+ 𝑍 + 𝑘). To this

end, an assumption is made on the rank of 퓗̃(𝑘)
in (7):

(𝒜4) The MIMO channel matrix 퓗̃(𝑘)
has full column rank.

For (𝒜4) to be true, the 𝑧-domain transfer functions of the
𝑀 different sub-channels of H(ℓ) must not have any common
zeros [11]. Under (𝒜4), the MMSE estimate of y𝑖(𝑘) in terms
of 𝒚(𝑘)

𝑖 can be shown to be equal to that in terms of 𝒈(𝑘)
𝑖 [14].

Denote by ŷ𝑖(𝑘∣𝒈(𝑘)
𝑖 ) the MMSE estimate of y𝑖(𝑘) in terms

of 𝒈(𝑘)
𝑖 . Then

P
(𝑘)
LP𝒚

(𝑘)
𝑖 = ŷ𝑖(𝑘∣𝒈(𝑘)

𝑖 ). (11)

Recall from (2) that, in the noise-free case

y𝑖(𝑘) =

𝑘∑
ℓ=0

H(ℓ)u𝑖(𝑘 − ℓ) +

𝐿−𝑍−1∑
ℓ=0

H(𝑍 + ℓ+ 1)

.u𝑖−1(𝑁 + 𝑘 − ℓ− 1). (12)

On the other hand, according to (8) and (12), ŷ𝑖(𝑘∣𝒈(𝑘)
𝑖 )

can be obtained as

ŷ𝑖(𝑘∣𝒈(𝑘)
𝑖 ) =

𝑘∑
ℓ=0

H(ℓ)u𝑖(𝑘 − ℓ) +

𝐿−𝑍−2∑
ℓ=0

H(𝑍 + ℓ+ 1)

.u𝑖−1(𝑁 + 𝑘 − ℓ− 1).
(13)

Therefore, by (9), (11), (12) and (13), we have

d
(𝑘)
𝑖 = y𝑖(𝑘)− ŷ𝑖(𝑘∣𝒚(𝑘)

𝑖 ) = H(𝐿)u𝑖−1(𝑁 − 𝐿+ 𝑍 + 𝑘).
(14)

The form of equation (14), for the noisy signal case, has
been discussed in literature. The multistep linear prediction
error filter (PEF), in the noiseless case, perfectly reduces the
number of transmitted symbols affecting any received symbol.
However, it can be shown that the additive noise introduces an
unwanted component comprising of residual ISI and colored
noise at the output of PEF.

B. Multistage Linear Prediction

Equation (14) implies that the prediction error vector d(𝑘)
𝑖+1

contains the transmitted signal u𝑖(𝑁 − 𝐿+ 𝑍 + 𝑘) up to the
ambiguity matrix H(𝐿). By varying the index 𝑘 from 0 to
𝐿−𝑍−1, one can obtain equations similar to (14) for signals
u𝑖(𝑁−𝐿+𝑍),u𝑖(𝑁−𝐿+𝑍+1), . . . ,u𝑖(𝑁−1). In order to
obtain equations corresponding to (14) for u𝑖(0),u𝑖(1), . . . ,
we consider the backward linear prediction of y𝑖(𝐿+ 𝑞) from
the received signal {y𝑖(𝑁 +𝑍−1), . . . ,y𝑖(𝐿+ 𝑞+1)} in the
noise-free situation, for some 𝑞 ∈ {0, . . . , 𝑁 + 𝑍 − 𝐿 − 1}.
The procedure is basically identical to that in Section III-A.
We stack y𝑖(𝑛) for 𝑛 = 𝐿+ 𝑞, . . . , 𝑁 + 𝑍 − 1, and define

Authorized licensed use limited to: National Tsing Hua University. Downloaded on January 16, 2010 at 01:53 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 12, DECEMBER 2009 5731

퓗(𝑘) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(𝑍) ⋅ ⋅ ⋅ H(𝐿) 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

H(0) H(1) . . . H(𝐿)
. . .

. . .
. . . ⋅ ⋅ ⋅

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . . H(0) . . . H(𝐿− 𝑍) 0 . . . . . .

...
. . .

. . .
. . . H(𝐿− 𝑍 − 1) H(𝐿) 0 . . .

...
. . .

. . .
. . .

...
...

. . .
. . .

