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Cumulant-Based Inverse Filter Criteria for MIMO
Blind Deconvolution: Properties, Algorithms, and
Application to DS/CDMA Systems in Multipath

Chong-Yung ChiSenior Member, IEEEBNd Chii-Horng Chen

Abstract—Tugnait and Chi and Chen proposed multi-input Higher order statistics (HOS), known as cumulants [5], have
multi-output inverse filter criteria (MIMO-IFC) using higher  peen used for blind deconvolution of nonminimum-phase LTI

order statistics for blind deconvolution of MIMO linear time-in- systems with a given set of non-Gaussian measurements. There
variant systems. This paper proposes three properties on the

performance of the MIMO linear equalizer associated with have been a lot of blind deconvolu’gqn algorithms r.eport.ed In
MIMO-IFC for any signal-to-noise ratio, including P1) perfect the openliterature [6]-[13] for nonminimum-phase single-input
phase equalization property, P2) a relation to MIMO minimum  single-output (SISO) system#(= K = 1) using HOS. Chi

mean square error (MIMO-MMSE) equalizer, and P3) a connec- and Wu [6] proposed a family of SISO inverse filter criteria

tion with the one obtained by MIMO super-exponential algorithm _ ; i T :
(MIMO-SEA) that usually converges fast but does not guarantee (SISO-IFC) that includes Wiggins's criterion [7], Shalvi and

convergence for finite data. Based on P2), a fast algorithm for Weinstein's criterion [8], a”?‘ Tugnait's C”te,”a [9] as s.peC|aI.
computing the theoretically optimum MIMO equalizer is pro- Cases. Under the assumptions al) the signal-to-noise ratio
posed. Moreover, based on P3), a fast MIMO-IFC based algorithm (SNR) is infinity, and a2) the length of equalizer is infinite, it
with performance similar to that of the MIMO-SEA and with  has been shown that SISO-IFC achieve perfect equalization,

guaranteed convergence is proposed as well as its application; o the equalizer (inverse filter) output is equivalent to the input
to suppression of multiple access interference and intersymbol

interference (ISI) for multiuser asynchronous DS/CDMA systems §|gnal except for an un!(nown scale factor and an unknown
in multipath. Finally, some simulation results are presented to time delay. Feng and Chi [11], [12] reported some performance

support the analytic results and the proposed algorithms. analyses of SISO-IFC for finite SNR that are helpful in the
Index Terms—Cumulants, inverse filter criteria, MIMO blind  interpretation of the deconvolved signals and to realizing the
deconvolution. behavior of the designed equalizer. Shalvi and Weinstein [13]

proposed an SISO super exponential algorithm (SISO-SEA) for
blind deconvolution that converges at a super exponential rate
under the assumptions al) and a2). Recently, it was shown [14]

LIND deconvolution of a multi-input multi-output that for finite SNR and equalizer’s length, the optimum inverse

(MIMO) linear time-invariant (LTI) system, which is filter obtained by SISO-IFC and that obtained by SISO-SEA
denotedH[n] (P x K matrix), is a problem of estimating [13] are equivalent if second- and fourth-order cumulants are
the vector inputuln] = (ui[n],- -, ux[n])’ (K inputs) used; meanwhile, they are also equivalent to that obtained by
with only a set of non-Gaussian vector output measuremeriie well-known constant modulus algorithm (CMA) [15].

x[n] = (z1[n], - -, =zp[n])" (P outputs) as follows: [1]-{4] Blind deconvolution algorithms for nonminimum-phase

. INTRODUCTION

oo MIMO LTI systems using HOS have also been reported
x[n] = Z Hlk|u[n — k] + w[n] (1) [16]-[28]in the past decade. Tugnait [16] proposed MIMO-IFC
k=—o0 for blind deconvolution of MIMO systems using second- and

wherew[n] (P x 1 vector) is additive noise. The MIMO LTI thlrd-order .cumulants' or second- and fourth—ordgr cumulants
of inverse filter (equalizer) output. Under assumptions al) and

system arises in science and engineering areas where multi . . :
. L the optimum inverse filter output turns out to be one of
sensors are needed such as time delay estimation, source separa-

. L : o e input signals except for an unknown scale factor and an
tion, and sesimic signal processing, etc. Incommunications, mu

. SN . . unknown time delay (i.e., the optimum inverse filter is a perfect
tiple antennasreceiving signals and oversampling of received sig-

nals canalsobe modeled asMIMO LTI systemsonwhich avarieeéuahzer fpr one of the input S|gnals). All the .|nput S|gnaI§

of detection and estimation algorithms are based [2]-[4] can be estimated through a multistage successive cancellation
' (MSC) procedure [16]. Furthermore, based on the MIMO-IFC
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Some other inverse filter criteria using second- and fourthation results are presented in Section V to support the presented
order cumulants of inverse filter output for MIMO blind de-analytic results and the efficacy of Algorithm 2. Finally, we draw
convolution have been reported in [19]-[21] with which theome conclusions.
designed equalizer also performs as a perfect equalizer under

assumptions al) and a2). Assuming that the input vadjof II. REVIEW OF MIMO-IFC AND MIMO-SEA

satisfies the nor_mallzed whitening condl_t|0n, I:e,[n]_, i Let cum{ys, s, - -, 4,} denote thepth-order cumulant of
1,..-, K are white random processes with unit variance and i .
random variablegy , y2, - - -, ¥, [5], and letF{-} denote dis-
they are mutually uncorrelated, Inouye and Habe [19] propose . )
rete-time Fourier transform operator. For ease of later use, let

a constrained multistage inverse filter criterion. Based on the o . T
. . . . - S define the following notations:
constrained multistage inverse filter criterion, Inouye and Sato

[20] further proposed an unconstrained multistage inverse f'ltercum{y cp,-}

criterion. Inouye [21] also proposed a constrained single stage My =y v2 =44 =4}

inverse filter criterion that has been shown to be equivalent to the Cpiy} = CUmy : p.y" : ¢}

constrained multistage inverse filter criterion reported in [19]. (y" is complex conjugate of)
Yeung and Yau [22] and Inouye and Tanebe [23] also vj = (v;[La],v;[L1 + 1], -+, v[La])*

proposed MIMO-SEA for blind deconvolution. Again, under ((L =Ly — Ly + 1) x 1 vectop

assumptions al) and a2), the designed equalizer by the T T T

MIMO-SEA is also a perfect equalizer (for one of the input v=(vy, vy, ,vp)

signals) with a super-exponential convergence rate, and all the &; = K x 1 unit column vector with the

input signals are estimated through the MSC procedure in a sth entry equal to unity

nonsequential order. Moreover, the SISO-SEA for fractionally z;[n] = (z;[n — Li],z;[n — Ly — 1]

spaced equalization [24], which turns out to be an MIMO-SEA,

T
and the MIMO-CMA [25]-[27] have been reported for blind s ajin = L)

deconvolution under assumption al). To our knowledge, the &[n] = (=] [n], 23 [n], .-, &pn])"
performance of all the above mentioned MIMO blind deconvo- R, ; = Elz} [n]z]T [»]] (L x L matrix)
lution algorithms for finite SNR is unknown so far. Moreover, R= {R:;} (P x P block matrix).

