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Abstract—In real-world applications such as those for speech
and audio, there are signals that are nonstationary but can be
modeled as being stationary within local time frames. Such sig-
nals are generally called quasi-stationary or locally stationary
signals. This paper considers the problem of direction-of-ar-
rival (DOA) estimation of quasi-stationary signals. Specifically,
in our problem formulation we assume: i) sensor array of uni-
form linear structure; ii) mutually uncorrelated wide-sense
quasi-stationary source signals; and iii) wide-sense stationary
noise process with unknown, possibly nonwhite, spatial covari-
ance. Under the assumptions above and by judiciously examining
the structures of local second-order statistics (SOSs), we develop a
Khatri-Rao (KR) subspace approach that has two notable advan-
tages. First, through an identifiability analysis, it is proven that
this KR subspace approach can operate even when the number of
sensors is about half of the number of sources. The idea behind
is to make use of a ‘““virtual” array structure provided inherently
in the local SOS model, of which the degree of freedom is about
twice of that of the physical array. Second, the KR formulation
naturally provides a simple yet effective way of eliminating the
unknown spatial noise covariance from the signal SOSs. Extensive
simulation results are provided to demonstrate the effectiveness of
the KR subspace approach under various situations.

Index Terms—Khatri-Rao subspace, Kruskal-rank, quasi-sta-
tionary signals (QSS), second-order statistics, underdetermined di-
rection-of-arrival (DOA) estimation, unknown noise covariance.

I. INTRODUCTION

IRECTION-OF-ARRIVAL (DOA) estimation using an
array of sensors, or direction finding (DF) is an impor-
tant topic since there are many real-world problems where ac-
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curate acquisition of source directions is essential; for example,
in radar, sonar, and microphone array systems, to name a few.
The development in this discipline over the decades has re-
sulted in a number of elegant signal processing concepts and
techniques, for example, the high-resolution subspace approach
to narrowband DOA estimation [1], [2], and its wideband ex-
tension using the frequency-domain signal subspace processing
methods [3]-[5].

The main interest here is in DOA estimation of quasi-sta-
tionary signals, or direction finding of quasi-stationary sig-
nals (DF-QSS) for short. Quasi-stationary signals represent a
class of nonstationary signals in which the statistics are locally
static over a short period of time, but exhibit differences from
one local time frame to another. Speech and audio signals, for
instance, are often recognized as quasi-stationary signals. In
fact, DOA estimation of audio signals has a practically very
relevant application where the objective is to monitor birds
in an airport for avoiding collisions of birds and aircrafts [6].
It also finds applications in microphone array processing of
speech signals [7]. These real-world applications provide strong
motivations for studying DF-QSS.

In the context of blind source separation (BSS), utilizing
quasi-stationarity has received certain attention [8]-[14]. In
BSS of quasi-stationary signals (BSS-QSS), we may classify
the presently available methods into two main streams. The
first stream is based on the least squares fitting (LSF) crite-
rion [10]-[14]. Using a beautiful linear algebra tool called
parallel factor analysis (PARAFAC) [15]-[17], an appealing
identifiability result can be proven for LSF: Quasi-stationarity
actually gives us the opportunity to identify sources in under-
determined mixing systems [12], [14]; i.e., when the number
of sensors is less than the number of sources. However, this
advantage comes with a challenge, namely that LSF is a multi-
dimensional nonlinear optimization problem. Currently, LSF is
handled by gradient descent [8], or various forms of alternating
minimization such as the trilinear alternating least squares
[17] and alternating-columns diagonal-centers (AC-DC) [18].
The second stream is based on the joint diagonalization (JD)
criterion [9]. Under some mild conditions such as Gaussian
(and quasi-stationary) sources, JD was shown to be equivalent
to blind maximum-likelihood estimation [9]. JD is a very
interesting matrix problem in essence and has attracted much
attention; see the literature such as [9], [19], and [20], and the
references therein. In JD, we are also faced with an optimization
problem that is nonlinear and multidimensional.
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In this paper, we propose a subspace approach to DF-QSS.
Our work is based on the assumptions that:

i) the sources are mutually uncorrelated and wide-sense
quasi-stationary;

ii) the noise is wide-sense stationary, but with an unknown,

possibly nonwhite, spatial covariance; and

iii) the sensor array exhibits a uniform linear structure.

Our idea is to exploit the subspace characteristics of the
time-variant second-order statistics (SOSs) of the quasi-sta-
tionary source signals. Since this development involves
subspace formed by the self Khatri-Rao (KR) product of the
array response, we call the proposed approach the KR subspace
approach. We should point out that the established KR sub-
space approach has its criterion different from the LSF and JD
criteria used in BSS-QSS. A meaningful result with the KR
subspace formulation is that for a physically underdetermined
problem, the DOA estimation problem under the KR subspace
can be ‘virtually overdetermined’ under some conditions. In
essence, our identifiability analysis proves that for a sensor
array of IV elements, the degree of freedom under the KR sub-
space formulation is 2/N — 2. This translates into an advantage
that a KR subspace method can unambiguously identify up to
2N — 2 sources. This is a significant improvement, compared
to the conventional subspace SOS-based approach where the
limit is NV — 1 sources. The KR subspace approach is also
convenient to implement, since available subspace algorithms
or concepts (e.g., MUSIC!) can be carried forward at a certain
point of the KR formulation. In addition, the KR subspace
formulation provides a convenient way of removing the spatial
noise covariance matrix from the received signal SOSs, without
knowing the noise covariance. Thus, the KR subspace approach
is effective against spatially colored noise with unknown spatial
covariance. Moreover, we will propose a novel idea where the
KR problem dimension is reduced prior to the subspace pro-
cessing. This dimension reduction idea helps save complexity
in implementations, and it does so without losing the effective
degree of freedom of the virtual array.

