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Cumulant-Based Inverse Filter Criteria for MIMO
Blind Deconvolution: Properties, Algorithms, and
Application to DS/CDMA Systems in Multipath

Chong-Yung Chi, Senior Member, IEEE,and Chii-Horng Chen

Abstract—Tugnait and Chi and Chen proposed multi-input
multi-output inverse filter criteria (MIMO-IFC) using higher
order statistics for blind deconvolution of MIMO linear time-in-
variant systems. This paper proposes three properties on the
performance of the MIMO linear equalizer associated with
MIMO-IFC for any signal-to-noise ratio, including P1) perfect
phase equalization property, P2) a relation to MIMO minimum
mean square error (MIMO-MMSE) equalizer, and P3) a connec-
tion with the one obtained by MIMO super-exponential algorithm
(MIMO-SEA) that usually converges fast but does not guarantee
convergence for finite data. Based on P2), a fast algorithm for
computing the theoretically optimum MIMO equalizer is pro-
posed. Moreover, based on P3), a fast MIMO-IFC based algorithm
with performance similar to that of the MIMO-SEA and with
guaranteed convergence is proposed as well as its application
to suppression of multiple access interference and intersymbol
interference (ISI) for multiuser asynchronous DS/CDMA systems
in multipath. Finally, some simulation results are presented to
support the analytic results and the proposed algorithms.

Index Terms—Cumulants, inverse filter criteria, MIMO blind
deconvolution.

I. INTRODUCTION

B LIND deconvolution of a multi-input multi-output
(MIMO) linear time-invariant (LTI) system, which is

denoted ( matrix), is a problem of estimating
the vector input ( inputs)
with only a set of non-Gaussian vector output measurements

( outputs) as follows: [1]–[4]

(1)

where ( vector) is additive noise. The MIMO LTI
system arises in science and engineering areas where multiple
sensors are needed such as time delay estimation, source separa-
tion,andsesimicsignalprocessing,etc. Incommunications,mul-
tipleantennasreceivingsignalsandoversamplingof receivedsig-
nalscanalsobemodeledasMIMOLTIsystemsonwhichavariety
of detection and estimation algorithms are based [2]–[4].
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Higher order statistics (HOS), known as cumulants [5], have
been used for blind deconvolution of nonminimum-phase LTI
systems with a given set of non-Gaussian measurements. There
have been a lot of blind deconvolution algorithms reported in
the open literature [6]–[13] for nonminimum-phase single-input
single-output (SISO) systems ( ) using HOS. Chi
and Wu [6] proposed a family of SISO inverse filter criteria
(SISO-IFC) that includes Wiggins’s criterion [7], Shalvi and
Weinstein’s criterion [8], and Tugnait’s criteria [9] as special
cases. Under the assumptions a1) the signal-to-noise ratio
(SNR) is infinity, and a2) the length of equalizer is infinite, it
has been shown that SISO-IFC achieve perfect equalization,
i.e., the equalizer (inverse filter) output is equivalent to the input
signal except for an unknown scale factor and an unknown
time delay. Feng and Chi [11], [12] reported some performance
analyses of SISO-IFC for finite SNR that are helpful in the
interpretation of the deconvolved signals and to realizing the
behavior of the designed equalizer. Shalvi and Weinstein [13]
proposed an SISO super exponential algorithm (SISO-SEA) for
blind deconvolution that converges at a super exponential rate
under the assumptions a1) and a2). Recently, it was shown [14]
that for finite SNR and equalizer’s length, the optimum inverse
filter obtained by SISO-IFC and that obtained by SISO-SEA
[13] are equivalent if second- and fourth-order cumulants are
used; meanwhile, they are also equivalent to that obtained by
the well-known constant modulus algorithm (CMA) [15].

Blind deconvolution algorithms for nonminimum-phase
MIMO LTI systems using HOS have also been reported
[16]–[28] in the past decade. Tugnait [16] proposed MIMO-IFC
for blind deconvolution of MIMO systems using second- and
third-order cumulants or second- and fourth-order cumulants
of inverse filter (equalizer) output. Under assumptions a1) and
a2), the optimum inverse filter output turns out to be one of
the input signals except for an unknown scale factor and an
unknown time delay (i.e., the optimum inverse filter is a perfect
equalizer for one of the input signals). All the input signals
can be estimated through a multistage successive cancellation
(MSC) procedure [16]. Furthermore, based on the MIMO-IFC
and the MSC procedure, Tugnait [17] proposed adaptive blind
MIMO deconvolution algorithms under assumption a1). Chi
and Chen [18] further extended Tugnait’s MIMO-IFC using
second- and higher order ( 3) cumulants of inverse filter
output with application to suppression of multiple access
interference (MAI) and intersymbol interference (ISI) for
multiuser DS/CDMA systems.
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Some other inverse filter criteria using second- and fourth-
order cumulants of inverse filter output for MIMO blind de-
convolution have been reported in [19]–[21] with which the
designed equalizer also performs as a perfect equalizer under
assumptions a1) and a2). Assuming that the input vector
satisfies the normalized whitening condition, i.e., ,