both the SISO-SEA and MIMO-SEA may diverge for finite
SNR and finite data in spite of their fast convergence for infinite Assume that we are given a set of measuremepts n =

SNR and sufficient data. 0,1,---, N—1modeled by (1) with the following assumptions:

Ding and Nguyen [28] proposed a performance analysis for a 4, u;[n] is zero-mean, independent identically distributed
beamformer using kurtosis maximization algorithm (KMA) that (i.i.d.) non-Gaussian witlfp + ¢)th-order cumulant

is actually a special case of Chi and Chen’s MIMO-IFC using C, {u;[n]} # 0and variance? = C, ,{u;[n]} and
second- and fourth-order cumulants. The global convergence stggiStiJcally independent otk[nL]Ljfor all % #Jj_ )
property of the KMA together with the optimum beamformer The MIMO systenE[n] is exponentially stable.
perfectly capturing a single source for infinite SNR has been A3) The noisew[n] is zero-mean colored Gaussian with

shown. Moreover, for finite SNR, the optimum beamformer per- covariance matrxQ[k] = E[wlnJw[n — k]| and
forms as a minimum mean square error (MMSE) beamformer statistically independent off].
only for the case of single sourc&’(= 1) as the kurtosis of | o vin] = (vi[n],valn], -, vp[n])T denote a linear FIR

noise is equal to zero, whereas the performance of the Optimﬂﬁhalizer of lengthl. = L, — Ly + 1 for which v[n] # 0
beamformer for multiple source&(> 2) and finite SNRis still ¢ _ Ly, Ly +1,---, L. Then, the output[n] of the FIR

unknown. . equalizerv[n] can be expressed as
In this paper, three properties on the performance of cumu-

lant based MIMO-IFC [16]-[18] are proposed. Based on the r r
presented properties, a fast algorithm for computing the theoret- e[n] = Z viln] x z;n] = Z ”;"Pi”j [n]
ically optimum MIMO equalizer, and a fast MIMO-IFC based j=1 i=1
algorithm with performance similar to that of MIMO-SEA [22], = vl i[n] (2)
[23] and with guaranteed convergence, are proposed. Moreover, K
an application of the latter to MAI and ISI suppression for mul- = Z sr[n] = ug[n] + wn]
tiuser asynchronous DS/CDMA systems is also presented. k=1
The paper is organized as follows. Section Il presents a brief -
review of MIMO-IFC and MIMO-SEA for blind deconvolution = Z s [klu[n — k] +wln] [oy (2)] (3
of MIMO systems. Section Il presents three properties of the k=—co

optimum equalizer associated with MIMO-IFC, a fast algorithiyare

: o ; | i %" denotes the discrete-time convolution operator
(Algorithm 1) for obtaining the true equalizer needed in the sim-

ulation stage, and a fast MIMO-IFC based algorithm (Algorithm s[n] = (s[n], -+, sxc[n])”
2) with guaranteed convergence. Section IV presents the MIMO I
model for asynchronous DS/CDMA systems followed by blind =HT[n]xvn] = Z H[n — []v[1] (4)

deconvolution processing using Algorithm 2. Then some simu- =L,
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and where||a|| denotes the Euclidean norm of vectgrand

~(I-1)
G

in which » ands — 1 are non-negative integers,+ s > 3,
With the assumptionst1)-A43), it can be easily shown from ande!/=1[n] is the equalizer output obtained at thle— 1)th

(2), (3), and (5) that the correlation function,,[k] of the iteration. Two remarks regarding MIMO-IFC and MIMO-SEA

Gaussian noise[n] can be expressed as are as follows.

R1) Inthe absence of noise (i.e., SNRx0), the optimum
e[n] = oapuen — 7] (perfect equalization (i.e.,
ISI(e[n]) = 0) for both MIMO-IFC and MIMO-SEA
asL; — —ooandLy; — oo, wheref € {1,2,---, K},

ol = 3 oyl syl = cumfe® Vi), (e Dpal)* s - 1,8 [} (12)
j=1

g

rwwlk] = Elw[n]wn — k]

> VI lQLk +n2 — na]v*ng

NE

"lz_;o - is unknown. For finite SNR and, i,[n] = ¢[n] is an
_ ‘ ‘ - estimate ofu,[n] up to a scale factor and a time delay,
o ;;[Q[H]” # ilk]x v [=F] (©) and i [k] = [H[%]]:¢ (theith component of théth

column ofH[k]) can also be estimated as

where[Q[%]]« is theith component of théth column of Q%] Eliln + Hazn]
z;|\n Up |10

and that hiolk] = _ 7 =1,2,---P 13
P ==y 3
Cra{enl} = > ol < > |37;[n]|2> +70w[0]  (7)  R2) Although the computationally efficient MIMO-SEA
i=1 n=—o0 converges at a super-exponential rate for SNRo
K oo and sufficiently largeV, it may diverge for finite SNR
Cpqleln]} = Z Cp,qfuiln]} < Z st [nl(s] [”])q> andN. Moreover, with larger computational load than
i=1 n=—00 solving the linear equations given by (11) at each it-
ptg>3 (8) eration, the gradient-type iterative MIMO-IFC algo-

rithms (such as Fletcher—Powell algorithm [29]) al-
ways converge slower than the iterative MIMO-SEA
forp+ ¢ = r+ s asx[n]is real and fop, ¢) = (r, s)
asx[n] is complex.

Estimatesii; [n], dz[n], -, @x[n] can be obtained by the
MIMO-IFC or MIMO-SEA (possibly in a nonsequential order)
through an MSC procedure [16] that includes the following two

(9) steps at each stage:

S1) Find aninputestimate, say[n] (wherefis unknown),
using MIMO-IFC or MIMO-SEA and the associated
channel estimatels;/[n], i = 1,2,---, P by (13).