Since the proposed KR subspace approach enables underde-
termined DOA estimation of quasi-stationary signals, it would
be appropriate to mention other existing underdetermined DOA
estimation approaches. Underdetermined DOA estimation is
possible when the source signals are non-Gaussian stationary,
and that necessitates the use of higher order statistics (HOSs).
In the HOS-DF approach [21]-[24], it has been discovered
that the higher order cumulants of the observed signals provide
a virtual array structure that coincides with the one found in
this paper when such cumulants are of fourth order. Neverthe-
less, the DF-QSS and HOS-DF approaches follow different
formulations and they target different signals and applications.
For speech signals, our simulation results will show that the
proposed DF-QSS approach yields better DOA estimation ac-
curacies than the HOS-DF approach (though it is fair to say that
we would expect to see the opposite for strongly non-Gaussian,
weakly quasi-stationary signals).

The development in this paper concentrates on the narrow-
band DOA estimation scenario. Using the frequency-domain

IMUSIC stands for multiple signal classification.
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signal subspace processing methods [3]-[5], one can readily ex-
tend the proposed KR subspace approach to the wideband DOA
estimation scenario. The wideband extension is also consid-
ered and tested, where the simulation results will illustrate that
the proposed wideband KR subspace algorithm is successful in
identifying DOAs of real speech signals under underdetermined
environments.

Notations: We denote matrices and vectors by boldfaced cap-
ital letters and lower-case letters, respectively. The space of
complex (real) IV -dimensional vectors is denoted by CV (R™).
Likewise, the space of complex (real) M x N matrices is de-
noted by CM*N (RM*N) The ith element of a vectora € CV
is denoted by a;. The ith column of a matrix A € CM*V is
denoted by either a; € CM or [A];. The superscripts “I™ and
“H” stand for the transpose and conjugate transpose, respec-
tively. For a given vector x € C, ||x|| denotes its Euclidean
norm. Its matrix counterpart, namely the Frobenius norm, is also
denoted by || - ||. The expectation operator is denoted by E{-}.
The M x M identity matrix is denoted by I;,. The notation 1,
stands for the M x 1 all-one vector.

For a given matrix A € CM*¥ | the range space and the
orthogonal complement subspace are denoted by R(A) and
R+(A), respectively. The notation vec( - ) stands for vectoriza-

tion; i.e., if A = [ay,...,ay] then vec(A) = [af ... aL]T.
For a given vector a € C, Diag(a) means a diagonal matrix

with the diagonals given by ay,...,aps.

II. PROBLEM STATEMENT

We will first describe the signal model and assumptions of
the DOA estimation problem considered in this paper. Then, we
will study the second-order statistics model of the problem.

A. Signal Model and Assumptions

Consider a scenario in which a number of K narrowband
far-field sources are observed by a sensor array of NV elements.
The array is assumed to have a uniform linear array (ULA)
structure. We denote by z,,(t) the observed signal of the nth
sensor, and sy, (t) the signal emitted by the kth source. By letting

x(t) = [z1(t),...,zn(t)]" and s(t) = [s1(t),...,sx(t)]7,
the received signal is modeled as
x(t) = As(t) +v(t), t=0,1,2,.... 1)

Here, v(t) € C¥ represents the spatial noise, A =
[a(f1),...,a(fk)] € CNXE is the array response matrix
where 0, € —(7/2), (7 /2) is the direction of arrival (DOA) of
source k, and

j2nd . jomd . T
a(g) _ |:1,e—’ x 5111(9)7 » .,C_T(N_l) 51n(0):| (2)

denotes the steering vector function with d and A being the in-
tersensor spacing and the signal wavelength, respectively. Some
common assumptions are made as follows:

A1) The source signals sg(t),k = 1,..., K, are mutually
uncorrelated and have zero-mean.
A2) The source DOAs 0,k = 1,..., K, are distinct to one

another, i.e., 8y # 6, forall k # /.
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A3) The noise v(t) is zero-mean wide-sense stationary
(WSS) with covariance matrix C 2 E{v(t)v¥(t)},
and it is statistically independent of the source signals.

In this paper, the source signals are modeled as quasi-sta-

tionary processes. Specifically, our assumption is in a wide
sense or up to second-order statistics [8]-[11].

A4) Each source signal si(¢) is wide-sense quasi-stationary
with frame length L; i.e.,

E{|sk(t)]*} = dr, YVt € [(m—1)L,mL—1]

form=1,2,.... (3)

Assumption A4) means that the second-order statistics of the
source signals are time-varying, but that they remain static
over a short period of time. Quasi-stationarity is a reasonable
assumption for certain real-world signals, such as speech and
audio.

B. Local Covariance Model for Quasi-Stationary Signals

Under the quasi-stationarity assumption A4), we can define a
local covariance matrix

R,, = BE{x(t)x# (t)} e CV*N
Vte[(m—1)L,mL—-1] (4)

where m = 1, 2,... denotes the frame index. These local co-
variance matrices may be estimated by local averaging; that is,
R = (1/1) Y7011 L x(H)x™ (£). With A1), A3), and A4),
we can express R, as

R,, = AD,,Af + C (5)

where D,, = Diag(dy1,dm2,---,dmr) € REXE is the
source covariance matrix at frame m. Now, suppose that we
have a number of local covariance matrices Ri,..., R
available, where M is the total number of frames. Our goal is
to estimate the DOAs 61, ...,0x from Ry,..., R, without
information of both the local source covariances Dq,...,Dys
and the spatial noise covariance C.