are white random processes with unit variance and
they are mutually uncorrelated, Inouye and Habe [19] proposed
a constrained multistage inverse filter criterion. Based on the
constrained multistage inverse filter criterion, Inouye and Sato
[20] further proposed an unconstrained multistage inverse filter
criterion. Inouye [21] also proposed a constrained single stage
inverse filter criterion that has been shown to be equivalent to the
constrained multistage inverse filter criterion reported in [19].

Yeung and Yau [22] and Inouye and Tanebe [23] also
proposed MIMO-SEA for blind deconvolution. Again, under
assumptions a1) and a2), the designed equalizer by the
MIMO-SEA is also a perfect equalizer (for one of the input
signals) with a super-exponential convergence rate, and all the
input signals are estimated through the MSC procedure in a
nonsequential order. Moreover, the SISO-SEA for fractionally
spaced equalization [24], which turns out to be an MIMO-SEA,
and the MIMO-CMA [25]–[27] have been reported for blind
deconvolution under assumption a1). To our knowledge, the
performance of all the above mentioned MIMO blind deconvo-
lution algorithms for finite SNR is unknown so far. Moreover,
both the SISO-SEA and MIMO-SEA may diverge for finite
SNR and finite data in spite of their fast convergence for infinite
SNR and sufficient data.

Ding and Nguyen [28] proposed a performance analysis for a
beamformer using kurtosis maximization algorithm (KMA) that
is actually a special case of Chi and Chen’s MIMO-IFC using
second- and fourth-order cumulants. The global convergence
property of the KMA together with the optimum beamformer
perfectly capturing a single source for infinite SNR has been
shown. Moreover, for finite SNR, the optimum beamformer per-
forms as a minimum mean square error (MMSE) beamformer
only for the case of single source ( ) as the kurtosis of
noise is equal to zero, whereas the performance of the optimum
beamformer for multiple sources ( ) and finite SNR is still
unknown.

In this paper, three properties on the performance of cumu-
lant based MIMO-IFC [16]–[18] are proposed. Based on the
presented properties, a fast algorithm for computing the theoret-
ically optimum MIMO equalizer, and a fast MIMO-IFC based
algorithm with performance similar to that of MIMO-SEA [22],
[23] and with guaranteed convergence, are proposed. Moreover,
an application of the latter to MAI and ISI suppression for mul-
tiuser asynchronous DS/CDMA systems is also presented.

The paper is organized as follows. Section II presents a brief
review of MIMO-IFC and MIMO-SEA for blind deconvolution
of MIMO systems. Section III presents three properties of the
optimum equalizer associated with MIMO-IFC, a fast algorithm
(Algorithm 1) for obtaining the true equalizer needed in the sim-
ulation stage, and a fast MIMO-IFC based algorithm (Algorithm
2) with guaranteed convergence. Section IV presents the MIMO
model for asynchronous DS/CDMA systems followed by blind
deconvolution processing using Algorithm 2. Then some simu-

lation results are presented in Section V to support the presented
analytic results and the efficacy of Algorithm 2. Finally, we draw
some conclusions.

II. REVIEW OF MIMO-IFC AND MIMO-SEA

Let cum denote the th-order cumulant of
random variables , [5], and let denote dis-
crete-time Fourier transform operator. For ease of later use, let
us define the following notations:

cum cum

cum

is complex conjugate of

vector

unit column vector with the

th entry equal to unity

matrix

block matrix

Assume that we are given a set of measurements,
modeled by (1) with the following assumptions:

1) is zero-mean, independent identically distributed
(i.i.d.) non-Gaussian with th-order cumulant

and variance and
statistically independent of for all .

2) The MIMO system is exponentially stable.
3) The noise is zero-mean colored Gaussian with

covariance matrix and
statistically independent of .