S2) Updatez;[n] by z;[n]—te[n]*hien],i = 1,2,---, P,

sinceC), ,{w[n]} = 0forallp 4+ ¢ > 3.
The designed equalizer is usually evaluated by the amount of
ISI defined as [10], [22]

{Z mmn?} ~ spax{|su ]}

max{ 5[]}
k,n

ISI(e[n]) =

The smaller the 1Sk[n]), the better the performance of the de-
signed equalizex[n], whereas it is actually a function of the
overall channes[n] after equalization. Note that I&[»]) = 0

(perfect equalization in the absence of noisej[a$ = « - &, -
8n — 7] (i.e., s¢[n] = ad[n — 7] andsy[n] = 0 for k # ),
wherea # 0, andr is an integer.

Chi and Chen [18] find the optimum by maximizing the

i.e., cancel the contribution af;[n] in x[n].

[ll. PROPERTIES ANDFAST ALGORITHMS FORMIMO-IFC
For ease of later use, |&,, , be aK x K diagonal matrix

defined as

Dy, = diag{Cp g {wi[n]}, -+, Cp g {urc[n]}}-
diag{c2

o Note thatD;; = . -+,0% }. Prior to presenting
wherep and ¢ are non-negative integers, apd+ ¢ > 3, apalytical results for the performance of the linear equalizer
through using gradient type iterative optimization algorlthm§[n] associated with MIMO-IFC, let us present the nonblind
because aly,, ,(v) are highly nonlinear functions ef (without  \jjMO minimum mean square error (MIMO-MMSE) equal-
closed-form _solutlons fo_r the optlmur_n). Note that the izer, denotedyivsk(w) (K x P matrix), which will be shown
MIMO-IFC given by (10) include Tugnait's MIMO-IFC [16], {5 have some relationship with]n] to be presented below. It

[17]for (p, q) = (2,1) and(p, ) = (2,2) as special cases. ONcan he shown by orthogonality principle [30] that
the other hand, the iterative MIMO-SEA [22], [23] updaies

at theIth iteration by

following MIMO-IFC:

|Cpgelnl}

) — (14)
Jp,q( ) |Ol71{c[n]}|(p+q)/2

(10)

VIGMSE(W) = (Vﬁl\rISE(w)Vl[\?gl\qu(w) T V[ﬂ’l\]m(w))
~ —1 ) Zi(jfl) = [,R,T((U)]_l y H* (w) ) Dl,l (15)

= =T -, (11) 0 ) : -
-d I whereV i\ se(w) = Floyuseln] ) isaP x1 MMSE equalizer
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associated with;[n], H(w) = F{H[n]}, and

R(w) = F{R[k]} = F{E[x[n]x"[n — K]}

=H(w) Dy - H¥ (w) + F{Q[K]}. (16)

Three properties of the optimusin] for any SNR are pro-
posed as follows.

Property 1: As the noisew[n] is zero-mean spatially inde-

pendent (i.e.[Q[k]];; = 0 for ¢ # I), the optimum overall
channel impulse responsegn] given by (4),k = 1,---, K

1285

obtained through the relation given by (20). Therefore, to verify
Property 2 by simulation, we need to compute the tyiig]
through the relation given by (20) and then compare it with the
obtained estimat&[n] using simulation data. The following it-
erative FFT-based algorithm that is also an extension of the one
reported in [12] for the SISO case is proposed for obtaining the
true vin].

Algorithm 1

are linear phase for finité, i.e., their phase responses are givent) Seti = 0. Choose an initial condition”[n] for v[n] and

by

argSi(w)] = wm + &, VYw € [-7,T) a7

whereS,(w) = F{s[n]}, 7, andé, are real constants. O
Property 2: Let

gpgr[n] = sh[n](s5[n])* ! (18)
Gy (w) = (Gpg1(w) = Flgpn[nl}, -, Gy (W)
= F{gpql([”]})T~ (19)

The optimumV (w) = F{v[n]} for L; - —oc andL; — o
is related toV\ivse(w) by

V(w) = Vivse(@) é(w) (20)
where
é(w) = Dl_j(aq,qu,PGq,p(w) + gDy, Gpq(w)) (21)
in which
0 = 2 Cilenl}
P (pta) Cpgleln]}

(22)

O
Property 3: The optimumv[n] with finite L, and the one

obtained by the MIMO-SEA are the same (up to a scale factdp)nedligible. Moreover,

forp+q=r+s>3asx[n]isrealandfop=g=r=s>2
asx[n] is complex.

The following Lemma is needed in the proof of Property 2.

Lemma 1:
Cp{e[n]} = CF {eln]} (23)
%}Ef[n]} =gq-cumfel[n] : p,e*[n] : ¢ — L, z%[n]} (24)

The proofs for Property 1, Lemma 1, and Properties 2 and 3

are presented in Appendices A, B, C, and D, respectively.
Substituting (7) and (8) into (10) yields

Zcp,q{m[ﬂ]}< > stll(s [ﬂ])q>

Ip,g(v[n]) = ;=1 = = /2"
Zo—gi < Z |32[n]|2> + Tww[0]
=1 n=—oo
(25)

By Property 2, the theoretically optimum (true}n] by max-

imizing J, o (v[n]) given by (25) must be the same as the one

a convergence toleranee> 0.

S2) Seti = i + 1. Compute theC-point DFT V@~V (w,
=27k/L), k = 0,1,---,£ — 1 of v(i=D[n]. Compute
S () = HT (wi)VE Y (wy) by (4), and then obtain
its £-point inverse DF s~ [n].

S3) ComputeG,, ,(wi) andG, ,(wy,) using (18) and (19) with
s[n] = s~V [n]. Then, comput&(w;,) using (21).

S4) Compute V(wi) Vinse(wr)G(wr) by (20)
followed by its L-point inverse DFT v[n]. Then,
obtain  v[n] VIl S
Ip.o(vD[n]) > J, 4 (vi~D[n]), go toS).

S5) Updatev(®[n] through a gradient type optimization algo-
rithm.

S6) If Ele >, |v§7’) [n] — v](»z_l)[n]|2 > ¢, then go toS2);
otherwise, the true[n] = v(?[n] is obtained.

Note that Algorithm 1, which is never an MIMO blind decon-
volution algorithm, is merely an iterative algorithm that requires
the channel respongé(w), variancess?. , and(p + ¢)th-order
cumulantsC,, ,{u;[n]} of input signals and noise covariance
matrix Q[k] to compute the optimune[n] associated with the
MIMO-IFC J, ,(v[n]) given by (25). However, it is never lim-
ited by the length of’[n] as long as the DFT lengtfiis chosen
sufficiently large such that aliasing effects on the resultdnt
the convergence of Algorithm 1 can be
guaranteed becausg ,(v(¥[n]) (which is bounded) increases
at each iteration, andl5) is rarely performed.

