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Abstract—A cross-layered slotted ALOHA protocol is proposed
and analyzed for distributed estimation in sensor networks. Sup-
pose that the sensors in the network record local measurements
of a common event and report the data back to the fusion center
through direct transmission links. We employ a channel-aware
transmission control where the transmission probability of each
sensor is chosen according to the quality of its local observation
and transmission channels. As opposed to maximizing the system
throughput, our goal is to design transmission control policies
that optimize the estimation performance. Two transmission
control strategies are proposed: the maximum mean-square-error
(MSE) reduction (MMR) scheme and the suboptimal two-mode
MSE-reduction (TMMR) scheme. The MMR maximizes the
MSE-reduction of the estimate after each time slot. However, this
method requires knowledge of the number of active sensors and
the accumulated estimation performance in each time slot, which
must be provided through feedback from the fusion center. In
TMMR, the sensors switch between two predetermined transmis-
sion control functions without explicit knowledge of the estimation
performance and the number of active sensors in each time slot.
Moreover, we notice that, if new observations are made by the
sensors in each time slot, diversity combining techniques can be
employed to fully exploit the data that the sensors measure over
their idle time slots. Specifically, we perform selective combining
on the observations that are made in between transmissions. As
a result, we are able to exploit both the spatial and temporal
diversity gains inherent in the multi-sensor system.

Index Terms—Cooperative communications, distributed estima-
tion, diversity combining, medium access control, sensor networks,
statistical inference.

I. INTRODUCTION

WIRELESS sensor networks (WSN) [1], [2] typically con-
sist of a large number of low-cost low-power devices that

have the ability to sense, to compute and to communicate. The
sensors are often deployed in large scale over wide areas or hos-
tile environments making it prohibitive to perform human main-
tenance or battery replacement. The dense deployment of sen-
sors also increases network congestion and reduces the peruser
throughput in wireless networks [3]. These issues pose strict
constraints on both energy and bandwidth utilization. Interest-
ingly, in WSN, the sensors are often linked through a common
application and work cooperatively towards a common goal.
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Therefore, one can exploit the cooperative nature of the sen-
sors to improve the efficiency of resource utilization and the
sensing performance [2]. In particular, we focus on the design
of efficient random access protocols for distributed estimation
in sensor networks.

Distributed estimation refers to the application where sen-
sors record local measurements of a common event and report
the data back to a fusion center where a global estimate of the
event is computed. These problems are central to many sensor
network applications [1], such as positioning [4], temperature
control, and environmental monitoring [5], etc., and have been
studied extensively in the past under various communication
constraints, e.g., [6]–[10]. Most of these works focus on the
design of local sensor quantization schemes and data fusion
strategies while abstracting away the effects of medium access
control (MAC). However, efficient MAC designs are crucial to
achieving good estimation performance. In fact, as the number
of sensors increases, channel congestion may reduce the amount
of data that is delivered to the fusion center in a fixed amount of
time and will eventually lead to large estimation errors.

The main contribution of this paper is to devise a cross-lay-
ered sensor network MAC protocol to efficiently retrieve
data from the sensors and to rapidly improve the quality of
the estimates. We propose a channel-aware slotted ALOHA
protocol where the transmission probability of each sensor is
assigned according to both the reliability of the local observa-
tion and the quality of the local transmission channel. In the
past, channel-aware transmission control policies have been
proposed for conventional slotted ALOHA systems in [11]
and [12] to maximize the system throughput. However, in the
distributed estimation problem, the sensors are transmitting
information about a common event and the objective is to
obtain an accurate estimate of the physical quantity of interest
in the sensor field. Conventional MAC protocols [11], [12]
that maximize system throughput may not necessarily lead to
accurate estimates since the observations that are delivered to
the fusion center may not be reliable.