Let denote a linear FIR
equalizer of length for which
for . Then, the output of the FIR
equalizer can be expressed as

(2)

[by (1)] (3)

where “ ” denotes the discrete-time convolution operator

(4)
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and

(5)

With the assumptions 1)– 3), it can be easily shown from
(2), (3), and (5) that the correlation function of the
Gaussian noise can be expressed as

(6)

where is the th component of theth column of
and that

(7)

(8)

since for all .
The designed equalizer is usually evaluated by the amount of

ISI defined as [10], [22]

ISI (9)

The smaller the ISI , the better the performance of the de-
signed equalizer , whereas it is actually a function of the
overall channel after equalization. Note that ISI
(perfect equalization in the absence of noise) as

(i.e., and for ),
where , and is an integer.

Chi and Chen [18] find the optimum by maximizing the
following MIMO-IFC:

(10)

where and are non-negative integers, and ,
through using gradient type iterative optimization algorithms
because all are highly nonlinear functions of(without
closed-form solutions for the optimum). Note that the
MIMO-IFC given by (10) include Tugnait’s MIMO-IFC [16],
[17] for and as special cases. On
the other hand, the iterative MIMO-SEA [22], [23] updates
at the th iteration by

(11)

where denotes the Euclidean norm of vector, and

cum (12)

in which and are non-negative integers, ,
and is the equalizer output obtained at the th
iteration. Two remarks regarding MIMO-IFC and MIMO-SEA
are as follows.

R1) In the absence of noise (i.e., SNR ), the optimum
(perfect equalization) (i.e.,

ISI ) for both MIMO-IFC and MIMO-SEA
as and , where ,
is unknown. For finite SNR and, is an
estimate of up to a scale factor and a time delay,
and (the th component of theth
column of ) can also be estimated as

(13)

R2) Although the computationally efficient MIMO-SEA
converges at a super-exponential rate for SNR
and sufficiently large , it may diverge for finite SNR
and . Moreover, with larger computational load than
solving the linear equations given by (11) at each it-
eration, the gradient-type iterative MIMO-IFC algo-
rithms (such as Fletcher–Powell algorithm [29]) al-
ways converge slower than the iterative MIMO-SEA
for as is real and for
as is complex.

Estimates , can be obtained by the
MIMO-IFC or MIMO-SEA (possibly in a nonsequential order)
through an MSC procedure [16] that includes the following two
steps at each stage:

S1) Find an input estimate, say (where is unknown),
using MIMO-IFC or MIMO-SEA and the associated
channel estimates , by (13).

S2) Update by , ,
i.e., cancel the contribution of in .

III. PROPERTIES ANDFAST ALGORITHMS FORMIMO-IFC

For ease of later use, let be a diagonal matrix
defined as

diag (14)

Note that diag . Prior to presenting
analytical results for the performance of the linear equalizer

associated with MIMO-IFC, let us present the nonblind
MIMO minimum mean square error (MIMO-MMSE) equal-
izer, denoted ( matrix), which will be shown
to have some relationship with to be presented below. It
can be shown by orthogonality principle [30] that

(15)

where is a MMSE equalizer
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associated with , , and

(16)

Three properties of the optimum for any SNR are pro-
posed as follows.

Property 1: As the noise is zero-mean spatially inde-
pendent (i.e., for ), the optimum overall
channel impulse responses given by (4),
are linear phase for finite, i.e., their phase responses are given
by

arg (17)

where , , and are real constants.
Property 2: Let

(18)

(19)

The optimum for and
is related to by

(20)

where

(21)

in which

(22)

Property 3: The optimum with finite , and the one
obtained by the MIMO-SEA are the same (up to a scale factor)
for as is real and for
as is complex.

The following Lemma is needed in the proof of Property 2.
Lemma 1:

(23)

cum (24)

The proofs for Property 1, Lemma 1, and Properties 2 and 3
are presented in Appendices A, B, C, and D, respectively.

Substituting (7) and (8) into (10) yields

(25)

By Property 2, the theoretically optimum (true) by max-
imizing given by (25) must be the same as the one

obtained through the relation given by (20). Therefore, to verify
Property 2 by simulation, we need to compute the true
through the relation given by (20) and then compare it with the
obtained estimate using simulation data. The following it-
erative FFT-based algorithm that is also an extension of the one
reported in [12] for the SISO case is proposed for obtaining the
true .