Based on Property 3 and R2), a fast iterative MIMO blind de-
convolution algorithm using MIMO-IFC is proposed as follows.

Algorithm 2

Givenv;_; andet! ~V[n] obtained at th¢I — 1)th iteration;
at thelth iteration is obtained by the following two steps.

S1) As the MIMO-SEA, obtainv/; by (11) withr +s=p+¢

asx[n] is real and withr = s = p = ¢ asx[n] is complex,

and obtain the associatet![n].

S2) If J, . (vr) > Jpq(vr—1), 9o to the next iteration; oth-
erwise, update; through a gradient-type optimization algo-
rithm such that/, ,(v;) > J,4(v;-1), and obtain the asso-
ciatede [n].

As x[n] is complex forp = ¢ = r = s andx[n] is real for
p+ g = r—+ s, it can be shown that
0Jp (V) o 1 "
ov Cpg{e=Vnl}
1
~ Cua{eTD[n]}

~(T=1),,
)

V=V;r;_4

(Rvr_1)*  (26)
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wherefi(I_l) has been obtained i81) of Algorithm 2 [see number of paths for uset. Then, the received signal can be

(11)], andR is the same at each iteration, indicating simple arfkpressed as

straightforward computation for obtainigy,, ,(»)/dv in (S2)

of Algorithm 2. The proof of (26) is given in Appendix E. Let K Nl My

us conclude this section with the following remark. a(t) = Z Z Z Apmu[n]

R3) Algorithm2 performsasafastgradienttype MIMO-IFC

algorithm with convergence speed, computational load,
and ISI similar to those of MIMO-SEA due to the step = L .

S1)ofAlgorithm 2. Therefore, Properties 1, 2, andBaIs%vrfSr;f:]’g tﬁa?ggA:g zni;kg____ ;"TJ{J\Z’% T ry k6

apply to the optimum inverse filter obtained by Algo- ' <
rithm 2. Moreover, the convergence of Algorithm 2 capn® delay spread of all the channels,, — n. < T, vk [3],

“0 - Cal3o1 [34] and 0< 711 < 791 < -+ < 751 < T iLe., the first
be guaranteed becausg, which is bounded) in- . - = - - - .
cregses ateach iteratiohq((jzgt(o §onfAIgorithm)2. propagation delay,, < T’ V. Let zxm[n] be the signature

waveform matched filter output associated with thih path of
the kth user assuming perfect synchronization, andugf, [»]
be the noise term im;,,,[n] due tow(t), i.e.,

k=1 n=0 m=1
-Si(t — nT — 7o) + ogw(t) (30)

IV. BLIND EQUALIZATION FOR DS/CDMA SYSTEMS
USING MIMO-IFC

Blind deconvolution of MIMO systems in multiuser com- (A DT+ 7km
munications [1]-[4], [18], [31]-[34] includes suppression of Tkm[n] = /n

MAI and ISI that are crucial to the receiver design of multiuser (n+1)T47im
communications systems. In this section, Algorithm 2 is appliea,,, [n] = o—w/ W(t)5E(t — nT — Trm) dt. (32)
to the suppression of MAI and ISI for multiuser asynchronous T+ T

DS/CDMA systems. Next, let us briefly review the MIMO
model for asynchronous DS/CDMA systems.

()55t — T — T dt (31)
T+Trm

It can be easily shown that

A. MIMO Model for Asynchronous DS/CDMA Systems xi[n] = (za [l ziafnl, - o, [n])

L —g®
For a K-user asynchronous DS/CDMA communication = H"[n] x uln] + wy[n]

system in the absence of multipath, the received continuous My 4
time signal is given by [1] = <z:1 Hﬁ,’;)[n]Am> *uln] +wiln] - (33)
K N-1
.T(t) = Z Z Zkuk[n]§k(t —nl — ?k) + O’wm(t) (27) where 1< My < My, A,y = diag{Alma Ay e e AKm}y
k=1 n=0 wy[n] is colored Gaussian noise, aHﬁ’f)[n] isanM; x K
matrix with the(l, 7)th element

where

T symbol period; "

A amplitude; HP)[n]],; = {pgﬂzm’ n=-2-1-2 (3

ug[n] symbol sequence; 0, otherwise

N length of symbol sequence; in which

Tr < T  propagation delay associated with user

w(t) zero-mean Gaussian noise with unit variance; () T

Su(t) signature waveform of unit energy associated  Pijkm :/0 Si(8)5;(t +nT + Tt — Tjm) di. (35)

with userk given by
;| Pl Then, from (33), it can be easily obtained that
Se(t) = —= ex[n]p(t — nT:) (28)

where vT nz=:0 x[n] = (x{ [n],x3 [n],-- -, x} [n])" = H[n] x u[n] + w(n]

P spreading gain; (36)

T.  chip period & T/P);

cx[n] binary pseudo random sequence{afl, —1}; where

p(t) rectangular chip pulse of magnitude equal to unity.

Assume that continuous-time multipath channel for usisr ufn] = (wifn], uan], -, urc[n))*
given by wln] = (wi[n], wi[n],- -, wic[n])*

ha(£) = Aﬁ": Arom(t = Fom) (29) andH[n] is anM x K system given by
m=1

H[n] = (HV [))"HP )T - HOR)TT (37)
where A, and 7, are attenuation factor and time delay for ’
themth path associated with uskrrespectively, and{;, is the whereAM = Ef‘:l M;.
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Moreover, the vector noisev[n]| is zero mean colored smaller thariC]HAﬂ by R4). Consequently, the usgwill be
Gaussian whose covariance matrix igax K block matrix locked in the ensuing iterations by forcing ISI to decrease. Re-

given by mark that with the initial conditionv(®)[n] given by (41), it is
not necessary that, [n] be obtained as user signal powers are
Q[k] = E[w[n]w [n — k]] = {Q: ; [k} kxx (38) very unbalanced or the number of users is large.
inwhichQ; ;[k] = Elw;[n]w! [n — k]] is anM; x M; matrix V. SIMULATION RESULTS

with the (1, m)th entry given by Three simulation examples are to be presented. The first