... . . . . . . 0 H(0) H(𝑍 + 1) . . . H(𝐿)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

𝒚
(𝑞)
𝑖 = [y𝑇

𝑖 (𝑁 + 𝑍 − 1), . . . ,y𝑇
𝑖 (𝐿 + 𝑞)]𝑇 = 퓗(𝑞)

𝒈
(𝑞)
𝑖 ,

(15)

where

𝒈
(𝑞)
𝑖 = [u𝑇

𝑖 (𝑁 − 1),u𝑇
𝑖 (𝑁 − 2), . . . ,u𝑇

𝑖 (𝑞)]
𝑇 ∈ ℂ

(𝑁−𝑞)𝐾 ,

and

퓗(𝑞)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(𝑍) ⋅ ⋅ ⋅ H(𝐿) 0 ⋅ ⋅ ⋅
...

. . .
. . .

. . .
. . .

H(0) H(1) . . . H(𝐿)
. . .

0
. . .

. . .
. . .

. . .
...

. . . H(0) . . . H(𝐿)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ ℂ

(𝑁+𝑍−𝐿−𝑞)𝑀×(𝑁−𝑞)𝐾 . (16)

It should be noted that there is no IBI involved in 𝒚
(𝑞)
𝑖 . Again,

𝒚
(𝑞)
𝑖 is partitioned into

𝒚
(𝑞)
𝑖 = [(˜̄𝒚

(𝑞)
𝑖 )𝑇 ,y𝑇

𝑖 (𝐿+ 𝑞)]𝑇 , (17)

where ˜̄𝒚
(𝑞)
𝑖 = [y𝑇

𝑖 (𝑁 + 𝑍 − 1), . . . ,y𝑇
𝑖 (𝐿 + 𝑞 + 1)]𝑇 . The

vector ˜̄𝒚
(𝑞)
𝑖 can be expressed as

˜̄𝒚
(𝑞)
𝑖 = ˜̄퓗(𝑞)

˜̄𝒈
(𝑞)
𝑖 , (18)

where ˜̄퓗(𝑞)
is the upper-left (𝑁+𝑍−𝐿−𝑞−1)𝑀×(𝑁−𝑞−

1)𝐾 submatrix of 퓗̄(𝑘)
, and ˜̄𝒈

(𝑞)
𝑖 = [u𝑇

𝑖 (𝑁 − 1), . . . ,u𝑇
𝑖 (𝑞+

1)]𝑇 .
Denote by P̄

(𝑞)
LP the 𝑀 × (𝑁 + 𝑍 − 𝐿 − 𝑞 − 1)𝑀 matrix

for the MMSE predictor of y𝑖(𝐿+𝑞) from the received signal
{y𝑖(𝑁 + 𝑍 − 1), . . . ,y𝑖(𝐿 + 𝑞 + 1)}. Then P̄

(𝑞)
LP satisfies

P̄
(𝑞)
LP E{˜̄𝒚(𝑞)

𝑖 (˜̄𝒚
(𝑞)
𝑖 )𝐻} = E{y𝑖(𝐿+ 𝑞)(˜̄𝒚

(𝑞)
𝑖 )𝐻}, (19)

and the corresponding prediction error vector is given by
d̄
(𝑞)
𝑖 = [−P̄

(𝑞)
LP ∣ I𝑀 ]𝒚

(𝑞)
𝑖 . To show that the above d̄

(𝑞)
𝑖

contains the transmitted data u𝑖(𝑞) (up to an ambiguity
matrix), as in (𝒜4) in Section III-A, we need the assumption

that the channel matrix ˜̄퓗(𝑞)
in (18) has full column rank.

This condition holds only if the matrix ˜̄퓗(𝑞)
is a tall matrix.

That is, (𝑁+𝑍−𝐿−𝑞−1)𝑀 ≥ (𝑁−𝑞−1)𝐾, or equivalently

𝑞 ≤ 𝑘𝑚𝑎𝑥 ≜ (𝑁 + 𝑍 − 𝐿)𝑀 −𝑁𝐾

(𝑀 −𝐾)
. (20)

By following the same derivations as in (11), (12), (13) and

(14) under the assumption that ˜̄퓗(𝑞)
in (18) has full column

rank for 𝑞 = 1, . . . , 𝑘𝑚𝑎𝑥, one can obtain

d̄
(𝑞)
𝑖 = [−P̄

(𝑞)
LP ∣ I𝑀 ]𝒚

(𝑞)
𝑖 = H(𝐿)u𝑖(𝑞), (21)

for 𝑞 = 1, . . . , 𝑘𝑚𝑎𝑥. As presented in the next subsection,
(14) and (21) can be utilized to develop a semiblind channel
estimation method for the MIMO-OFDM model (2).