Algorithm 1
S1) Set . Choose an initial condition for and

a convergence tolerance .
S2) Set . Compute the -point DFT

= , of . Compute
by (4), and then obtain

its -point inverse DFT .
S3) Compute and using (18) and (19) with

. Then, compute using (21).
S4) Compute by (20)

followed by its -point inverse DFT . Then,

obtain . If

, go toS6).
S5) Update through a gradient type optimization algo-

rithm.
S6) If , then go toS2);

otherwise, the true is obtained.

Note that Algorithm 1, which is never an MIMO blind decon-
volution algorithm, is merely an iterative algorithm that requires
the channel response , variances , and th-order
cumulants of input signals and noise covariance
matrix to compute the optimum associated with the
MIMO-IFC given by (25). However, it is never lim-
ited by the length of as long as the DFT length is chosen
sufficiently large such that aliasing effects on the resultant
is negligible. Moreover, the convergence of Algorithm 1 can be
guaranteed because (which is bounded) increases
at each iteration, andS5) is rarely performed.

Based on Property 3 and R2), a fast iterative MIMO blind de-
convolution algorithm using MIMO-IFC is proposed as follows.

Algorithm 2
Given and obtained at the th iteration,

at the th iteration is obtained by the following two steps.
S1) As the MIMO-SEA, obtain by (11) with

as is real and with as is complex,
and obtain the associated .

S2) If , go to the next iteration; oth-
erwise, update through a gradient-type optimization algo-
rithm such that , and obtain the asso-
ciated .

As is complex for and is real for
, it can be shown that

(26)
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where has been obtained inS1) of Algorithm 2 [see
(11)], and is the same at each iteration, indicating simple and
straightforward computation for obtaining in (S2)
of Algorithm 2. The proof of (26) is given in Appendix E. Let
us conclude this section with the following remark.

R3) Algorithm2performsasafastgradient typeMIMO-IFC
algorithm with convergencespeed, computational load,
and ISI similar to those of MIMO-SEA due to the step
S1)ofAlgorithm2.Therefore,Properties1,2,and3also
apply to the optimum inverse filter obtained by Algo-
rithm 2. Moreover, the convergence of Algorithm 2 can
be guaranteed because (which is bounded) in-
creases at each iteration due to stepS2) of Algorithm 2.

IV. BLIND EQUALIZATION FOR DS/CDMA SYSTEMS

USING MIMO-IFC

Blind deconvolution of MIMO systems in multiuser com-
munications [1]–[4], [18], [31]–[34] includes suppression of
MAI and ISI that are crucial to the receiver design of multiuser
communications systems. In this section, Algorithm 2 is applied
to the suppression of MAI and ISI for multiuser asynchronous
DS/CDMA systems. Next, let us briefly review the MIMO
model for asynchronous DS/CDMA systems.

A. MIMO Model for Asynchronous DS/CDMA Systems

For a -user asynchronous DS/CDMA communication
system in the absence of multipath, the received continuous
time signal is given by [1]

(27)

where
symbol period;
amplitude;
symbol sequence;
length of symbol sequence;
propagation delay associated with user;
zero-mean Gaussian noise with unit variance;
signature waveform of unit energy associated
with user given by

(28)

where
spreading gain;
chip period ( );
binary pseudo random sequence of ;
rectangular chip pulse of magnitude equal to unity.

Assume that continuous-time multipath channel for useris
given by

(29)

where and are attenuation factor and time delay for
the th path associated with user, respectively, and is the

number of paths for user. Then, the received signal can be
expressed as

(30)

where and .
Assume that 0 , , i.e.,

the delay spread of all the channels , [3],
[32], [34] and 0 , i.e., the first
propagation delay , . Let be the signature
waveform matched filter output associated with theth path of
the th user assuming perfect synchronization, and let
be the noise term in due to , i.e.,

(31)

(32)

It can be easily shown that

(33)

where 1 , diag ,
is colored Gaussian noise, and is an

matrix with the th element

otherwise
(34)

in which

(35)

Then, from (33), it can be easily obtained that

(36)

where

and is an system given by

(37)

where .



CHI AND CHEN: CUMULANT-BASED INVERSE FILTER CRITERIA FOR MIMO BLIND DECONVOLUTION 1287

Moreover, the vector noise is zero mean colored
Gaussian whose covariance matrix is a block matrix
given by

(38)

in which is an matrix
with the th entry given by

(39)

One worthy remark regarding the MIMO model given by (36)
for asynchronous DS/CDMA systems is as follows.