III. KHATRI-RAO SUBSPACE APPROACH

This section presents the proposed approach, the Khatri—Rao
subspace approach to DOA estimation of quasi-stationary sig-
nals. In Section III-A, we first give a brief review on some basic
concepts regarding Khatri—-Rao product. Then, we describe the
KR subspace formulation for the DOA estimation problem in
Section III-B. In particular, the KR subspace DOA estimation
criterion, the noise covariance elimination method, and the DOA
identifiability conditions of the established criterion are consid-
ered. These are followed by Section III-C, where we introduce
a KR dimension reduction method for computational efficiency
and use that to develop KR subspace algorithms.
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A. Basic Concepts of Khatri—Rao Product

We use the symbol “®” to denote the Khatri-Rao (KR)
product. For two matrices A € C"** and B € C™** of
identical number of columns, the KR product of them is given
by

AGB=[a;®by,...,a;,®b;] € C"** (6)

’ ’

where ® denotes the Kronecker product. In this work it is suf-
ficient to know the definition of the Kronecker product of two
vectors a € C™ and b € C™, which is given by

alb
(12b

a®@b= = vec(ba’). @)

an,b
The KR product plays an important role in PARAFAC [17].
One useful property is given as follows.

Property 1: Let A € C"** B € C™** and d € C*. Also
denote D = Diag(d). Then

vec(ADBH) = (B* ® A)d. )

Property 1 has been used in the literature such as [17] and [18],
often in a very concise manner. To make this paper self-con-
tained, we provide the proof of Property 1 in Appendix A.

The rank properties of KR product have a strong connection
to a concept called Kruskal rank, or k-rank for short. The k-rank
of a matrix A, denoted by krank(A), is said to be equal to r
when every collection of r columns of A is linearly independent
but there exists a collection of ~+ 1 linearly dependent columns.
By contrast, the rank of A is the maximal number of linearly in-
dependent columns, the definition of which is more relaxed than
that of the k-rank. Thus we have rank(A) > krank(A). k-rank
has an interesting property for KR product [16], [25], [26]:

Property 2: For two matrices A € C"** and B € C™**,
with krank(A) > 1 and krank(B) > 1, it holds true that

krank(A ® B) > min{k, krank(A) + krank(B) — 1}. (9)

B. Khatri—Rao Subspace Criterion

For the DOA estimation problem formulated in Section II, let
us apply Property 1 to the local covariance model in (5) to obtain

Ym = vec(Ro,) = vec(AD,, AT + vec(C)

= (A" ® A)d,, + vec(C) (10)
By stacking [y1,...,ywm] £ Y, we can write
Y = (A* 0 A)PT 4 vec(C)17, (a1
where we recall 137 = [1,...,1]T € RM, and
¥ = [d17 v 7d1\1]T
di1  di dix
da1  dao dax
= ) . . (12)
dyri dare darr
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It is interesting to note from (10) or (11) that y,,, is reminiscent
of an array signal model where (A*® A) € CV" %K is virtually
the array response matrix and d,,, the source signal vector. The
virtual array dimension, given by N2, is greater than the phys-
ical array dimension N for N > 1, and that essentially provides
us with the capability of processing cases where there are less
sensors than sources. This will be shown in the ensuing devel-
opment.

We should note that each column of W in (12) describes the
powers of the respective source signal with respect to frames, or
simply speaking, the long-term power profile over time. Let us
assume the following:

A5) The matrix [¥ 1] € RM*E+1D js of full column
rank.

Assumption AS) physically implies the followings: First, the
source power distributions over the time frames (or the columns
of W) are different so that ¥ can maintain a full column rank
condition. Second, any linear combination of the sources cannot
resultin a WSS source (i.e., for any coefficients ¢y, . .. ,cx € C,
the signal Zle ¢k Sk (t) cannot be WSS), otherwise 1, can
be a linear combination of the columns of ¥ which violates
AS5). While the necessary condition for fulfilling AS5) is to have
M > K + 1, in practice it would be desirable to use a much
larger M so as to obtain sufficient long-term source power vari-
ations to well satisfy A5). Certainly, availability of large M
depends on applications. For example, for speech applications
where L is generally proportional to a physical time duration of
20 to 25 ms, we can obtain more than 40 frames (or M > 40)
in 1 s. Moreover, increasing the value of M would generally
be useful in improving the conditioning of ¥. Hence, in the
presence of estimation errors in the local covariances R,,,, em-
ploying a larger M would be helpful in suppressing the subse-
quent error effects.

Under AS5), we can eliminate the unknown noise covariance
effectively and easily. The noise covariance elimination is done
by denoting an orthogonal complement projector PfM =TIy -
(1/M)1,,1%,, and then by performing a projection

YPi, = [(A* ® A)TT + vec(C)1y] Py,
= (A" A) (Pt ®)".

1

(13)

Under AS5), we have rank(P{, ¥) = rank(¥) = K. In other
words, the noise covariance elimination operation does not
damage the rank condition of the covariance model.