C. Semiblind Channel Estimation

Recall from Section II that we have assumed that the
channel coefficients H(ℓ), ℓ = 0, . . . , 𝐿, are fixed during
the transmissions of u𝑖(𝑛), u𝑖+1(𝑛), . . . ,u𝑖+𝑃−1(𝑛) for 𝑛 =
0, . . . , 𝑁 − 1 (𝑃 consecutive OFDM blocks). By assuming
that the 𝑖th OFDM block data s𝑖(𝑛), 𝑛 = 1, . . . , 𝑁 , are pilots
(thus u𝑖(𝑛), 𝑛 = 1, . . . , 𝑁 are known to the base station), let
us show in the subsection that (14) and (21) can be exploited
for estimation of H(ℓ) for ℓ = 0, . . . , 𝐿.

To this end, let us define

P𝑢 = [u𝑖(0),u𝑖(1), . . . ,u𝑖(𝑘𝑚𝑎𝑥),u𝑖(𝑁 − 𝐿+ 𝑍),

u𝑖(𝑁 − 𝐿+ 𝑍 + 1), . . . ,u𝑖(𝑁 − 1)],

D𝑖 = [d̄
(0)
𝑖 , d̄

(1)
𝑖 , . . . , d̄

(𝑘𝑚𝑎𝑥)
𝑖 ,d

(0)
𝑖+1,d

(1)
𝑖+1, . . . ,d

(𝐿−𝑍−1)
𝑖+1 ].

(22)

From (14) and (21), one has

D𝑖 = H(𝐿)P𝑢. (23)

Without loss of generality, we assume that the pilot matrix P𝑢

has full row rank and that 𝐾 ≤ 𝐿− 𝑍 − 1 + 𝑘𝑚𝑎𝑥. Because
P𝑢 is known to the base station, the ambiguity matrix H(𝐿)
can be estimated by

Ĥ(𝐿) = D𝑖P
†
𝑢, (24)
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where P†
𝑢 denotes the matrix pseudo inverse of P𝑢. On the

other hand, since (14) for 𝑘 = 0 implies

[d
(0)
𝑖+1, . . . ,d

(0)
𝑖+𝑃−1] = [−P

(0)
LP ∣ I𝑀 ] [𝒚

(0)
𝑖+1, . . . ,𝒚

(0)
𝑖+𝑃−1]

= H(𝐿)[u𝑖(𝑁 − 𝐿+ 𝑍), . . . ,u𝑖+𝑃−2(𝑁 − 𝐿+ 𝑍)],
(25)

with the use of Ĥ(𝐿), one can estimate the data sequence
{u𝑖(𝑁 − 𝐿+ 𝑍), . . . ,u𝑖+𝑃−2(𝑁 − 𝐿+ 𝑍)} by

û𝑗(𝑁 − 𝐿+ 𝑍) = (Ĥ(𝐿))†d(0)
𝑗+1, (26)

for 𝑗 = 𝑖, . . . , 𝑖+𝑃−2. Finally, according to (2), the estimated
sequence {û𝑖(𝑁 − 𝐿 + 𝑍), . . . , û𝑖+𝑃−2(𝑁 − 𝐿 + 𝑍)} can
be utilized for estimation of H(ℓ) via the input-output-cross-
correlation (IOCC) method. That is, for ℓ = 0, 1, . . . , 𝐿,

Ĥ(ℓ) = E[y𝑖(𝑁 − 𝐿+ 𝑍 + ℓ)û𝐻
𝑖 (𝑁 − 𝐿+ 𝑍)]

≈ 1

(𝑃 − 1)

𝑖+𝑃−2∑
𝑗=𝑖

y𝑗(𝑁 − 𝐿+ 𝑍 + ℓ)û𝐻
𝑗 (𝑁 − 𝐿+ 𝑍),

(27)

where the ensemble average has been replaced by the time
average. We summarize in Table I the above MLP based
semiblind channel estimation algorithm in terms of time
average estimate.