R4) The impulse response matrices given by (33)
and given by (37) are of length five. can
also be expressed in the following form:

(40)

where and are
zero vectors for all . Under good power control, the
energy of each component of the matrix

in (40) can be much smaller than for all
as is not very large, due to low cross

correlation between waveforms and for all
in general.

B. MAI and ISI Suppression Using Algorithm 2

The proposed Algorithm 2 is an iterative blind deconvolu-
tion algorithm that can be employed to process the received dis-
crete-time signal modeled by (36) without the need of in-
formation of channel, signal magnitudes (or powers), and noise
statistics as long as synchronization of the received signal
with at least one path is achieved.

Assume that user is the user of interest. Because of error
propagation in the MSC procedure, we prefer to obtain

at the first stage (without going through thestages) of
the MSC procedure. By our experience, the initial condition

(41)

where , is an zero vector, and
( column vector) is the principal eigenvector

of [35], can usually lead Algorithm 2 to
at the first stage of the MSC procedure as power

control is fine, and is not very large. The reason for this is as
follows. Associated with given by (41), one can easily
see that and

[by (4)]

[by (37), (40), and (41)]. (42)

Note that ISI is usually small since the energy of each
entry of the second term on the right-hand side of (42) is much

smaller than by R4). Consequently, the userwill be
locked in the ensuing iterations by forcing ISI to decrease. Re-
mark that with the initial condition given by (41), it is
not necessary that be obtained as user signal powers are
very unbalanced or the number of users is large.

V. SIMULATION RESULTS

Three simulation examples are to be presented. The first
example considers a 2 2 LTI system, and Examples 2
and 3 consider a two-user and an eight-user asynchronous
DS/CDMA systems in multipath, respectively. Example 1 is
for verifying Properties 1 and 3 and supporting the efficacy
and robustness of Algorithm 2. Example 2 is basically for
verifying Property 2, and Example 3 is for supporting that
Algorithm 2 is effective for MAI and ISI suppression. In the
three examples, the input signals , were
assumed to be equally probable binary random sequences of

, and the synthetic data were generated for
different values of SNR defined as

SNR (43)

Next, let us turn to Example 1.

A. Example 1

1) Properties 1 and 3 and Efficacy of Algorithm 2:A two-
input two-output system

(44)

with 0.6455, which is taken from [16], was used. The noise
vector was assumed to be spatially independent and tem-
porally white Gaussian. The synthetic data for 900
and SNR SNR 15
dB, 1, 2 were processed by the equalizer of length
30 ( 0 and 29) associated with MIMO-IFC using the
iterative Fletcher–Powell algorithm [29] (a gradient-type itera-
tive algorithm), MIMO-SEA with , and Algorithm 2
with , respectively. The initial condition

for the three algorithms was associated with
(i.e., ) for the first

stage and (i.e., and
) for the second stage of the MSC procedure.

Thirty independent realizations of the optimum and the
associated 30 ISIs versus iteration number obtained at the first
stage of the MSC procedure (associated with ) are
shown in Fig. 1(a)–(f) using the three algorithms, respectively.
Fig. 1(a), (c), and (e) show s associated with MIMO-IFC,
MIMO-SEA, and Algorithm 2, respectively. Fig. 1(b), (d), and
(f) shows ISIs associated with MIMO-IFC, MIMO-SEA, and
Algorithm 2, respectively. One can see, from Fig. 1, that the
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Fig. 1. Simulation results of Example 1. Thirtys [n]s and ISIs versus iteration numberI at the first stage of the MSC procedure forb = 0.6455. (a)s [n] and
(b) ISI associated with MIMO-IFC forp = q = 2 using Fletcher-Powell Algorithm. (c)s [n] and (d) ISI associated with MIMO-SEA forr = s = 2. (e)s [n]
and (f) ISI associated with Algorithm 2 forp = q = 2.

resultant s are linear phase and they are similar for the
three algorithms thus verifying Properties 1 and 3, whereas the
convergence speed for the proposed Algorithm 2 is basically
the same as that of MIMO-SEA and faster than the MIMO-IFC
using the Fletcher-Powell algorithm [see R2)]. The results
for obtained at the first stage of the MSC procedure are
omitted here since they are close to zero. The corresponding
results for and ISI obtained at the second stage of the
MSC procedure (associated with ) are shown in
Fig. 2(a)–(f) without including the results for since they
are close to zero. These results also support Properties 1 and
3, but the MIMO-SEA fails to converge in one realization [see
Fig. 2(d)] with the associated not approximating a delta
function [see Fig. 2(c)] [see also R2)]. Algorithm 2 outper-

forms the other two algorithms because the former converges
as fast as the MIMO-SEA in all 30 realizations (without any
divergence) and converges faster than the MIMO-IFC using the
Fletcher-Powell algorithm.