Now consider the subspaces of YP {-A , - For ease of exposition
of idea, we assume for the time being that (A* ® A) is of full
column rank. We will soon provide conditions under which this
assumption is valid. When both (A* ® A) and P{- ¥ in (13)
have full column rank, we can have [27]

R(A*®A)=R(YPy,). (14)

Denote the singular value decomposition (SVD) of YP{ by

1m

H
YPy, =[U. U] {20 8] [XH] (15)

2171

where U, € CV**K and V, € CM*K are the left and right
singular matrices associated with the nonzero singular values,
respectively, U,, € CN*X(N*=K) and V, € CMX(N*=K) gre
the left and right singular matrices associated with the zero sin-
gular values, respectively, and X, € RE*¥ is a diagonal matrix
whose diagonals contain the nonzero singular values. Based on
the standard SVD result that

RY(A*© A) =R (U,) = R(U,) (16)
we know that the source DOAs satisfy
UAA* 0 A, = UH(a*(0p) @a(l)) =0  (17)

fork =1,..., K. Wehence propose the following KR subspace
criterion for DOA estimation of quasi-stationary sources

find 6

such that UH(a*(f) @ a(f)) =0, 0 ¢ [—gg} (18)

To satisfy the KR subspace criterion in (18), we can use the
idea of MUSIC in the conventional subspace-based DOA esti-
mation approach. The further details will be considered in the
next subsection.

Like the development in the subspace discipline, it is crucial
to determine conditions under which (18) is satisfied only if 6
is a true DOA, viz., the identifiability conditions. The following
two propositions provide the key results of the theoretical iden-
tifiability of the KR subspace approach.

Proposition 1: Under A2), the sufficient and necessary con-
dition for the virtual array response matrix (A* ® A) to yield
full column rank (or simply rank = K) is when

K <2N -1

Proposition 2: Assume that A1)-AS5) hold. The KR subspace
criterion in (18) is achieved by any one of the true angles 6y,
k=1,...,K,if and only if

K <2N —-2. (19)
The proofs of Propositions 1 and 2 are given in Appendix B.
Simply speaking, the idea behind the proofs is to use the KR
product krank property in Property 2, and to have explicit ex-
position of the structures of A* ® A.. Proposition 1 justifies our
assumption in the KR subspace development above, and Propo-
sition 2 provides the identifiability condition of the KR subspace
criterion. In particular, Proposition 2 gives the appealing impli-
cation that DOA estimation can be done for underdetermined
cases under the KR subspace framework.

C. KR-Based DOA Estimators With Dimension Reduction

We could develop a KR-based DOA estimator by directly ap-
plying a subspace method (say, MUSIC) to the KR subspace
criterion (18). But, prior to applying a subspace method, we can
reduce the problem dimension as hinted in the proof of Propo-
sitions 1 and 2 in Appendix B.
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The dimension reduction idea is proposed as follows. In
Appendix B, it was indicated that the virtual array response
matrix A* ® A can actually be characterized as

A*©A =GB (20)

where G € CN**X(N=1) s given by

‘0 --- 0 1 0 --- 0T
0O --- 0 0 1 --- 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
G = c CN2><(2N—1)
0 0 0 10
10 0 0 0
1 0 0 0
0 0 10 0l

21

B = [b(#),...,b(fx)] € CEN-UXK js a dimension-re-
duced virtual array response matrix with

..... eﬂ;d sin(f) 1

’

b(6) = [B(N—l)@ sin(0)

o~ (N-1) 1572 Sin(9)] T . (2)

It can be verified from (21) that G is column orthogonal. Let
W = GTG. One can show that

W = Diag(1,2,...,N—1,N,N —1,...,2,1).

?

(23)

From the noise-covariance-eliminated data matrix in (13), we
can reduce the problem size by performing a linear processing

Y = w'/2G" [YPy, ]
— W—I/ZGT [(A* @A)(PJ‘ ‘I’)T]

1ym

= W!/?B (Pt w)" . (24)
Note that the dimension reducing transformation W~1/2GT
has orthonormal rows, and hence in the presence of covari-
ance estimation errors the transformation would not cause addi-
tional coloring of the errors. A subspace method is then applied
to Y € CEN-DXM ingtead of YPy, € CN*XM  Appar-
ently, incorporating this dimension reduction has the advantage
of complexity reduction, especially with the SVD subspace ex-
traction.

In order to benefit from the dimension-reduced KR formula-
tion described earlier, we propose to apply MUSIC to the KR
subspace criterion in (18) with YPfM being replaced by Y in
(24). We call the resultant method the KR-MUSIC method. The
pseudocode of KR-MUSIC is provided in Table I. We can also
consider variations where the MUSIC steps are replaced by
some other conceptually related procedure, such as the Capon

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 4, APRIL 2010

TABLE 1
SUMMARY OF THE KR-MUSIC ALGORITHM

Given  a received signal sequence {x(t) }z:ol, a source number K, and
a frame length L where L divides T'.

Step 1. Compute the local covariance estimates

mL—1

Rn=+

t=(m—1)L

x(t)xH (t)

f9r m =1, oy M, where AM = T'/L. Then, form a data matrix
Y = [ vec(R1),...,vec(Ru) |- .

(Noise covariance elimination) Y = YPi ., where P{ =

1 T M M

Ly — o 1m1%,.

(Dimension reduction) Y = W~1/2GTY, where G and W are
defined in (21) and (23), respectively.

(Subspace extraction) Perform SVD on Y

Y =Uuxv#

Step 2.