IV. QR DECOMPOSITION BASED LP ERROR FILTER

As presented in Section III, the LP estimators P
(𝑘)
LP and

P̄
(𝑞)
LP are obtained by solving the linear equations given by (10)

and (19), respectively. Specifically, if the channel matrix 퓗̃(𝑘)

in (7) has full column rank, then under Assumption (𝒜1),

E{𝒚(𝑘)(𝒚(𝑘))𝐻} = 퓗̃(𝑘)
(퓗̃(𝑘)

)𝐻 would have rank of (𝑁 +
𝐿 − 𝑍 − 𝑘 − 1)𝐾 . Then the linear system in (10) is rank
deficient, and the (minimum norm) solution of (10) is given
by

P
(𝑘)
LP = E{y𝑖(𝑘)(𝒚

(𝑘)
𝑖 )𝐻}(E{𝒚(𝑘)

𝑖 (𝒚
(𝑘)
𝑖 )𝐻})†. (28)

Because the matrix pseudo inverse of E{𝒚(𝑘)(𝒚(𝑘))𝐻} re-
quires knowledge of its rank, which however depends on the
channel order 𝐿, an accurate estimate of the channel order
is thus necessary before the matrix pseudo inversion. If the
channel order is overestimated, the noise subspace dimension
in the correlation matrix E{𝒚(𝑘)(𝒚(𝑘))𝐻} is then underesti-
mated, and consequently some of the small noise subspace
eigenvalues are erroneously classified in the signal subspace
and would be amplified in the matrix pseudo inversion [13].
This noise enhancement effect would significantly degrade the
performance of the proposed semiblind channel estimator. To
avoid this problem, in this section we present an alternative
approach to fulfill the LPEFs in (9) and (21) based on QR-
decomposition. It is worthwhile to mention that this channel
order overestimation problem never occurs for OFDM systems
with sufficient guard interval, as reported in [3] and [5].

Let us illustrate the proposed QR-decomposition method by
considering the LP problem in (10) for 𝑘 = 0. The extension
of this idea to other values of 𝑘 and to the LP problem in (19)
is straightforward and thus is omitted here. Since, in practice,

the ensemble average is replaced by the time average, by (3)
we define the received data matrix

Y𝑖 ≜ [𝒚𝑖,𝒚𝑖+1, . . . ,𝒚𝑖+𝑃−1]

≜ 퓗G𝑖 = 퓗[𝒈𝑖, 𝒈𝑖+1, . . . , 𝒈𝑖+𝑃−1] ∈ ℂ
(𝑁+𝑍)𝑀×𝑃

(29)

where 𝒚𝑖 = 𝒚
(0)
𝑖 , 퓗 = 퓗(0) and 𝒈𝑖 = 𝒈

(0)
𝑖 , in which we have

dropped the superscript for notational simplicity. Similarly, the
superscripts in (7) and (9) are also removed in this section.
According to (6), Y𝑖 in (29) can be partitioned as

Y𝑖 :=

[
Ỹ𝑖

B𝑖

]
=

[
𝒚𝑖 𝒚𝑖+1 . . . 𝒚𝑖+𝑃−1

y𝑖(0) y𝑖+1(0) . . . y𝑖+𝑃−1(0)

]
(30)

where

Ỹ𝑖 = [𝒚𝑖,𝒚𝑖+1, . . . ,𝒚𝑖+𝑃−1] ∈ ℂ
(𝑁+𝑍−1)𝑀×𝑃 , (31)

B𝑖 = [y𝑖(0),y𝑖+1(0), . . . ,y𝑖+𝑃−1(0)] ∈ ℂ
𝑀×𝑃 . (32)

Then the time average counterpart of (10) can be written as

P̂LP(Ỹ𝑖Ỹ
𝐻
𝑖 ) = B𝑖Ỹ

𝐻
𝑖 , (33)

and its associated solution is given by

P̂LP = B𝑖Ỹ
𝐻
𝑖 (Ỹ𝑖Ỹ

𝐻
𝑖 )†. (34)

Note that we have used P̂LP to represent the time average
estimate of PLP. Substituting (34) into (9) gives rise to the
optimum error matrix

E𝑖 ≜ [−P̂LP ∣ I𝑀 ]Y𝑖

= B𝑖 −B𝑖Ỹ
𝐻
𝑖 (Ỹ𝑖Ỹ

𝐻
𝑖 )†Ỹ𝑖. (35)