In this paper, we adopt the distributed estimation model
studied in [13] and [14] where each sensor transmits an am-
plified version of its analog measurements to the fusion center
through a noisy fading channel. The model is similar to the
amplify-and-forward (AF) cooperative transmission scheme de-
scribed in [15]–[17]. Based on this model and given a fixed set
of transmission probabilities, we first compute the expressions
for the mean-square-error (MSE) distortion of the estimate.
A channel-aware slotted ALOHA protocol is then derived to
maximize the reduction of MSE after each transmission. This
strategy is referred to as the maximum MSE-reduction (MMR)
method. Two sensor systems are considered: 1) the repeated
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transmission (RT) system and 2) the transmit once (TO) system.
In the RT system, the sensors are allowed to transmit repeatedly
in each time slot as long as the observations and transmission
channels are sufficiently reliable. In the TO system, each sensor
is only allowed to transmit once regardless of whether or not
the transmission was successful, i.e., whether or not a collision
occurred. The RT system yields better estimation performance,
but the TO system is more energy efficient.

In the MMR method, a channel-aware transmission control
function is computed at the beginning of each time slot based on
the instantaneous knowledge of the number of active sensors and
the estimation performance (i.e., MSE) achieved up to that point.
Yet, this real-time information may not be attainable in practice.
Therefore, we propose a suboptimal two-mode MSE-reduction
(TMMR) method to approximate the performance of MMR
without explicit knowledge of the system parameters mentioned
before. In the TMMR method, the sensors switch between two
predetermined transmission control functions based only on the
local estimates of the system parameters. It is interesting to note
that the channel-aware transmission control policies are in the
form of a thresholding function where a sensor transmits if and
only if the effective local signal-to-noise ratio (SNR) (which is
a function of the observation and transmission channel gains)
reaches a certain threshold (see Section III). Both the MMR and
TMMR methods outperform MAC protocols that do not exploit
the advantages of cross-layered channel-awareness, e.g., con-
ventional slotted ALOHA or TDMA. Certainly, channel-aware
transmission control policies can also be derived under other
estimation criteria, such as the maximum likelihood estimation
or the Bayes estimation, etc. It is reasonable for the resultant
transmission policy to also take on the form of a thresholding
function but the optimal threshold may differ from the solutions
obtained in this paper.

In the MMR and TMMR methods, we assume that each
sensor transmits their most recent observation when it gains
access to the channel. However, since the sensors are allowed
to make independent measurements of the sensor field in each
time slot, local processing can be performed to exploit the
diversity of these independent observations while awaiting for
transmission. Many diversity combining techniques [18], [19]
can be employed in this case, such as selective combining,
threshold combining, maximal-ratio combining or equal-gain
combining. In this paper, we consider the selective combining
as an example to illustrate the effectiveness of the proposed
strategy. Here, each sensor is allowed to record the most
recent observations and chooses the most reliable observation
to transmit when it has access to the channel. This method
is referred to as the Enhanced MMR Method with Selective
Combining (EMMR-SC).

The remainder of this paper is organized as follows. In
Section II, we describe the distributed estimation model that
we consider and introduce the RT and TO transmission sys-
tems in detail. In Sections III and IV, we utilize the MMR
and the TMMR methods to derive the proposed transmission
control functions. The EMMR-SC method is then described
in Section V. Numerical simulations and performance com-
parisons are given in Section VI. Finally, we conclude in
Section VII.

Fig. 1. System model.

II. SYSTEM MODEL

Consider a wireless sensor network with sensors, denoted
by the set , that are deployed to estimate a
common parameter , as shown in Fig. 1. Suppose that each
sensor observes a local measurement of and reports it to the
fusion center through direct transmission links, similar to the
model given in [13] and [14]. Instead of assuming the avail-
ability of centralized scheduling, we adopt a slotted ALOHA
random access protocol where time is divided into time slots of
equal length and the sensors transmit in each time slot with in-
dependent probabilities.

Suppose that is a complex random variable with mean 0
and variance . The observation made by sensor during the

th time slot is modeled as

(1)

where is the observation channel coefficient at sensor
that models the reliability of sensor observations and

is the additive white Gaussian noise
(AWGN). are independent and identically
distributed (i.i.d.) over time and across sensors. If sensor
transmits in the th time slot, it will emit an amplified version
of its local measurement to the fusion center, i.e., ,
where is the amplification gain. The amplify-and-for-
ward scheme is similar to that considered in the literature
on cooperative communications, e.g., [15]–[17], and is also
considered for the distributed estimation problem in [13]. With
the knowledge of at sensor , the gain is given by

(2)

which is chosen to satisfy the individual power constraints

(3)

for all . Without loss of generality, we assume that . In
this paper, we fix the average transmission power of each sensor
and focus on deriving transmission control policies to improve
the estimation performance. Although power control can also
be considered to further improve energy efficiency, it will not
be discussed in this paper.