Moreover, it can be observed from Figs. 1(b), (d), and (f)
and 2(b), (d), and (f) that some ISIs increase at the beginning
iterations for the three algorithms, and then they decrease rapidly
in the ensuing iterations for the MIMO-SEA and Algorithm
2. Some ISIs associated with the MIMO-SEA and Algorithm
2 are exactly the same because only the stepS1) of the latter
(which is exactly the MIMO-SEA) was performed in obtaining
these results. Some ISIs associated with the MIMO-SEA do
not decrease fast, whereas Algorithm 2 can always make them
decrease fast by forcing s to increase in the stepS2).
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Fig. 2. Simulation results of Example 1. Thirtys [n]s and ISIs versus iteration numberI at the second stage of the MSC procedure forb = 0.6455. (a)s [n]
and (b) ISI associated with MIMO-IFC forp = q = 2 using Fletcher-Powell algorithm. (c)s [n] and (d) ISI associated with MIMO-SEA forr = s = 2. (e)
s [n] and (f) ISI associated with Algorithm 2 forp = q = 2.

Moreover, the resultant ISIs are similar for both MIMO-SEA
and Algorithm 2. These results are consistent with R3).

2) Robustness Test of Algorithm 2:In the simulation, the
synthetic data were generated through the same procedure
as in part 1 for 1, 0.5, 0, 0.5, 1 [see (44)], respec-
tively, and then processed by Algorithm 2 with the same param-
eters and initial condition for the inverse filter associated with
MIMO-IFC as used in part 1.

Thirty independent realizations of ISIs versus iteration
number obtained at the first stage of the MSC procedure
(associated with ) are shown in Fig. 3(a)–(e) for

1, 0.5, 0, 0.5, and 1, respectively. Fig. 4(a)–(e) shows
the corresponding results obtained at the second stage of the
MSC procedure (associated with ). One can see,

from Figs. 3 and 4, that all the ISIs converge fast (spending
within seven iterations) to the final small ISIs that depend on
the value of the system parameter. These simulation results
verify the robustness of Algorithm 2.

B. Example 2

In this example, an asynchronous DS/CDMA channel for two
users ( ), each with three paths ( ), was
considered. The users’ spreading codes are Gold codes of
length . The channel parameters used were 1,

1, 2, 1, 2, 3, , , (0, , ), and
, , ( , , . The synthetic data for

, 1500 and SNR 20 dB were processed
by Algorithm 2 with for which the equalizer
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Fig. 3. Simulation results of Example 1. Thirty ISIs versus iteration numberI at the first stage of the MSC procedure associated with Algorithm 2 for (a)b = �1,
(b) b = �0:5, (c) b = 0, (d) b = 0:5, and (e)b = 1, respectively.

of length 10 ( 0 and 9) was used. On
the other hand, the theoretical (true)
associated with and that associated with

were obtained by Algorithm 1 with and .
The initial condition given by (41) with 4 for the
chosen was used to initialize Algorithms 1 and 2 for estimating

without involving the MSC procedure.
Simulation results associated with are shown

in Fig. 5. Thirty independent estimates and are
shown in Fig. 5(a) and (c), respectively; the true and
are shown in Fig. 5(b) and (d), respectively; the associated
30 ISIs versus iteration number are shown in Fig. 5(e); the
true overall channel responses (dash line) and
(dotted line) (after equalization) are shown in Fig. 5(f). The

corresponding results associated with are shown
in Fig. 6(a)–(f), respectively. From Figs. 5(a)–(d) and 6(a)–(d),
one can see that all the obtained optimum and
are very close to the true and , respectively. From
Figs. 5(e) and 6(e), one can see that all the ISIs converge
fast (by spending around two iterations) with the resultant ISI
below 35 dB. From Figs. 5(f) and 6(f), one can see that
the overall channel impulse response for
the former and for the latter, respectively.
These simulation results verify Property 2 of MIMO-IFC and
support the fact that Algorithm 2 works well. As a final remark,
Algorithm 1 also converges fast (by spending two iterations)
in obtaining the true shown in Fig. 5(b) and (d) and
Fig. 6(b) and (d) without involvingS5).