Since Ỹ𝑖Ỹ
𝐻
𝑖 ≈ 𝑃 (퓗̃퓗̃𝐻

) when 𝑃 is large, it can be seen
from (34) and (35) that the rank of 퓗̃ (or the channel order 𝐿)
needs to be exactly known at the base station for computing
the pseudo inversion of Ỹ𝑖Ỹ

𝐻
𝑖 [13]. This direct matrix pseudo

inversion can be avoided by applying the QR-decomposition
based LPEF which is an extension of the author’s work
reported in [12]. To illustrate this, let us consider the QR-
decomposition of matrix Ỹ𝐻

𝑖 [12]

Ỹ𝐻
𝑖 Π = Q

[
R1 R2

0𝑃−𝑟,𝑟 0𝑃−𝑟,(𝑁+𝑍−1)𝑀−𝑟

]
, (36)

where 𝑟 = rank(퓗̃) = (𝑁 + 𝐿 − 𝑍 − 1)𝐾 , R1 ∈
ℝ𝑟×𝑟 is a non-singular upper triangular matrix, R2 ∈
ℝ𝑟×((𝑁+𝑍−1)𝑀−𝑟), Q ∈ ℂ𝑃×𝑃 is a unitary matrix, Π ∈
ℝ(𝑁+𝑍−1)𝑀×(𝑁+𝑍−1)𝑀 is a permutation matrix making the
diagonal elements of R1 have magnitudes in descending order,
and 0𝑃−𝑟,𝑟 stands for the (𝑃 − 𝑟) × 𝑟 zero matrix. By
substituting (36) into (33), one can show that by extending
the results in [12]

[−P̂LP ∣ I𝑀 ]Y𝑖[Q]1:𝑟 = 0𝑀,𝑟, (37)

where [Q]1:𝑟 ∈ ℂ𝑃×𝑟 consists of the first 𝑟 columns of Q.
On the other hand, using (30) and (36) it can be shown that
by extending the results in [12]

[−P̂LP ∣ I𝑀 ]Y𝑖[Q]𝑟+1:𝑃 = B𝑖[Q]𝑟+1:𝑃 . (38)
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Combining (37) and (38) gives rise to

[−P̂LP ∣ I𝑀 ]Y𝑖 = [0𝑀,𝑟, B𝑖[Q]𝑟+1:𝑃 ]Q
𝐻

= B𝑖[Q]𝑟+1:𝑃 [Q]𝐻𝑟+1:𝑃 , (39)

which therefore provides an alternative representation of (35)
without pseudo inversion of Ỹ𝑖Ỹ

𝐻
𝑖 . Derivation of equations

(37) and (38) are not provided in this paper due to space
limitations. The advantage of the QR-decomposition based
method may be analyzed as follows. Suppose that the rank
of 퓗̃ is overestimated as 𝑟′ = (𝑁 + 𝐿′ − 𝑍 − 1)𝐾 where
𝐿′ = 𝐿 +△𝐿 and △𝐿 ≥ 0. By (39), the LP error matrix by
QR-decomposition becomes

[−P̂LP ∣ I𝑀 ]Y𝑖 = B𝑖[Q]𝑟′+1:𝑃 [Q]𝐻𝑟′+1:𝑃 , (40)

where the noise subspace vectors [Q]𝑟+1:𝑟′ are lost and
they would degrade the performance of channel estimation
algorithm. However, compared to the direct pseudo inversion
of Ỹ𝑖Ỹ

𝐻
𝑖 used in (35) and in most of conventional LP

based MIMO blind equalizers [5], [11], the QR-decomposition
based method in (39) shows much better robustness against
channel order overestimation, as demonstrated in our simu-
lation results later. To emphasize the proposed MLP based
channel estimation algorithm using the QR-decomposition
based LPEFs, we refer to it as the “MLP-QR” based method
in the paper. The importance of developing a blind channel
estimation algorithm robust to channel order overestimation
has been highlighted in [13] and one such algorithm has been
developed in [15] for a single-input multiple-output (SIMO)
continuous transmission system. Our QR decomposition based
algorithm is completely different from that algorithm in [15]
and is developed for a MIMO-OFDM and block transmission
system. Our algorithm, being based on QR decomposition,
is computationally more efficient than the algorithm in [15]
which is based on singular value decomposition (SVD). This
robust algorithm is an important contribution of this paper.