Let us consider the collision channel model where the trans-
mission from a sensor to the fusion center is successful only
when no other sensors are transmitting in the same time slot.
If more than one sensor is transmitting, the transmissions will
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collide and none of the messages will be received by the fusion
center. On the other hand, if sensor is the only sensor transmit-
ting in the th time slot, the signal arriving at the destination
(i.e., the fusion center) will be

(4)

where is the transmission channel coefficient of sensor
and is the AWGN at the fusion center.

We assume that are i.i.d. over time and across
sensors as well. The SNR of the received signal is given
by

(5)

This is referred to as the effective local SNR of sensor , which
is the SNR of the signal received at the fusion center given that
sensor is the only one transmitting.

Suppose that is the probability that sensor transmits in
the th time slot. Under the collision channel model, the signal
transmitted by a sensor is successfully received by the fusion
center if and only if no other sensor is transmitting in the same
time slot, i.e., there is no interference from other sensors. The
probability that sensor successfully transmits in the th time
slot is

(6)

Assume that each sensor, say sensor , has knowledge of only the
local channel state information (CSI), i.e., and ,
while the fusion center has knowledge of the CSI of all sensors,1

i.e., , for all . With local CSI, the transmission
probability of each sensor can be adjusted locally according to
the realization of the channel coefficients in each time slot.

From (4), we define the normalized received signal as

where is the normalized noise with variance

by (5)

Suppose that, in the first time slots, the fusion center suc-
cessfully receives packets from the sensors at
time instants , where

. For convenience, we define as the se-
quence of SNRs of the received signals, i.e.,

for
otherwise.

1When� is a collaborative source, such as in positioning or tracking applica-
tions, the source may emit training symbols enabling the sensors to estimate the
CSI. When � is a non-collaborative source, one could place reference points
in the vicinity of the source allowing sensors to estimate the CSI by comparing
measurements made on the references with that of the source.

Based on the messages successfully received in the first
time slots, the fusion center computes the linear minimum MSE
(MMSE) estimate of , which is given by

where is the vector
of signals received from the sensors in the suc-
cessful time slots, is the all-one vector,
and is the

covariance matrix of the normalized noise. The MSE of the es-
timate is given by

sensors succeed

(7)

where follows from the Woodbury’s identity [20]. We define

(8)

as the total accumulated SNR after time slots. Please note that
the expectation in (7) is not taken over the channel coefficients
since they are assumed to be known at the fusion center.

The proposed channel-aware transmission control protocol
will be derived for two sensor systems: 1) the RT System and
2) the TO System. In the RT system, the sensors are allowed
to transmit in each time slot regardless of whether or not they
have already transmitted in the previous time slots. In the TO
system, each sensor is only allowed to transmit once regardless
of the success or failure of the transmission. The latter scheme is
energy efficient while the former scheme achieves a lower MSE
distortion.

Given the local CSI at each sensor, our goal is to derive
channel-aware transmission probabilities that maximize the de-
crease in MSE after each time slot. It is worthwhile to mention
that, in conventional slotted ALOHA systems where the CSI
is not exploited to determine the transmission probabilities,
the sensors transmit with a fixed probability in
each time slot, regardless of the observation or transmission
channel parameters. This probability is known to maximize the
throughput of slotted ALOHA in a network of nodes but
may not result in the best estimation performance.

III. MAXIMUM MSE-REDUCTION (MMR) METHOD

In this section, we describe the proposed MMR method where
the transmission probabilities, e.g., , are derived
to maximize the MSE reduction in each time slot. The method
relies on the knowledge of the accumulated SNR before the cur-
rent transmission takes place (i.e., ) and the effective
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local SNR of the current time slot (i.e., ). Therefore,
can be written as a function of and , i.e.,

(9)

Since the sensors are identical, the MMR transmission control
function is common for all sensors. To simplify the
notations, we shall omit the time index since the policy de-
pends only on the actual values of and . Therefore, the
transmission probability is expressed as .
The value of can be computed at sensor , since we assume
that local CSI is available, but the value of must be sent to
the sensors from the fusion center through feedback at the be-
ginning of each time slot. In the following, we derive the MMR
method for both the RT and the TO systems.