Step 3.

Step 4.

where U € C@N-DXK 434 V € CM*K are the left and right
singular matrices, respectively, and & € REXX is the (diagonal)
singular value matrix with the singular values being arranged ir
descending order. Then, obtain the noise subspace matrix

U, = [ UK41,.--,UaN_1 ] c (C(2N—1)><(2N—1—K).

Step 5. (MUSIC operation) Compute the DOA spectrum

1

Pgr-music(0) = | UHW1/2b(0) |2

over 0 € [—-3, %], and pick the K largest peaks of Pxkr-music(6)
as the DOA estimates.

and ESPRIT? methods [2]. In the application of the Capon
method to the dimension-reduced KR formulation, or simply
the KR-Capon algorithm, the procedures are basically the same
as those in Table I except that the spatial spectrum in Step 5
should be replaced by

1
bH ())W1/2(YYH)-1W1/2b(f)

PKRfCapon(€> = (25)

and that the SVD in Step 4 is not needed.

IV. SIMULATION RESULTS

We provide several sets of simulation results to demonstrate
the performance of the proposed KR subspace approach. In all
the simulation examples below, the signal-to-noise ratio (SNR)
is defined as

Yy B{llAs(1)]1?}
SNR = =RV

where T' = LM is the total number of samples. The root mean
square (RMS) angle error is used as our performance measure
and it is defined as

1 K
E{ — — 0,2
{K;Wk 9k|}

2ESPRIT stands for estimation of signal parameters via rotational invariance
techniques.
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TABLE II
GENERATION OF SYNTHETIC QUASI-STATIONARY SIGNALS

Given bounds Ljs, Lupp, and a sequence length T'.

Step 1. Tewr :=0

Step 2. Randomly generate L following a uniform distribution on
[leuy Lﬂﬁp]‘

Step 3. Randomly generate o following a uniform distribution on [0, 1].

Step4. Fort = Teur,Teur +1,...,Teur + L — 1, randomly generate
s(t) = sp(t) + jsr(t) where sp(t) and sy(t) are i.i.d. Laplacian
distributed with zero mean and variance o2 /2.

Step 5. Teur := Tecur + L. If Tewr < T then goto Step 2.

Output  {s(t)}7. "

where 6}, and ék denote the true and estimated DOAs, respec-
tively. The first three simulation examples are based on the stan-
dard narrowband scenario, where the performance of the KR
subspace methods is examined under various conditions. We
also compared the KR subspace methods with some other ex-
isting methods, such as the standard MUSIC algorithm, and
a fourth-order cumulant based HOS-MUSIC algorithm called
4-MUSIC [21]-[23].

In the first three narrowband simulation examples, the quasi-
stationary source signals s (t) were synthetically generated by
a random generation procedure given in Table II. This proce-
dure generates a locally stationary zero-mean complex Lapla-
cian process, with the variances randomly varying from one
frame to another. Moreover, the duration of each local time
frame (L) is randomly drawn following a uniform distribution
on [Lioy, Lupp]. The purpose of doing so is to simulate a more
realistic situation where the local stationary periods are uncer-
tain and varying; e.g., in speech. Strictly speaking, such signals
violate A4) which assumes all local stationary intervals to be the
same and known. Nevertheless, the simulation results to be pre-
sented soon will show that the KR subspace approach is not too
sensitive to the effects of uncertain local stationary intervals.

In the last simulation example, we simulate a realistic wide-
band microphone array processing system with real speech sig-
nals employed as the sources.

A. Simulation Example 1: Underdetermined Narrowband
DOA Estimation

We consider a narrowband, underdetermined case where
(N,K) = (4,6). The true DOAs are {f;,...,0x} =
{—65°, —40°,—20°,10°,25°,42°}. The sensor array is uni-
form linear with d/A = 1/2. The SNR is 10 dB. The spatial
noise v(t) is zero-mean, uniformly white complex Gaussian.
The synthetic signal generation procedure in Table II is used
to generate the source signals si(t), with allowable range of
the frame periods [Ligw, Lupp] = [300,700]. In Fig. 1 we
illustrate a segment of the synthetic quasi-stationary signals.
Notice that the dashed lines in the figure mark the actual local
stationary intervals of the signals. As we can see, the frame
intervals of the 6 source signals are not uniform and not syn-
chronized. We apply the KR subspace methods by choosing
a fixed frame period of L. = 512, which is approximately the
mean of the actual frame periods. The number of frames is set
to M = 50. Fig. 2(a) shows one realization of the KR-MUSIC
DOA spectrum. As seen, the peaks of the spectra are in good
agreement with the true DOAs. This also demonstrates that the
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KR subspace approach exhibits robustness against uncertainties
and asynchronism of the actual locally stationary intervals.
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Fig. 2(b) shows the 4-MUSIC DOA spectrum corresponding
to the same realization. We see that 4-MUSIC also exhibits
consistent spectral peaks with respect to the true DOAs, but
KR-MUSIC shows sharper spectral peaks in comparison.

A Monte Carlo simulation was carried out to evaluate the
RMS angle error performance of KR-MUSIC and 4-MUSIC.
The number of Monte Carlo trials is 1000. The source signals
were randomly generated by Table II on a per-trial basis.
The other simulation settings are the same as the previous.
In this simulation we included KR-Capon, the variation of
KR-MUSIC in (25). The results are shown in Fig. 3. In Fig. 3(a)
the RMS angle errors are plotted against the SNRs. We can see
that KR-MUSIC gives the best RMS angle error performance.
4-MUSIC is competitive in performance at high SNRs, but its
performance gap relative to KR-MUSIC becomes significant
for SNRs lower than 0 dB.