V. SIMULATION RESULTS

In the section, some simulation results are presented to
evaluate the performance of the proposed semiblind channel
estimation methods for MIMO-OFDM with insufficient guard
interval (0 < 𝑍 < 𝐿). A two-user (𝐾 = 2) uplink
OFDM system with the number of subcarriers equal to 16
(𝑁 = 16) was considered. The number of receive antennas
was 6 (𝑀 = 6). The channel coherence time was assumed to
be 600 OFDM blocks (𝑃 = 600). The data signals 𝑠

(𝑘)
𝑖 (𝑛),

𝑘 = 1, 2, were BPSK modulated. Each simulation result was
obtained by averaging over 125 trials. For each coherence
interval (trial), independent and identically distributed com-
plex Gaussian channel coefficients with zero mean and unit
variance were generated. The receiver signal-to-noise ratio
(SNR) was defined as

SNR =
E(∣∣y𝑖(𝑛)−w𝑖(𝑛)∣∣2)

E(∣∣w𝑖(𝑛)∣∣2) ,

and the performance of the channel estimator was measured
with the normalized MSE (NMSE)

NMSE =
1

125

125∑
𝑝=1

{∑𝐿
ℓ=0 ∣∣H(𝑝)(ℓ)− Ĥ(𝑝)(ℓ)∣∣2𝐹∑𝐿

ℓ=0 ∣∣H(𝑝)(ℓ)∣∣2𝐹

}
, (41)
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Fig. 1. Performance simulation results (NMSE) for 𝐿 = 6, 𝑀 = 6.
Subspace method of [3]. Plots for 𝑍 = 6 (sufficient guard interval) with
exact channel order and for 𝑍 = 4 (insufficient guard interval) with channel
order overestimation by 2.

where ∣∣H(𝑝)(ℓ)∣∣𝐹 denotes the Frobenious norm of H(𝑝)(ℓ),
and H(𝑝)(ℓ) is the MIMO channel coefficient matrix for
tap 𝑙 in the 𝑝th trial. Recall that the proposed MLP based
semiblind channel estimation method obtains the estimates of
u𝑖(𝑁−𝐿+𝑍),u𝑖+1(𝑁−𝐿+𝑍), . . . ,u𝑖+𝑃−2(𝑁−𝐿+𝑍) (see
(26)) followed by the estimates of the channel coefficients by
the IOCC method (27). By supposing that the data sequence
of u𝑖(𝑁−𝐿+𝑍),u𝑖+1(𝑁−𝐿+𝑍), . . . ,u𝑖+𝑃−2(𝑁−𝐿+𝑍)
is perfectly known to the base station, the channel coefficients
can be estimated by (27), yielding a NMSE which provides a
lower bound to that of the proposed methods. Since there are
no existing algorithms which can perform semiblind channel
estimation for the considered scenario, we compared the
proposed methods with this “perfect method”, and referred
to the associated NMSE curves as ”Lower Bound” in the
simulation results to be presented below.

First, the time domain subspace based blind channel esti-
mator [3] is simulated. Its performance for sufficient guard
interval (𝑍 = 6) with exact channel order and also its
performance for insufficient guard interval (𝑍 = 4) with
channel order overestimation by 2 (△𝐿 = 2) are shown in
Figure 1. The figure shows that while the subspace method
of [3] performs very well in the sufficient guard interval
case, its performance is inferior when there is channel order
overestimation and the guard interval is of insufficient length.
It is in this scenario that multistage linear prediction based
channel estimators proposed in this paper perform well and
have an advantage over the subspace based method of [3].

A. Performance of MLP based method with exact knowledge
of channel order

In this subsection, the performance of the proposed MLP
based semiblind channel estimator is investigated for the
insufficient guard interval scenario, provided that the base
station perfectly knows the channel order. Figure 2 shows the
results (NMSE v.s. SNR) of the MLP-QR based algorithm
for 𝐿 = 4, and 𝑍 = 2 and 𝑍 = 3, respectively. One
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TABLE I
SUMMARY OF PROPOSED MLP BASED SEMIBLIND CHANNEL ESTIMATION ALGORITHM

Given the received signals {y𝑖(𝑛),y𝑖+1(𝑛), . . . ,y𝑖+𝑃−1(𝑛)} for 𝑛 = 0, . . . , 𝑁 + 𝑍 − 1, the pilot block u𝑖(𝑛) for 𝑛 = 0, . . . , 𝑁 − 1, the channel
order 𝐿, and the guard interval length 𝑍 .