CHI AND CHEN: CUMULANT-BASED INVERSE FILTER CRITERIA FOR MIMO BLIND DECONVOLUTION 1291

Fig. 4. Simulation results of Example 1. Thirty ISIs versus iteration numberI at the second stage of the MSC procedure associated with Algorithm 2 for (a)
b = �1, (b) b = �0:5, (c) b = 0, (d) b = 0:5, and (e)b = 1, respectively.

C. Example 3

In this example, an asynchronous DS/CDMA channel for
eight users ( ), each with three paths ( , 1, 2,

, 8) was considered. The users’ spreading codes are
also Gold codes of length 31. The channel parameters
used were and , where

(45)

(46)

The synthetic data for 1500, SNR 20, 15, 10 dB,
, and for all were processed by

Algorithm 2 with . The length of equalizer
( and ) and ( and )

for and , respectively. The initial conditions
were chosen as (41) with and and

for and , respectively, to initialize Algorithm 2
for estimating (i.e., only user 2 is the desired user).

Simulation results for are shown in Fig. 7. Thirty
optimum overall channel estimates (
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Fig. 5. Simulation results of Example 2 associated withe[n] = û [n]. (a) Thirty v̂ [n]s and (c)̂v [n]s obtained by Algorithm 2. (b) Truev [n] and (d)v [n]
obtained by Algorithm 1. (e) Associated 30 ISIs obtained by Algorithm 2. (f) Overall channels [n] (dash line) ands [n] (dotted line) associated with the true
v[n].

, 1, 2, , 8, 0, 1, , 5) are illustrated in
Fig. 7(a), (c), and (e) for SNR 20, 15, and 10 dB, respectively,
and the associated ISIs are depicted in Fig. 7(b), (d), and (f),
respectively. The corresponding results for are shown
in Fig. 8(a)–(f), respectively. One can see, from these figures,
that the overall channel impulse response
and for and , respectively,
except for a scale factor implying that 30 estimates
were obtained and that all the ISIs converge fast (by spending
two to four iterations) with the resultant ISIs smaller for larger
SNR. Moreover, one can observe that results shown in Fig. 8(b),
(d), and (f) are about 7 dB better than those shown in Fig. 7(b),
(d), and (f), respectively, because multipath diversity (
) for the former is exploited. These simulation results support

that Algorithm 2 works well for the MAI and ISI suppression
of the eight-user asynchronous DS/CDMA system used in this
example.

VI. CONCLUSIONS

We have presented three properties for the MIMO linear
equalizer associated with Chi and Chen’s MIMO-IFC for
any SNR, including perfect phase equalization, a relation to the
nonblind MIMO-MMSE equalizer, and the equivalence to the
one associated with MIMO-SEA, as presented in Properties
1, 2, and 3, respectively. Based on Property 2, a fast iterative
algorithm (Algorithm 1) was proposed for computing the true
equalizer during the simulation stage, but it is never an MIMO
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Fig. 6. Simulation results of Example 2 associated withe[n] = û [n]. (a) Thirty v̂ [n]s and (c)̂v [n]s obtained by Algorithm 2. (b) Truev [n] and (d)v [n]
obtained by Algorithm 1. (e) Associated 30 ISIs obtained by Algorithm 2. (f) Overall channels [n] (dash line) ands [n] (dotted line) associated with the true
v[n].

blind deconvolution algorithm for processing data. Based on
Property 3, a fast MIMO-IFC based algorithm (Algorithm 2)
was presented that performs as the MIMO-SEA (in terms
of ISI, computational load, and convergence speed) with
guaranteed convergence, whereas the latter may not converge
for finite SNR and data. Then, the application of Algorithm 2
to MAI and ISI suppression for asynchronous DS/CDMA
systems was presented. Some simulation results were also
presented for supporting the proposed analytical results and
Algorithm 2. The proposed analytic properties of MIMO-IFC
are helpful to the behavior and implementation of the designed
equalizer and the interpretation of the deconvolved signals.
More studies of applying the proposed Algorithm 2 to multiuser
communications and other statistical signal processing areas

such as seismic deconvolution and source separation are left
for future research.