- example considers a Z 2 LTI system, and Examples 2
Qi (K]l = ff%/ T8 (¢ + KT + 7t — i) dt. (39) and 3 consider a tvyo—user and an elght—user asynchronpus
DS/CDMA systems in multipath, respectively. Example 1 is
_ _ for verifying Properties 1 and 3 and supporting the efficacy
One worthy remark regarding the MIMO model given by (363nd robustness of Algorithm 2. Example 2 is basically for
for asynchronous DS/CDMA systems is as follows. verifying Property 2, and Example 3 is for supporting that
R4) The impulse response matridd$" [] given by (33) Algorithm 2 is effective for MAI and ISI suppression. In the
andH[n] given by (37) are of length fivdd*)[n] can three examples, the input signais[n], i = 1,---, K were
also be expressed in the following form: assumed to be equally probable binary random sequences of
{+1, -1}, and the synthetic data[n] were generated for
H®[n] = (0 - - 0p_1A30p41 - - O ) - 8[n] +§(’“)[n] (40) different values of SNR defined as

where A, = (Ap1,-- -, Arag, )T and0; are M, x 1 SNR= Elllx[n] - W[”]||2]_ (43)
zero vectors for alt. Under good power control, the E[[|wln]|?]
energy of each component of thet; x K matrix
§<k> [n] in (40) can be much smaller than,,;|* for all Next, let us turn to Example 1.
=1, -_-,Mk asK is not very_large, du? to low Cross Example 1
correlation between waveforrgg(t) ands;(¢) for all . _ .
k # j in general. _ 1) Properties 1 and 3 and Efficacy of Algorithm Z& two-
input two-output system
B. MAI and ISI Suppression Using Algorithm 2
The proposed Algorithm 2 is an iterative blind deconvolu- b— 0'3227_21 et 0'6455_22 ‘- 0'3227_23 ’
tion algorithm that can be employed to process the received didf(z) = | 0387327 +0.8391277 + 0.3227~
crete-time signak[n] modeled by (36) without the need of in-
formation of channel, signal magnitudes (or powers), and noise 0.6140 4 0.368427"
statistics as long as synchronization of the received sigftal —0.257927" — 0.614027% 4 0.884227° | (44)
with at least one path is achieved. +0.442127* 4 0.25792~°

Assume that usef is the user of interest. Because of error
propagation in the MSC procedure, we prefer to obtgi = With b = 0.6455, which is taken from [16], was used. The noise
#;[n] at the first stage (without going through théstages) of vectorw[n]_ was assgmed to be spati_ally independent and tem-
the MSC procedure. By our experience, the initial condition porally white Gaussian. The synthetic dat] for N = 900
and SNR. = E[|zx[n] — w[n]|?]/E[|wk[»]|?] = SNR= 15
v@[p] = (0T - .. 0f71<f0f+1 - 0F) - 8[n—mng] (41) dB,k=1,2wereprocessed by the eq'ualiv@z] of IengthL =
30 (L; = 0andLsy = 29) associated with MIMO-IFC using the
where ., < ny < Lo, 0; is an M; x 1 zero vector, and iterative Fletcher—Powell algorithm [29] (a gradient-type itera-
¢; (M; x 1 column vector) is the principal eigenvectoftive algorithm), MIMO-SEA withr = s = 2, and Algorithm 2
of E[xj[n]x]H[n]] [35], can usually lead Algorithm 2 to withp =¢g=r = 5 = 2, respectwelly. The _|n|t|al condition
e[n] = 1i;[n] at the first stage of the MSC procedure as powéfp for the three alg?or)lthms W%S)‘ associated wit [n] = (€1t
control is fine, and is not very large. The reason for this is ag2)6[n — 14] (i.e., vy "[n] = vy " [n] = 5@” — 14]) for the first

follows. Associated withv(® [n] given by (41), one can easily Stage and/(V[n] = £;6[n — 14] (i.e., v [n] = 6[n — 14] and
see thae([n] = (ij [n — no] and v§°> [#] = 0) for the second stage of the MSC procedure.
Thirty independent realizations of the optimu#in] and the
sO] = HY [n] « vQ[n] [by (4)] associated 30 ISls versus iteration number obtained at the first

(G stage of the MSC procedure (associated wit = 41 [n]) are
= C?Aj -€5 - 6[n —no] + (CJHS(J)[TL — o))" shown in Fig. 1(a)—(f) using the three aIgor[i?r]lms, r([as]pectively.
[by (37), (40), and (41)]. (42) Fig. 1(a), (c), and (e) showt [n]s associated with MIMO-IFC,
MIMO-SEA, and Algorithm 2, respectively. Fig. 1(b), (d), and
Note that IS{c(®)[n]) is usually small since the energy of eaclff) shows ISIs associated with MIMO-IFC, MIMO-SEA, and
entry of the second term on the right-hand side of (42) is muéigorithm 2, respectively. One can see, from Fig. 1, that the
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Fig. 1. Simulation results of Example 1. Thirty[n]s and ISIs versus iteration numheat the first stage of the MSC procedure o= 0.6455. (a)s,[r] and
(b) ISI associated with MIMO-IFC fop = ¢ = 2 using Fletcher-Powell Algorithm. (¢);[»] and (d) ISI associated with MIMO-SEA for= s = 2. (e) s1[n]
and (f) ISI associated with Algorithm 2 for = ¢ = 2.

resultants;[n]s are linear phase and they are similar for thierms the other two algorithms because the former converges
three algorithms thus verifying Properties 1 and 3, whereas the fast as the MIMO-SEA in all 30 realizations (without any
convergence speed for the proposed Algorithm 2 is basicatlivergence) and converges faster than the MIMO-IFC using the
the same as that of MIMO-SEA and faster than the MIMO-IFEletcher-Powell algorithm.

using the Fletcher-Powell algorithm [see R2)]. The results Moreover, it can be observed from Figs. 1(b), (d), and (f)
for s2[n] obtained at the first stage of the MSC procedure aend 2(b), (d), and (f) that some ISls increase at the beginning
omitted here since they are close to zero. The corresponditegations for the three algorithms, and then they decrease rapidly
results forsy[n] and ISI obtained at the second stage of thie the ensuing iterations for the MIMO-SEA and Algorithm
MSC procedure (associated within] = iz[n]) are shown in 2. Some ISls associated with the MIMO-SEA and Algorithm
Fig. 2(a)—(f) without including the results faf [»] since they 2 are exactly the same because only the &&pof the latter

are close to zero. These results also support Properties 1 amdich is exactly the MIMO-SEA) was performed in obtaining
3, but the MIMO-SEA fails to converge in one realization [sethese results. Some ISIs associated with the MIMO-SEA do
Fig. 2(d)] with the associates:[n] not approximating a delta not decrease fast, whereas Algorithm 2 can always make them
function [see Fig. 2(c)] [see also R2)]. Algorithm 2 outperdecrease fast by forcing; »(#)s to increase in the step2).
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Fig. 2. Simulation results of Example 1. Thirty[n]|s and ISIs versus iteration numbeat the second stage of the MSC procedurebfer 0.6455. (a)s=[n]
and (b) 1SI associated with MIMO-IFC fgr = ¢ = 2 using Fletcher-Powell algorithm. (}[n] and (d) ISI associated with MIMO-SEA for = s = 2. (e)
s2[n] and (f) ISI associated with Algorithm 2 for = ¢ = 2.