In Fig. 3(b) we show the RMS angle error performance of
the KR methods when the number of frames M increases. The
frame length is fixed at L = 512, and the SNR is 14 dB.
4-MUSIC was also tested with the same amount of total sam-
ples; i.e., T' = LM. We see that KR-MUSIC generally offers
the best RMS angle error performance, except at M = 10 where
4-MUSIC prevails. This shows that M should not be too small
in the KR subspace approach.

An interesting question is how the chosen frame length L af-
fects the performance of the KR subspace methods, fixing the
data size T' = LM. Fig. 3(c) shows a simulation result where
we fix the total signal length to 7" = 24000 and then vary L
to evaluate the respective RMS angle errors. The SNR is fixed
at 14 dB. Interestingly, it is observed that the best frame length
for KR-MUSIC is about L = 200, which is even smaller than
the minimum locally stationary interval of the generated signals
Liow = 300. However, Fig. 3(c) also illustrates that L should not
be overly small. In the figure we can see that KR-MUSIC shows
mild performance degradation when L is decreased down to 50,
and that KR-Capon shows considerable performance degrada-
tion when L < 100. This is caused by estimation errors of the
local covariances, which, for insufficient number of local sam-
ples L, become significant. Nevertheless, this set of empirical
results suggests that for a fixed data size, trying to obtain more
frames by decreasing the frame length L tends to a better option
for performance improvement than the vice versa.

B. Simulation Example 2: Narrowband DOA Estimation of
Locally Gaussian Sources

In the KR subspace approach, what is utilized is time-variant
SOSs. Hence, the KR subspace methods should be insensitive to
the distributions of the sources. This simulation example aims
to verify this expectation. We employ locally complex Gaussian
sources in place of the locally complex Laplacian sources used
in Simulation Example 1. To do so, we simply modify Step
4 of the source generation procedure in Table II, from Lapla-
cian to Gaussian. All other simulation settings are exactly the
same as Simulation Example 1. Fig. 4 shows the resultant RMS
angle errors with respect to SNRs. The figure indicates that
4-MUSIC is able to provide reasonable DOA estimation per-
formance, but yields quite a significant performance gap com-
pared to KR-MUSIC or KR-Capon. Such a performance gap
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is somewhat expected: The fourth-order cumulants, on which
4-MUSIC crucially depends, are supposed to vanish for locally
Gaussian processes. Nevertheless, the estimated fourth-order
cumulants, due to sampling of finite lengths of data, are not to-
tally zero; and thus 4-MUSIC can still give reasonable DOA es-
timates. Comparing Fig. 4 and its locally Laplacian counterpart
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Fig. 4. RMS angle error performance of the various algorithms when the
sources are locally complex Gaussian.

in Fig. 3(a), we found that the RMS angle errors of KR-MUSIC
and KR-Capon do not change with the distributions. This veri-
fies the distribution insensitivity of the KR-based methods.

C. Simulation Example 3: Narrowband DOA Estimation in the
Presence of Spatially Nonuniform and Nonwhite Noise

This simulation example considers a narrowband overdeter-
mined case where (N, K) = (4,3), (M, L) = (50,512), and
where the true DOAs are given by {61, 6,,03} = {—18°, 5°,
25°}. We tried two kinds of noise models. The first is a spatially
nonuniform white complex Gaussian noise with covariance

C = 02Diag(0.8,0.9,1.1,1.2). (26)

With the other simulation settings being the same as Simula-
tion Example 1, we performed a Monte Carlo simulation for
KR-MUSIC, 4-MUSIC, and the conventional MUSIC algorithm
which can be applied in this overdetermined example. Fig. 5(a)
shows the performance of the various algorithms. We observe
that at high SNRs where the noise covariance becomes neg-
ligible, it is the conventional MUSIC algorithm that prevails.
However, atlow SNRs, KR-MUSIC gives lower RMS estimation
errors than the conventional MUSIC. This verifies that the pro-
posed KR subspace approach is immune to the unknown noise
covariance effects. In fact, the conventional MUSIC is known to
be sensitive to colored or nonuniform spatial noise covariance
effects [28]. Fig. 5(a) also shows that 4-MUSIC is robust against
Gaussian noise with unknown noise covariance.

The second noise model we tested is a uniform, spatially col-
ored complex Gaussian noise with the (4, k)th entry of the co-
variance given by

Cix = 020.85 I, (27)

The results are shown in Fig. 5(b). We see that the performance
behaviors are the same as those of the previous noise model.

D. Simulation Example 4: Narrowband DOA Estimation of
Two Closely Spaced Sources

This example examines the performance of KR-MUSIC
when dealing with two closely spaced sources. We set
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(N,K) = (4,2). We tried two different settings of the
DOAs, namely {61,602} = {0°,2°} and {6;,02} = {0°,5°}.
The rest of the simulation settings are the same as Simulation
Example 1. The results are shown in Fig. 6. For the very closely
spaced case {61,602} = {0°,2°}, we observe that KR-MUSIC
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yields better RMS error performance than the conventional
MUSIC algorithm. The performance gain of KR-MUSIC is
likely due to the higher degree of freedom (which is 2N — 2).