A. MMR for the RT System

From (7), the MSE of the estimate after the current time slot
will become if sensor succeeds in trans-
mission and remains equal to if no sensor suc-
ceeds. Therefore, given and , the average MSE can
be written as

(10)

where is the probability that sensor transmits success-
fully, as given in (6). Since the sensors do not have knowledge
of the other sensors’ effective local SNR values, the transmis-
sion control function is derived by minimizing the
average MSE conditioned on . Suppose we are given an ar-
bitrary transmission control function . From (9), (10), and
the fact that are i.i.d., the average MSE achieved with

is given by

(11)

where and
, for all . We remove the user

index from and since are i.i.d. random variables

and, thus, the averages and are identical for all . It is
worthwhile to notice that, since

(12)

is equal to the MSE reduction when sensor ’s message is suc-
cessfully received at the fusion center, the parameter can be
viewed as the average MSE-reduction given that this occurs.

Lemma 1: Suppose that is a continuous random variable
with distribution function . For a fixed value of , the MSE in
(11) is minimized if

if
otherwise

(13)

where and .
Lemma 1 follows directly from the fact that (12) increases

monotonically with and, thus, is maximized for fixed if
takes on the form in (13). This shows that, to maximize

the MSE-reduction after each time slot, the sensors should adopt
a transmission control that takes on the form of a thresholding
function. That is, a sensor transmits with probability 1 if the
effective local SNR (e.g., ) exceeds a certain threshold and
remains silent otherwise. This result is intuitive and is consistent
with the transmission control policies derived in [11], [12] for
throughput maximization.

Given the optimal form of for a fixed value of , as
shown in Lemma 1, our search for is reduced to
finding the average transmission probability or, in other
words, the optimal threshold that maximizes the average
MSE-reduction. Notice that the value of affects two parame-
ters in (11), namely, and . In fact, the increase of will cause

to decrease while causing to increase. The minimum
value of (11) is obtained by setting the derivative to 0, i.e.,

�

��
������ ���

�
�

��

���� � ���	�

�� � 
 � ���� � 
 �
�� � ���	�

� �

where is the density function of . By Leibnitz’s rule, it
follows that

(14)

where, by (13)

(15)

and

(16)

The value of is found by solving the fixed point equation
in (14) and is computed at the beginning of each time slot since
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it depends on the instantaneous knowledge of the accumulated
SNR of the signals gathered up to that point, i.e., . Therefore,
it is more accurate to express the optimal threshold with the
time index, i.e., . Some properties of are
given in the following proposition. The proof can be found in
Appendix A.

Proposition 1: is monotonically non-decreasing
with and is bounded as

(17)

where is the indicator function.
Since varies in each time slot, the average trans-

mission probability given in (15), i.e., , is also a func-
tion of time and is bounded as follows.

Corollary 1:

(18)

The proof follows directly from (15) and the fact that is
a monotonically non-decreasing function. In the following, we
give an example of these bounds for the case where the effective
local SNR values are exponentially distributed.

Example: (Exponentially Distributed Local SNRs): Let us
consider the case where the transmission channel is noiseless
and has a constant gain, e.g., , . Then, by as-
suming that the observation channel coefficients, ,
are i.i.d. with distribution , the effective local SNR
values, , can be modeled as exponential random vari-
ables with mean . Consequently, we have

(19)

and

(20)

By substituting (19) and (20) into (14), we can solve for the
values of numerically.

For and , we plot the solutions of for
different values of in Fig. 2, along with its upper and
lower bounds. The lower bound follows directly from Propo-
sition 1 while a tighter upper bound is derived in closed-form
as shown in the following proposition. The proof is given in
Appendix B.

Proposition 2:

(21)

Similar to Corollary 1, the average transmission probabilities
can also be bounded as follows.

Corollary 2:

(22)

Fig. 2. Threshold values � versus � , along with the upper bound � and
lower bound � , for � � ��, � � � and � � � � �.