Moreover, the resultant ISls are similar for both MIMO-SEArom Figs. 3 and 4, that all the ISIs converge fast (spending
and Algorithm 2. These results are consistent with R3). within seven iterations) to the final small ISIs that depend on
2) Robustness Test of Algorithm M the simulation, the the value of the system parameterThese simulation results

synthetic data[n| were generated through the same proceduverify the robustness of Algorithm 2.

as in part 1 forb = —1, —0.5, 0, 0.5, 1 [see (44)], respec-

tively, and then processed by Algorithm 2 with the same paraf@- Example 2

eters and initial condition for the inverse filter associated with |n this example, an asynchronous DS/CDMA channel for two

MIMO-IFC as used in part 1. users £ = 2), each with three pathd{; = M, = 3), was
Thirty independent realizations of ISIs versus iteratiogonsidered. The users’ spreading codgs] are Gold codes of

number obtained at the first stage of the MSC procedukength’” = 31. The channel parameters used welg, = 1,

(associated witlke[n] = ;[n]) are shown in Fig. 3(@)—(e) for k = 1, 2,m = 1, 2, 3,(711, 712, 713) = (0, 5T, 87%.), and

b=-1,-05,0, 0.5, and 1, respectively. Fig. 4(a)—(e) showsy,, 702, 723) = (47, 1177, 13T.). The synthetic data[n] for

the corresponding results obtained at the second stage of g = M, = 1, N = 1500 and SNR= 20 dB were processed

MSC procedure (associated withn] = »[n]). One can see, by Algorithm 2 withp = ¢ = » = s = 2 for which the equalizer



1290 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 7, JULY 2001

5
0
-5
)
.10
)
-15}
-20
-25 - v -25 j
0 5 10 15 0 5 10 15
ITERATION NUMBER () ITERATION NUMBER ()
(a) (b)
5 5
0
-5
o
Z_10
2]
-15}
-20 ~-20
|
-25 - -25
0 5 10 15 0 5 10 15
ITERATIOI\(I l\;UMBER 1) ITERATIOIEJ N)UMBER )
c d

ISI (dB)

0 5 10 15
ITERATIOI\(I r\;UMBER )
[

Fig. 3. Simulation results of Example 1. Thirty ISIs versus iteration numia¢the first stage of the MSC procedure associated with Algorithm 2 fér£a)-1,
(b)b = —0.5,(c)b = 0, (d)b = 0.5, and (e)b = 1, respectively.

v[n] of length L = 10 (L; = 0 andL, = 9) was used. On corresponding results associated with| = is[n] are shown
the other hand, the theoretical (truejn] = (vi[n],v2[n])? in Fig. 6(a)—(f), respectively. From Figs. 5(a)—(d) and 6(a)—(d),
associated witke[n] = i4[n] and that associated witjn] = one can see that all the obtained optimiéajr] and ¢2[n]
fi2[n] were obtained by Algorithm 1 with= 10~*andf{ = 32. are very close to the true;[n] andv[n], respectively. From
The initial conditionv(?[n] given by (41) withny = 4 for the Figs. 5(e) and 6(e), one can see that all the ISIs converge
chosenj was used to initialize Algorithms 1 and 2 for estimatindast (by spending around two iterations) with the resultant ISl
u;[n] without involving the MSC procedure. below —35 dB. From Figs. 5(f) and 6(f), one can see that
Simulation results associated witl:] = i1 [n] are shown the overall channel impulse responsg] ~ &;6[n — 4] for
in Fig. 5. Thirty independent estimatés[n] and ©;[n] are the former ands[n] ~ e26[n — 4] for the latter, respectively.
shown in Fig. 5(a) and (c), respectively; the teyén] andve[n] These simulation results verify Property 2 of MIMO-IFC and
are shown in Fig. 5(b) and (d), respectively; the associatedpport the fact that Algorithm 2 works well. As a final remark,
30 ISIs versus iteration number are shown in Fig. 5(e); tldgorithm 1 also converges fast (by spending two iterations)
true overall channel responses[n] (dash line) andsz[n] in obtaining the truev[n] shown in Fig. 5(b) and (d) and
(dotted line) (after equalization) are shown in Fig. 5(f). Th&ig. 6(b) and (d) without involvingS5).
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Fig. 4. Simulation results of Example 1. Thirty ISIs versus iteration nuniikegrthe second stage of the MSC procedure associated with Algorithm 2 for (a)
b=—-1,(b)b=—0.5,(c)b =0, (d)b = 0.5, and (e)p = 1, respectively.

C. Example 3 1.7 1.8 27 32 37 39 49 68
_ T = |26 27 46 41 46 48 58 7.7|. (46)
In this example, an asynchronous DS/CDMA channel for 39 35 50 55 54 55 6.6 8.5

eight users{ = 8), each with three paths\{{; = 3,7 =1, 2,

---, 8) was considered. The users’ spreading cagés| are .

also Gold codes of lengt® = 31. The channel parameters! he synthetic data[n] for v = 1500, SNR= 20, 15, 10 dB,

used wered, i, = [Alpk and 7 = [T]mrTy, Where M; =M =1, andM; = M = 3 for all i were processed by
Algorithm 2 withp = ¢ = » = s = 2. The length of equalizer
L=8(Ly=0andLy; =7)andL =4 (L; = 0andL; = 3)

02 -13 -137 025 137 for M = 1 andM = 3, respectively. The initial conditions
AT = | -13 07 -05 -15 —05 ©0) i
= . . - -0 -0 v\%[n] were chosen as (41) with= 2 andno = 1 andny = 3
05 -05 —0.75 -05 0.75 for M = 1 and M = 3, respectively, to initialize Algorithm 2
—-1.1 1.2 1.3 for estimatingua[n] (i.e., only user 2 is the desired user).
0.7 —-08 0.8 (45) Simulation results forA4 = 1 are shown in Fig. 7. Thirty