For the case {61, 62} = {0°,5°}, we can see that KR-MUSIC
provides better performance than MUSIC for SNRs lower than
21 dB; and vice versa for higher SNRs. Our speculation with
this performance behavior is the following: While the degree of
freedom available in MUSIC (i.e., N — 1) is lower than that of
KR-MUSIC, MUSIC may be comparatively less susceptible to
SOS estimation errors. The latter may be the reason for MUSIC
to surpass KR-MUSIC at high SNRs.

E. Simulation Example 5: Underdetermined Wideband DOA
Estimation of Speech Signals

This example considers a wideband microphone array
processing system, with real speech signals employed as the
sources. While our development in the last section is primarily
based on the standard narrowband array processing model,
the proposed KR subspace approach can be readily applied to
the wideband scenario by incorporating the frequency-domain
approach [3]-[5].

To keep this work self-contained, we give a concise descrip-
tion of the ideas and the problem settings. Let z,,(¢) be the signal
recorded directly by the nth sensor. In the wideband case, each
2, (t) is modeled as a superposition of time-shifted source sig-
nals [29]

n(t) = Z sk(t — A(n = 1) sin(g)) + vn(2),

t=0,1,2,... (28)

where uniform linear array structures are assumed once again.
Here, A = d/(cT) is a constant where d is the inter-sensor
spacing, c is the signal propagation speed, and T = 1/ Fj is the
sampling interval (in seconds). The idea of frequency-domain
processing is to decouple the wideband model (28) into a multi-
tude of narrowband models. Let us define the short-time Fourier
transform (STFT) of a signal y(¢) to be

Nstrr—1 )
gt =Y ylt+u)e i
u=0
where Ngrpr is the STFT window length, and f € [—1/2,1/2]
is the frequency (normalized). By applying STFT to z,,(¢) and
by denoting X(f,t) = [#1(f,1),...,@n(f,t)]T, we obtain the
following approximate signal formulation [3]

x(f,t) = A(f)s(f: 1) +v(f,1),

where §(f, t) and v(f, t) are defined in the same way as x(f, ),

and A(f) = [a(f,01),...,a(f,0k)] is a frequency dependent
array response matrix with

(29)

(30)

. . ) ) T
a(f7 H) — |:17 e‘]?ﬂ'Af S1r1(9)7 s e—]?ﬂ'(N—l)Af s1n(9)] .

€29

Equation (30) is known to be a good approximation for suffi-
ciently large Nstrr. We see that fixing f, (30) is essentially
equivalent to the narrowband signal model. Hence, for each
fixed f we can apply KR-MUSIC to (30).
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Fig. 7. The speech waveforms for the wideband microphone array simulation.

In the frequency-domain approach, a necessary step is
to combine the subspaces at various frequencies to obtain
a DOA spectrum fusion. Let B C [0,1/2] be the (nor-
malized) frequency band of the source signals, and denote
By = {f = n/NSTFT|n =0,1,.. -;NSTFT/ny € B} to be
a discretized version of B. The following formula is used to
compute a DOA spectrum:

1
- Yres, IUH(HW2b(£.0)]]?

where U, ( f) denotes the KR noise subspace obtained from (30)
with f being fixed, b( f, #) is an extended steering vector of (31)
[cf., (22)], and W/2 ig given in (23). The combining in (32) is
known as the incoherent signal subspace method (ISSM) in the
literature [5].

The settings for simulating the wideband microphone array
system are as follows: The sampling frequency is F; = 8 kHz.
The inter-sensor spacing is d = 4.25 cm, which, under a sound
propagation speed of ¢ = 340 m/sec., leadsto A = 1. The STFT
window length is Ngrpr = 64. The frame length is L = 200,
which corresponds to a time period of 25 ms. In speech pro-
cessing, the stationary time of speech signals is generally as-
sumed to be around 20 to 25 ms. The frequency band processed
is B = [500/8000, 3500/8000] (in practice, frequency points
close to DC or Nyquist may have very weak signal compo-
nents and hence should be discarded). The source signals are
real speech, and they are plotted in Fig. 7.

We set up a underdetermined case where (N,K) =
(4,5). The true DOAs are {61,...,0x} = {-65° —40°,
—20°,10°,25°}. Using 100 frames (or M = 100) which corre-
sponds to a total signal duration of 2.51 s, we ran (32) to obtain a
wideband KR-MUSIC spectrum, plotted in Fig. 8(a). We see that
the spectral peaks are in proximity to the true DOAs. Fig. 8(b)
shows a result where the KR-MUSIC core is replaced by the
4-MUSIC in the frequency domain processing in (32). As seen,
the resultant wideband 4-MUSIC spectrum manages to distin-
guish two sources only. We repeated the simulation by increasing
the number of frames to M = 450 (total signal duration = 11.26
s), and the results are shown in Fig. 9. We see that the true DOA
positions are roughly distinguishable in 4-MUSIC, but still not
as good as what KR-MUSIC offers.

Pxr—music(6) (32)
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Fig. 8. DOA spectra of KR-MUSIC and 4-MUSIC in the wideband real-speech
case. L = 200, M = 100. The gray dashed lines mark the true DOA positions.
(a) KR-MUSIC, with ISSM. (b) 4-MUSIC, with ISSM.