Step 1. For 𝑘 = 0, 1, . . . , 𝐿−𝑍 − 1 and 𝑗 = 𝑖+1, . . . , 𝑖+𝑃 − 1, let 𝒚(𝑘)
𝑗 = [y𝑇

𝑗 (𝑁 +𝑍 − 1), . . . ,y𝑇
𝑗 (𝑘+1)]𝑇 and 𝒚

(𝑘)
𝑗 = [𝒚

(𝑘)𝑇
𝑗 ,y𝑇

𝑗 (𝑘)]𝑇 . For
each 𝑘,
i) compute

R
(𝑘)
y𝒚 =

1

𝑃

𝑖+𝑃−1∑

𝑗=𝑖+1

y𝑗(𝑘)(𝒚
(𝑘)
𝑗 )𝐻 , R

(𝑘)
𝒚𝒚 =

1

𝑃

𝑖+𝑃−1∑

𝑗=𝑖+1

𝒚
(𝑘)
𝑗 (𝒚

(𝑘)
𝑗 )𝐻 ,

and the singular value decomposition (SVD) of R(𝑘)
𝒚𝒚 = USV𝐻 ;

ii) invert the largest (𝑁 + 𝐿− 𝑍 − 𝑘 − 1)𝐾 diagonal values of S and set the other diagonal values of S to zero to generate S†; and
iii) according to (10), compute the LP matrix by

P̂
(𝑘)
LP = R

(𝑘)
y𝒚VS†U𝐻 ,

and the prediction error vector d̂(𝑘)
𝑖+1 = −P̂

(𝑘)
LP𝒚

(𝑘)
𝑖+1 + y𝑖+1(𝑘).

Step 2. Compute 𝑘𝑚𝑎𝑥 = (𝑁+𝑍−𝐿)𝑀−𝑁𝐾
(𝑀−𝐾)

.

For 𝑞 = 0, 1, . . . , 𝑘𝑚𝑎𝑥 and 𝑗 = 𝑖, . . . , 𝑖 + 𝑃 − 1, let ˜̄𝒚
(𝑞)
𝑗 = [y𝑇

𝑗 (𝑁 + 𝑍 − 1), . . . ,y𝑇
𝑗 (𝐿 + 𝑞 + 1)]𝑇 and 𝒚

(𝑞)
𝑗 = [(˜̄𝒚

(𝑞)
𝑗 )𝑇 ,y𝑇

𝑗 (𝐿 + 𝑞)]𝑇 .
For each 𝑞,
i) compute

R
(𝑞)

y ˜̄𝒚
=

1

𝑃

𝑖+𝑃−1∑

𝑗=𝑖

y𝑗(𝐿+ 𝑞)(˜̄𝒚
(𝑞)
𝑗 )𝐻 , R

(𝑞)
˜̄𝒚 ˜̄𝒚

=
1

𝑃

𝑖+𝑃−1∑

𝑗=𝑖

˜̄𝒚
(𝑞)
𝑗 (˜̄𝒚

(𝑞)
𝑗 )𝐻 ,

and the SVD of R(𝑞)
˜̄𝒚 ˜̄𝒚

= ŪS̄V̄𝐻 ;

ii) invert the largest (𝑁 − 𝑞 − 1)𝐾 diagonal values of S̄ and set the other diagonal values to zero to generate S̄†; and
iii) according to (19), compute the LP matrix by

ˆ̄P
(𝑞)
LP = R

(𝑞)

y ˜̄𝒚
V̄S̄†Ū𝐻 ,

and the prediction error vector ˆ̄d
(𝑞)
𝑖 = [− ˆ̄P

(𝑞)
LP ∣ I𝑀 ]𝒚

(𝑞)
𝑖 .

Step 3. Construct from the pilot block u𝑖(𝑛)

P𝑢 =[u𝑖(0),u𝑖(1), . . . ,u𝑖(𝑘𝑚𝑎𝑥),u𝑖(𝑁 − 𝐿+ 𝑍),

u𝑖(𝑁 − 𝐿+ 𝑍 + 1), . . . ,u𝑖(𝑁 − 1)],

and let D𝑖 = [d̄
(0)
𝑖 , d̄

(1)
𝑖 , . . . , d̄

(𝑘𝑚𝑎𝑥)
𝑖 ,d

(0)
𝑖+1,d

(1)
𝑖+1, . . . ,d

(𝐿−𝑍−1)
𝑖+1 ].