-0.5 0.6 045 optimum overall channel estimatép. = 6(k — 1) + m] (=
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Fig. 5. Simulation results of Example 2 associated w(th] = [r]. (a) Thirty &,[r]s and (c)?=[r]s obtained by Algorithm 2. (b) True,[n] and (d)v:[n]
obtained by Algorithm 1. (e) Associated 30 ISIs obtained by Algorithm 2. (f) Overall chanfe] (dash line) and-[n] (dotted line) associated with the true

v[n].

sgm], k =1,2,---,8m =0,1,---, 5) are illustrated in that Algorithm 2 works well for the MAI and ISI suppression
Fig. 7(a), (c), and (e) for SNR 20, 15, and 10 dB, respectively,of the eight-user asynchronous DS/CDMA system used in this
and the associated ISIs are depicted in Fig. 7(b), (d), and @xample.
respectively. The corresponding results fof = 3 are shown

in Fig. 8(a)—(f), respectively. One can see, from these figures,

that the overall channel impulse resporge] ~ e28[n — 3]

ands[n] ~ e,8[n — 1] for M = 1 and M = 3, respectively, ~We have presented three properties for the MIMO linear
except for a scale factor implying that 30 estimatled = i2[n] equalizerv[n] associated with Chi and Chen’s MIMO-IFC for
were obtained and that all the ISIs converge fast (by spendiagy SNR, including perfect phase equalization, a relation to the
two to four iterations) with the resultant I1Sls smaller for largemonblind MIMO-MMSE equalizer, and the equivalence to the
SNR. Moreover, one can observe that results shown in Fig. 8(bhe associated with MIMO-SEA, as presented in Properties
(d), and (f) are about 7 dB better than those shown in Fig. 7(4), 2, and 3, respectively. Based on Property 2, a fast iterative
(d), and (f), respectively, because multipath diversityf (= algorithm (Algorithm 1) was proposed for computing the true
3) for the former is exploited. These simulation results suppatjualizer during the simulation stage, but it is never an MIMO

VI. CONCLUSIONS
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vn].

blind deconvolution algorithm for processing data. Based @uch as seismic deconvolution and source separation are left
Property 3, a fast MIMO-IFC based algorithm (Algorithm 2¥or future research.

was presented that performs as the MIMO-SEA (in terms

of ISI, computational load, and convergence speed) with APPENDIX A

guaranteed convergence, whereas the latter may not converge PROOF OFPROPERTY 1

for finite SNR and data. Then, the application of Algorithm 2

to MAI and ISI suppression for asynchronous DS/CDM BecausqQ[k]ls; = 0for i L, it can be easily shown, from
systems was presented. Some simulation results were 2@0 that the noise varianee,.,[0] is given by

presented for supporting the proposed analytical results and

Algorithm 2. The proposed analytic properties of MIMO-IFC r .
are helpful to the behavior and implementation of the designed ~ "ww[0] = >_[Q[F]lu  vilk] * o [-k]| . (A.1)
equalizer and the interpretation of the deconvolved signals. =1 k=0

More studies of applying the proposed Algorithm 2 to multiuser
communications and other statistical signal processing ar&s(4), (7), (A.1), and Parseval’srelation [36],1{e(n)} canbe
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Fig. 7. Simulation results of Example 3 associated wfif| = ii-[n] for M = 1. (a) and (b) Thirty optimum overall channel estimatps = 6(k — 1) + m]

(= sk[m],k=1,2,---,8,m=0,1,---,

5) and associated ISls, respectively, for SNRO0 dB. (c) and (d) Thirty optimum overall channel estimaieg and

associated ISls, respectively, for SNR15 dB. (e) and (f) Thirty optimum overall channel estimatps and associated ISls, respectively, for S¥RLO dB.

simplified as

r K
Cualelm}= 323 Curtul)
1 k=1

=1

H{QW)]ul?

| Vi(w)[? du

<Z nnmw[n1|2> trul] (A2)
%2/_ﬁl<zoll{uk (]} - () w?) Vil

(A.3)

where

One

[
[Q

can see,

(@) = F{[H[n]]u }
(w)]lk = F{[Q[?’L]]lk} and
Vilw) = F{un]}.

from (A.3), that the denominator

|C11{e(n)}|®+2/2 of J,,(v) [see (10)] is dependent on
(w)| but independent of af;(w)].

Cp,q{ur[n]}

Sk(w)

= |G [l explin)
— Flaulnl} = |Su(w)] expliou()}
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Fig. 8. Simulation results of Example 3 associated wfth| = 5[] for M = 3. (a) and (b) Thirty optimum overall channel estimatgs = 6(k — 1) + m]
(= sx[m], k=1,2,---,8,m =0, 1,- -, 5) and associated ISlIs, respectively, for S¥R0 dB. (c) and (d) Thirty optimum overall channel estimatpg and
associated ISls, respectively, for SNR15 dB. (e) and (f) Thirty optimum overall channel estimatps and associated ISls, respectively, for SHRLO dB.

and letCy (71, -

lant function ofe[n] defined as

Ce"q (Tl Lo

P 'an-I—q—l)

=cumie[n],e[n+ 1], -, e[n + 1p-1]

=l €= Ty}

whose(p + ¢ — 1)-dimensional Fourier transform, which is de-
-, Wpt+¢—1) and known as thép + ¢)th-order

notedS;,  (wi, -~

(A.4)

Se

P

-, Tp+q—1) denote thep + ¢)th-order cumu- polyspectrum ok[n] [5], can be shown to be [37]

o 'awp-l—q—l)

- p—l pta—1
= Cpwmnl} - Sk | =D wi+ > wi
k=1 — P

ptg—1

). I Sitwo. (A5)

By (A.5), the numerator of,, ,(v) [see (10)] can be shown to
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be
|C (I{e[n]}| | ( 0 7'2— Tp-l—q 1_0)|
ptg—1
<27r> [W [W
Spg(Wi, e Wppg—1) dwy - dwppgy
1 p+q—1 K
- %) 2 1Craalnl}] [
ptg—1

| ECDI
=1

e

p+q—1
{55
p—1 ptq—1
+Z Dp(w;) — Z Dp(w;) + Iik] }
i=1 i=p

dwl s dwp+q,1

(=) lfncpq{uk el

ptg—1
Sk | —

%)
1=p

rtq—1

. H |Sk(w)| dwy - - -

One can easily see that the equality of (A.6) requires

L]

p—1

Zwi +
=1

dwp_,_q,l. (AG)

p—1 ptq—1 r—1
Dy, (— Zwi + Z wi) + Z‘Pk(wi)
i=1 i=p i=1
ptq—1
- Z Pr(wi) + ki = o,
i=p
Yw € [—7,7), k=1,--- K (A7)

wherey is a constant independentwof Therefore, the optimum
¢, (w) associated with the maximum of, ,(») is linear for

w € [—m,7), i.e., the optimumd,(w) = argSi(w)] can be

expressed as (17), regardlesgigfw)|, 1 =1,2,---, P.