It is worthwhile to notice that the average transmission prob-
ability initially starts at a value close to the upper bound
(which is the probability that maximizes the throughput in con-
ventional slotted ALOHA systems) and decreases later on. This
shows that, in the early stage of the process, it is desirable to
successfully receive as many messages as possible. However,
as increases, the messages transmitted by less reliable sen-
sors (i.e., those that have unreliable observations or bad trans-
mission channels) do not contribute much to the MSE-reduction
while causing congestion to other sensors. Hence, the demand
for higher throughput is overcome by the need for more reliable
data and, thus, decreases.

B. MMR for the TO System

The MMR method can also be applied to the TO system,
where each sensor is only allowed to transmit once regardless of
the success or failure of the transmission attempt. In contrast to
the RT system, the number of active sensors changes over time
since each sensor in the TO system becomes inactive once it
has transmitted. Therefore, in addition to and ,
the transmission control threshold in the TO system
must also depend on , which denotes the number of ac-
tive sensors at the beginning of the th time slot. The values
of and are sent to the sensors from the fusion
center as a control signal at the beginning of each time slot. Sim-
ilarly, we can solve for the value of by substituting
(15) and (16) into (14) with replaced by . Notice that,
when , we have , in which case the
sensor will transmit with probability 1.

As described before, the MMR method relies on the knowl-
edge of and at the beginning of each time
slot, which must be provided by the fusion center. However,
the feedback from the fusion center may not always be avail-
able. Hence, we propose in the following section a suboptimal
method that does not utilize the explicit knowledge of these
system parameters.
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IV. TMMR METHOD

In this section, we propose the suboptimal TMMR method
where the transmission control at each sensor depends only on
the local effective SNR. In other words, the transmission prob-
ability of sensor in the th time slot is given by

. Specifically, instead of computing the MMR
transmission control threshold (i.e., ) at the begin-
ning of each time slot, the sensors switch between two threshold
values (namely, the upper and lower bounds of ) de-
pending on the estimated values of and . Since
the estimated values of and do not depend on
any real-time channel information or system state, the time for
which the sensors switch from one threshold value to the other
can be computed offline. The method is also derived for both RT
and TO systems, respectively, and is detailed in the following.

A. TMMR for the RT System

From Proposition 1, we know that is monotoni-
cally non-decreasing with respect to and . In fact,
as illustrated in Fig. 2, the value of starts initially at
a value close to and converges towards a value that is close
to as time progresses. In the TMMR method, we assume
that the sensors do not have explicit knowledge of
and, thereby, are not able to compute the values of
in each time slot. Instead, each sensor first assigns the trans-
mission control threshold as and switches to

after a certain number of time slots. That is,
for a switching time , we set , for ,
and set , for . The values of
and do not depend on the time index and can be ob-
tained analytically [or numerically for a tighter upper bound (see
Appendix A)] without knowing the value of . How-
ever, the problem remains as to when we should switch from
one value to the other, i.e., the value of .

Interestingly, by observing the relation between
and (see, e.g., Fig. 2), we can find a value for which

is closely approximated by when .
In this case, the TMMR method should apply the switch from

to when exceeds . However, the value of
is not known explicitly in this case and, therefore,

the average value is used instead. This average value can be
computed as follows.

Notice that, before the switch occurs (i.e., for ),
all sensors apply the threshold

. In this case, the transmission probability
of sensor is

if
otherwise

and the average transmission probability is .
For , the average accumulated SNR that the fusion
center obtains over the first time slots is computed as

(23)

where [given by (6)] is the probability that sensor trans-
mits successfully in the th time slot. With as the switching
threshold, the switch occurs when reaches the value

That is, we set when . To summa-
rize, in the TMMR method, the transmission control function is
given by

if
otherwise

where
if
if .

It is worthwhile to notice that the switching time can be
computed offline without real-time information of .
This reduces considerably the computational requirements at
the sensors as compared with the MMR method.