Estimate the ambiguity matrix Ĥ(𝐿) = D𝑖P
†
𝑢.

Step 4. Estimate the data sequence
û𝑗(𝑁 − 𝐿+ 𝑍) = (Ĥ(𝐿))†[−P̂

(0)
LP ∣ I𝑀 ]𝒚

(0)
𝑗+1

for 𝑗 = 𝑖, . . . , 𝑖+ 𝑃 − 2.
Estimate H(ℓ), ℓ = 0, . . . , 𝐿 via IOCC

Ĥ(ℓ) =
1

(𝑃 − 1)

𝑖+𝑃−2∑

𝑗=𝑖

y𝑗(𝑁 − 𝐿+ 𝑍 + ℓ)û𝐻
𝑗 (𝑁 − 𝐿+ 𝑍),

can observe from this figure that the NMSE performance of
the proposed MLP-QR based algorithm for 𝑍 = 3 is better
than that of 𝑍 = 2. Moreover, for 𝑍 = 3, the performance
difference between the proposed method and the lower bound
curve is small for SNR ≥ 35 dB. Figure 3 shows consistent
performance results for 𝐿 = 6, and 𝑍 = 4 and 𝑍 = 5,
respectively. It can be seen, from Figure 3, that for SNR≥ 35
dB, the performance of the proposed method is very close
to the lower bound curves, demonstrating the efficacy of the
proposed MLP based method.

B. Performance under channel order overestimation

As discussed in Section IV, if the channel order is overes-
timated at the base station, directly computing the LPEF by
(35) in the proposed semiblind channel estimation methods
would seriously degrade estimation performance; whereas this
effect can be alleviated by using the QR-decomposition based
method. In the subsection, let us validate this by simulation

results. Figure 4 displays the performance results for 𝐿 = 4
and 𝑍 = 2 under channel order overestimation of 5 and
8 (△𝐿 = 5, △𝐿 = 8), respectively. The curves “MLP”
denote the MLP based method in Table I which uses the
direct pseudo inversion as in (35) to implement the LPEFs.
The curve of performance lower bound was also displayed in
the figure. It can be seen from this figure that for △𝐿 = 0
(perfect knowledge of channel order) both MLP-QR and MLP
based algorithms almost have the same NMSE performance.
However, for the cases of △𝐿 > 0, one can see that the MLP-
QR performs much better than the MLP and exhibits small
performance loss compared to that of △𝐿 = 0. Consistent
simulation results for 𝐿 = 4 and 𝑍 = 3 can be observed in
Figure 5. Simulation results with 32 sub-carriers and 4 receive
antennas as in [3], 3 users, 𝑍 = 4, 𝐿 = 6 are shown in Figure
6. The user data signals are QPSK modulated. The channel is
a Rayleigh fading channel.
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Fig. 2. Performance simulation results (NMSE) for 𝐿 = 4, 𝑀 = 6
(insufficient guard interval).
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Fig. 3. Performance simulation results (NMSE) for 𝐿 = 6, 𝑀 = 6
(insufficient guard interval).
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Fig. 4. Performance comparison results (NMSE) for 𝐿 = 4, 𝑀 = 6 and
𝑍 = 2 (insufficient guard interval).

VI. CONCLUSIONS

In the paper, we have presented a MLP based semiblind
channel estimation algorithm for multiuser OFDM systems
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Fig. 5. Performance comparison results (NMSE) for 𝐿 = 4, 𝑀 = 6 and
𝑍 = 3 (insufficient guard interval).
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Fig. 6. Performance comparison results (NMSE) for 𝐿 = 6, 𝑀 = 6 and
𝑍 = 4 (insufficient guard interval), 𝑁 = 32 subcarriers, 𝐾 = 3 users, QPSK
modulation.

with insufficient guard interval. We have shown that, by utiliz-
ing the relation between the LPEFs of the received signal with
multiple prediction orders and the transmitted data sequence,
the MIMO channel coefficients can be estimated without
ambiguity by the proposed MLP based algorithm using a
single pilot OFDM block only. To alleviate the sensitivity
of the proposed algorithms to the channel order overesti-
mation, we have also proposed to implement the associated
LPEFs in a QR-decomposition based method. Our simulation
results have shown that the proposed MLP based algorithm
performs well in the insufficient guard interval situation. The
QR-decomposition based LPEFs exhibit superior robustness
against channel order overestimation.
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