APPENDIX B
PROOF OFLEMMA 1

The joint cumulant of random variableg;, i = 1, 2,---, 1
can be expressed as [5]

cum{ys,y2, -, Ui}

DN

1€82

- E

I 4]

1E£2

I1+]

1EQ,

(B.1)
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where the summation includes all possible partitidiis,,

Qz,---,Q} of the integer sef = {1,2,---,1}. By (B.1), we
obtain
Cpoleln]} = cum{e[n] : p,e*[n] : ¢}
pt+q
= > (=D HE -1
t=1
pt+q

HE e [n)(e

where; and j, are numbers of terms 03‘[71] and e*[n] in
the associated partition @®;, satisfying Ep = p and

7‘L] Jk]

(B.2)

g

SP¥e 5, = g, respectively. It can be eaS|Iy seen from (B.2)
that
pt+q
Cp deln]y = > (=) M- 1)
t=1
pt+q

HE

which is equivalent to (23). Next, let us prove (24).
It is easy to see from (2) that

7‘L] H e]k 71]] —

Coplelnlt (B.3)

a;gz] =0 (B.4)
ag;[f] = &*[n]. (B.5)

Taking the partial derivative of’, ,{e[n]} given by (B.2) with
respect ta* yields
n])“])

ptaq
Cralcll} > (1)1

ptq ptq

{Z‘jm< H E”‘TL]
m=1 k=1,k#m
-Ble™ [n](e” [n]) " 2" [n]] }

[by (B.4) and (B.5)]

pt+q p+q
= ZJm'{Z f 1[(t—1)!]

p+q

( II Ee*Rie ﬂ])“])
k=1,k#m
- Ele'm [ﬂ](c*[ﬂ])j”_li*[ﬂ]]] }

p+q
<Z jm> -cumfeln] : p,e*[n] : g—1,%%[n]}

m=1

[by (B.2)]

— q-cum{cln] : p,c[n] : ¢ — 1,&"[n]}  (B.6)

which is (24). Thus, we have completed the proof.
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APPENDIX C which together with (C.4) leads to
PROOF OFPROPERTY 2
aJ, J, 1 ac
First of all, let us prove thalC: 1 {e[n]}/0v* and cunie[n] : a—”*q = % . {O . 7g{f[n]}
p.e*[n] : ¢ — 1, (w:[n — k])*} can be expressed as (C.1) and o apicl]} v
(C.2), respectively, for ease of use in the Proof of Property 2 +5 1 9Chalelnly _pta
below. By (24), we have Cpqleln]} awv* Cy{eln]}
~ v*
O _ prefnla ] = Bl e o) = i
|4
R (C.1) Settingd.J,, ,/9v* given by (C.6) equal to zero and substi-
whereR = E[z*[n]z" [n]] was defined at the beginning of Sectuting (C.1) and (24) into the resultant equation, we obtain

tion Il. On the other hand
cumfe[n] : p,e*[n] :
K
= cum{z
=1

L (ziln = k])"}

q—
Z sifn — kiJu k] < p

siln — kaJug k] s g =1
Hln — by — E]Jjug Uﬁ]} [by (3)]

Cpq{wln]} Z SALICHL

=1 ki=—oc
-[Hlk — K]l [by (A1)]
K
= Opq{“l [n1} - (gparlk] + [H[=H]]7)
i:, P, k=L, - Lo (C.2)

whereg,,:[k] was defined by (18).

Maximizing J, ,(») given by (10) is equivalent to maxi-
mizing

I, (v) = 2 ()= |Cpqg{elnl}]

¥ = [CLi{elnl} Pt

Cp.qie[n]}Cypielnl}

| Crafen]}rte [by (23)] (C.3)
which implies
ajﬁq(”) _ 0y, (v)
vt 2 Jpq(v)- ot (C.49)

Taking partial derivative off,, ,(») given by (C.3) with respect
to v* yields

ajp,q _J 1 acq,p{c[”]}
ot =9 oty
L1 30D
Cp,qle[n]} ov*
_ ptq  9C{en]}
Gl o } (5)

Ci{en]}  p
pra  Cyplen]}
-cum{e[n] : g,e¢*[n] : p— 1,%%[n]}
Cideln]} ¢
pra  Cpglen]y
-cumfe[n] : p,e*[n] : ¢ — 1,2*[n]}
= agp - cum{e[n] : ¢, ¢*[n] : p — 1,2"[n]}
+ apq -cUum{en] : p,e*[n] 1 g — 1,2 [n]}

Rv=

(C.7)

where o, , Was defined by (22). Then, substituting (C.2) in
(C.7), one can obtain

P L
>3 rtalk = nlulk]
I=1 k=L
= Z rei[n] * vln]
=1

=gy Y Cyplulnl} - [guuln] = H[=-n]l3]

+apg Y Cpglwlnl} - [gpgln]  H[-n]l}]
=1

i=1,---,P, n=L, - Ls (C.8)

where

ri1k] = Elzi[n]zi[n — k]| = r] ;[ k]

LetL; — —co andL,; — <o, and then, taking the discrete-time
Fourier transform of both sides of (C.8) yields

RY W)V (W) = ag,pH*(W)D g p Gy p(w)

+ ap H (w)Dy oGy (W) (C.9)

whereD,, ,, R(w), andG, ,(w) were defined by (14), (16), and
(19), respectively. Finally, from (C.9) and (15), we obtain

Viw) =[R T( )]_1 “H (w)(g,pDg,pGyp(w)
+ 0ty Dy Gp e (W)
= VMMSE( ) DT i (cx
+ 0y, Dy g Gp g (w))

P.q

= VlaMSE(w) : G’(w)

PD(I PG(I P( )

(C.10)
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whereD,, , and G(w) were defined by (14) and (21), respecwhich also leads to (26) witfe[n], d, and v replaced by

tively. Thus, we have completed the proof. C(T—l)[n], 3(1_1 and v;_,, respectively. Thus, we have

completed the proof.
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