B. TMMR for the TO System

The TMMR method can be applied to the TO system as well.
Similarly, we start out by having all sensors transmit using the
lower bound in (17) as the transmission threshold and switch to
the upper bound after a certain number of time slots. However, it
is important to note that the bounds given in Propositions 1 and
2 are derived for a fixed number of sensors . Therefore, in the
TO system, where the number of active sensors varies in
each time slot, the upper and lower bounds will also vary with

. Let and be the upper and lower bounds
of when there are sensors active. That is, from (17),
we have

and

Following the procedures in the RT system and assuming that
is known in each time slot, the TMMR method should set

, when , and
, when . Unfortunately, without feedback

from the fusion center, the actual value of cannot be ob-
tained by the sensors and, therefore, must be estimated locally
at the beginning of each time slot in addition to computing

.
Suppose that is the estimated number of active sen-

sors at the beginning of the th time slot. Before the switch
occurs, i.e., when , each sensor will transmit using
the threshold , which results in the average trans-
mission probability . When ,
the threshold then switches to , which is an upper
bound of when we assume that sensors are ac-
tive and the average transmission probability becomes

.
Initially, we assume that all sensors are informed of the initial

number of active sensors and let . In the th time
slot, the estimated number of active sensors, i.e., , is ob-
tained by maximizing the probability that this number of sensors
is still active. Specifically, before the switch occurs, each sensor
will transmit using the threshold and the probability
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that sensors remain active at the beginning of the th time
slot is

(24)

where the average transmission probability

. The estimated number of active sensors is then

(25)

The probability (and, thus, ) corre-
sponding to the th time slot is computed recur-
sively since the average transmission probabilities

depend on the
estimated values , respectively.
Intuitively, the estimate in (25) is chosen to be the number of
sensors that is most likely to remain active in the th time slot.
Similar to (23), the average SNR accumulated at the fusion
center after time slots (and before the switch occurs)
is equal to

The switching time is then chosen as the time for which the
average accumulated SNR exceeds , i.e.,

Notice that can also be computed offline in this case since it
does not depend on the actual values of or in
each time slot. After the switch occurs, i.e., for , we set

, where is also obtained from
(24) and (25) with

for

for .

The TMMR method proposed in this section does not utilize
the explicit knowledge of and in each time
slot, therefore, the performance slightly degrades compared to
the MMR method. However, as we show later in Section VI, the
decrease in performance is small and is often worth the tradeoff
in order to avoid feedback and to reduce the computational com-
plexity at the sensors.

V. ENHANCED MMR WITH SELECTIVE COMBINING

In this section, we improve upon the MMR and TMMR
methods discussed in previous sections by incorporating di-
versity combining techniques on the local observations at each
sensor.

In the methods proposed previously, each sensor computes an
effective local SNR at the beginning of each time slot (based on
the knowledge of the local observation and transmission channel
coefficients) and transmits only if the effective local SNR ex-
ceeds a certain threshold. However, even though the sensors

make a new observation in each time slot, only the observa-
tion made at the time of transmission is sent to the fusion center
while those made in the idle time slots are discarded. This is
clearly inefficient since the discarded observations also contain
information of the physical quantity of interest. To fully exploit
diversity in the temporal domain, we propose the use of diversity
combining techniques on the observations accumulated over a
certain time window and send the combined value to the fusion
center when the sensor gains access to the channel. Many diver-
sity combining techniques [18] have been proposed in the lit-
erature, such as maximal ratio combining, selective combining,
threshold combining and equal gain combining, all of which can
be applied to the proposed system. In the following, we shall
consider only the EMMR-SC as an example to illustrate the ef-
fectiveness of the proposed class of strategies.

A. EMMR-SC in the RT System

Suppose that each sensor maintains a buffer of size to
record the set of most recent observations (including the ob-
servation made in the current time slot). This is similar to the
sliding window technique where the oldest observation is re-
placed by the newest observation when the buffer is full. With
selective combining, each sensor transmits the observation with
the best channel quality among the ones recorded in the buffer.
To simplify the fusion process, we assume that the buffer is
cleared out once a transmission occurs and the observations are
accumulated again starting from the next time slot. This as-
sumption is not necessary since one may simply drop the ob-
servation that was transmitted and leave the others in the buffer
until newer observations arrive. However, this induces correla-
tion among the signals received at the fusion center and compli-
cates the fusion process.2 We would also like to remark that, with
selective combining, each sensor actually needs only a size-1
buffer to record the observation with the best quality, i.e., the
new observation obtained in each time slot is compared with
the observation recorded in the buffer and only the one with
the best quality is stored, similar to the case of priority queues
[21,Ch. 3]. Nevertheless, a window (or buffer) size greater than
1 is necessary for other combining techniques, such as maximal
ratio combining or equal gain combining, and, therefore, will be
used in the following discussions to maintain generality.