APPENDIX A
PROOF OFPROPERTY1

Because for , it can be easily shown, from
(6), that the noise variance is given by

(A.1)

By (4), (7), (A.1), and Parseval’s relation [36], can be
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Fig. 7. Simulation results of Example 3 associated withe[n] = û [n] for ~M = 1. (a) and (b) Thirty optimum overall channel estimatesŝ[n = 6(k � 1) +m]
(= s [m], k = 1, 2, � � �, 8,m = 0, 1, � � �, 5) and associated ISIs, respectively, for SNR= 20 dB. (c) and (d) Thirty optimum overall channel estimatesŝ[n] and
associated ISIs, respectively, for SNR= 15 dB. (e) and (f) Thirty optimum overall channel estimatesŝ[n] and associated ISIs, respectively, for SNR= 10 dB.

simplified as

(A.2)

(A.3)

where

and

One can see, from (A.3), that the denominator
of [see (10)] is dependent on

but independent of arg .
Let
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Fig. 8. Simulation results of Example 3 associated withe[n] = û [n] for ~M = 3. (a) and (b) Thirty optimum overall channel estimatesŝ[n = 6(k � 1) +m]
(= s [m], k = 1, 2, � � �, 8,m = 0, 1, � � �, 5) and associated ISIs, respectively, for SNR= 20 dB. (c) and (d) Thirty optimum overall channel estimatesŝ[n] and
associated ISIs, respectively, for SNR= 15 dB. (e) and (f) Thirty optimum overall channel estimatesŝ[n] and associated ISIs, respectively, for SNR= 10 dB.

and let denote the th-order cumu-
lant function of defined as

cum

(A.4)

whose -dimensional Fourier transform, which is de-
noted and known as the th-order

polyspectrum of [5], can be shown to be [37]

(A.5)

By (A.5), the numerator of [see (10)] can be shown to
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be

(A.6)

One can easily see that the equality of (A.6) requires

(A.7)

where is a constant independent of. Therefore, the optimum
associated with the maximum of is linear for

, i.e., the optimum arg can be
expressed as (17), regardless of , .

APPENDIX B
PROOF OFLEMMA 1

The joint cumulant of random variables , 1, 2, ,
can be expressed as [5]

cum

(B.1)

where the summation includes all possible partitions ,
of the integer set . By (B.1), we

obtain

cum

(B.2)

where and are numbers of terms of and in
the associated partition of , satisfying and

, respectively. It can be easily seen from (B.2)
that

(B.3)

which is equivalent to (23). Next, let us prove (24).
It is easy to see from (2) that

(B.4)

(B.5)

Taking the partial derivative of given by (B.2) with
respect to yields

[by (B.4) and (B.5)]

cum

[by (B.2)]

cum (B.6)

which is (24). Thus, we have completed the proof.
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APPENDIX C
PROOF OFPROPERTY2

First of all, let us prove that and cum
can be expressed as (C.1) and

(C.2), respectively, for ease of use in the Proof of Property 2
below. By (24), we have

(C.1)
where was defined at the beginning of Sec-
tion II. On the other hand

cum

cum

[by (3)]

[by (

(C.2)

where was defined by (18).
Maximizing given by (10) is equivalent to maxi-

mizing

[by (23)] (C.3)

which implies

(C.4)

Taking partial derivative of given by (C.3) with respect
to yields

(C.5)

which together with (C.4) leads to

(C.6)

Setting given by (C.6) equal to zero and substi-
tuting (C.1) and (24) into the resultant equation, we obtain

cum

cum

cum

cum (C.7)

where was defined by (22). Then, substituting (C.2) in
(C.7), one can obtain

(C.8)

where

Let and , and then, taking the discrete-time
Fourier transform of both sides of (C.8) yields

(C.9)

where , , and were defined by (14), (16), and
(19), respectively. Finally, from (C.9) and (15), we obtain

(C.10)
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where and were defined by (14) and (21), respec-
tively. Thus, we have completed the proof.

APPENDIX D
PROOF OFPROPERTY3

As is complex, letting in (C.7) yields

cum (D.1)

which is equivalent to (11) with , except for a
scale factor. Similarly, as is real, and one can also obtain
from (C.7) that

cum

cum (D.2)

which is also equivalent to (11) with , except for
a scale factor. Thus we have completed the proof.

APPENDIX E
PROOF OF(26)

It can be easily shown from (C.6), (C.1), and (24) that

cum

cum

(E.1)

As is complex and , it can be obtained from
(E.1) that

(E.2)

Again, one can easily show from (C.6) and (E.2), that

(E.3)

which leads to (26) with , , and replaced by ,

, and , respectively.
As is real (i.e., , and are real) and ,

it can be seen from (E.1) that

cum

(E.4)

which also leads to (26) with , , and replaced by

, and , respectively. Thus, we have
completed the proof.
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