V. CONCLUSION AND DISCUSSION

This paper has addressed the DOA estimation problem of mu-
tually uncorrelated wide-sense quasi-stationary signals in the
presence of wide-sense stationary noise and with uniform linear
arrays. We have established a KR subspace approach that ju-
diciously utilizes the long-term time-variant characteristics of
quasi-stationary SOSs to achieve two advantages. First, the KR
subspace approach can be applied to cases where there are less
sensors than sources. Our theoretical identifiability analysis has
revealed that the proposed KR subspace approach can uniquely
identify the source DOAs when

K<2(N-1)

where K and N denote the numbers of sources and sensors, re-
spectively. In addition, the approach can effectively cope with
the effects of wide-sense stationary noise with unknown covari-
ance. We have used synthetic signals and real speech signals
to perform a number of simulations, where the effectiveness of
the KR subspace approach has been successfully demonstrated
under various problem settings.

In essence, this paper has revealed how quasi-stationarity can
be utilized to provide advantages in DOA estimation. As a future
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Fig.9. DOA spectra of KR-MUSIC and 4-MUSIC in the wideband real-speech
case. L = 200, M = 450. The gray dashed lines mark the true DOA positions.
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direction, it would be interesting to study how quasi-stationarity
may bring a difference to DOA estimation performance limits;
e.g., by exploring the Cramér—Rao lower bound in the quasi-sta-
tionary case. In addition, it would be interesting to perform a
theoretical analysis on the error performance of the KR sub-
space methods.

APPENDIX

A. Proof of Property 1
The matrix product ADB¥# can be written as
k
ADB” = Z d;a;bH. (33)
i=1
Applying vectorization to (33) and using (7), we get

k
vec(ADBH) = Z d;vec(a;(b;)T)
i=1

k
= di(b} ® a;)
i=1

= (B* o A)d. (34)
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B. Proof of Propositions 1 and 2

We describe the analysis that leads to Propositions 1 and 2.
In essence, the whole idea lies in studying the following matrix
analysis problem: Let

1 ) e 1 .
v=| T e s
21*(7:1*1) Z;(;Lq)
be a Vandermonde matrix withroots 21, . .., zp € C. What is the

rank of its self KR product V* ® V7 We answer this question by
resorting to two distinctively different concepts, namely the KR
product properties (summarized in Section I1I-A) and the virtual
array observation [21]-[24]. Interestingly, in the literature we
often saw the use of either one of the ideas, but probably not
both. First, consider the following lemma.

Lemma 1: Consider the matrix V in (35) with z1,..., 25 €

C, 2z, # z¢ for all k # £. Then we have the following results:

1) The KR product V* ® V is of full column rank if & <
2n — 1.

2) For the case where |z1| = --- = |2i| = 1, the KR product
V* ® V is of full column rank only if £ < 2n — 1.
Proof of Lemma 1: We first consider 1), namely the suffi-

cient condition for V* ®'V to have full column rank. It has been
proven in [30] that for a Vandermonde matrix V, krank(V) =
rank(V). And for distinct z1, . . ., 2, the rank of V is full [31,
pp. 349-350]; i.e., rank(V) = min{n, k}. As a consequence,
we have
min{n?, k} > rank(V* ® V) > krank(V* ® V)
> min{k,2min{n, k} — 1} (36)
where the last inequality is due to Property 2 and krank(V*) =
krank(V) = min{n, k}. For 1 < k < 2n — 1, (36) reduces to
k > rank(V* ® V) > k. This implies that V* ® V has full
column rank.
Next, we consider 2), the necessary full column rank condi-
tion when the roots z; have unit magnitude. We notice that for
avectorv=[1, 271, ..., 27 (V)T ¢ C" |2| =1,

(37)

This means that v* ® v can be alternatively represented by

v* @ v = Gb(2) (38)
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where
ro 0 1 0 07
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
G = € Cn2><(2n—1)
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
LO 0 1 0 0
(39
and
b(z) = [z"7t 272 z 1 z71 z—(n=1) ]T
(40)
Using this representation, we re-express V¥ ® 'V as
V*eoV =GB (41)

where B = [b(z1),...,b(z)] € CE"=1D*k The matrix G
can be shown to have orthogonal columns, and thus rank(G) =
2n — 1. Moreover, B has a Vandermonde structure with distinct
roots and, therefore, rank(B) = min{k,2n — 1}. Applying
standard rank results on (41), we obtain

rank(V* © V) <min{rank(G), rank(B)} =min{k, 2n—1}.
(42)

Hence, the full column rank condition holds only if &k < 2n —1.

|

With Lemma 1, we are ready to explain how Propositions 1
and 2 are concluded.

Proof of Propositions 1 and 2: Proposition 1 is a direct
consequence of Lemma 1, considering the unit-magnitude-root
Vandermonde structure of the array response matrix A. For
Proposition 2, we use contradiction. Suppose that there exists
an angle ¢ ¢ {6, ...,0x} such that the KR subspace criterion
(18) is satisfied; i.e.

U/l (a*(p) ®a(p)) = 0.

That implies that a*(¢) ® a(¢) has to be a linear combination
of a*(61) ® a(fy),...,a*"(0x) ® a(fk); viz.

(43)

K
a*(p) @ a(p) = Z ara* () @ a(fy) (44)
k=1
for some coefficients «,...,ax. Equation (44) is equivalent

to saying that the matrix

[a*(61) ® a(6h), ..., a" (fx) ® a(fx ), a*(p) ® a(p)]
=[Aa(p)]" ©[Aa(p)] € CVXEHD 5
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has linearly dependent columns. But, by Lemma 1, (45) is lin-
early independent if and only if K 4+1 < 2N —1. This completes
the proof of Proposition 2. [ |
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