Since the buffer is cleared out after each transmission, the
number of observations recorded in the buffer can be modeled as
a random variable that takes on the integer values between 1 and

. Let be the number of observations
recorded by sensor up to, and including, time slot . In the

th time slot, the recorded set of observations is denoted by

If sensor is to transmit in slot , the observation with the
best quality (i.e., the one with the largest observation channel
gain) among the set will be sent. The selected observation
is denoted by and the corresponding observation
channel coefficient is

where

2Note that (7) will no longer hold in this case.
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If the maximum channel gain is achieved by more than one
sensor, a sensor will be chosen randomly out of this set. How-
ever, this occurs with probability zero when the channel is
assumed to be a continuous random variable. If
is transmitted without collision, the fusion center receives the
signal

where

is chosen to satisfy the power constraint in (3). Here, we also set
without loss of generality. Similar to (5), the SNR of the

received signal is given by

(26)
Following the same approach as in Section III, we can show

that the transmission control function, which is now a function
of and , also takes on the form of a thresh-
olding function, i.e., the transmission probability is given by

if

if .
(27)

To evaluate using the fixed point equation in (14),
we must first obtain the distribution function and the den-

sity function of . Notice that the sensor index
is omitted from and but the time index is preserved

since is now time-dependent. The distribution func-
tion of is computed as follows:

(28)

where is the probability that obser-
vations are recorded in slot and

(29)

is the conditional distribution function of given
. Please note that, when given , the

distribution of no longer depends on the time index
since the observations made in each time slot are i.i.d..

Therefore, the time index is omitted in (29).
It is worthwhile to notice that, given , we have

if sensor transmits in time slot (regardless

Fig. 3. Finite-state Markov chain of �� ���� for sufficiently large� .

of whether or not it was successful), and
if sensor remains silent. The average probability that

sensor transmits, given , is denoted by

Since is monotonically increasing and bounded,
which can be shown by following the proof in Proposition
1, the sequence will converge to a con-
stant and, thus, will also converge to the
constant . Consequently, given that and
for sufficiently large, the probability that
can be approximated as and the probability that

as . Hence, the
sequence of random variables , for large , can
be approximated as a finite-state Markov chain as shown in
Fig. 3. The set of probabilities converges
to the steady-state distribution of the Markov chain. The set of
steady-state probabilities is denoted by and is
computed from the following set of equations [22]:

and

for (30)

Hence, as time increases, the distribution function con-
verges to

(31)

An approximated value of is obtained by substi-
tuting (31) into (14). However, the approximation is less ac-
curate when is small, resulting in performance degradation
during the early time slots, which can be observed from the sim-
ulations in Section VI. This is eventually overcome by the in-
crease of diversity gains in later time slots.

B. EMMR-SC in the TO System

In the TO system, the sensors become inactive once a trans-
mission occurs. Therefore, if the sensor remains to be active at
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the beginning of the th time slot, the number of recorded ob-
servations will be equal to either the time index or the window
size (whichever is smaller). Consequently, given that sensor

is active in the th time slot, the distribution of is
given by

if
otherwise. (32)

Similarly, by substituting (32) into (14) and by replacing with
, we can find the optimum value of . In contrast

to the RT system, no approximation is done here and the derived
transmission threshold is accurate.

VI. NUMERICAL SIMULATIONS AND PERFORMANCE

COMPARISONS

In this section, numerical simulations of the proposed strate-
gies are given for two cases: 1) the case with exponentially dis-
tributed local SNRs and 2) the case with Rayleigh distributed
channel gains. The MMR, TMMR, and EMMR-SC methods are
compared with three other MAC protocols: 1) the conventional
slotted ALOHA scheme with no channel-aware transmission
control; 2) the TDMA scheme; and 3) the optimal scheduling
scheme. In the slotted ALOHA scheme, the sensors transmit
with probability in each time slot regardless of the channel
realizations. In TDMA, the sensors transmit in a round-robin
fashion in the order of their indices. In the optimal scheduling
scheme, the sensor with the largest effective local SNR is sched-
uled to transmit in each time slot. This scheme is optimal in
the sense that it minimizes the MSE of the estimate at the fu-
sion center and serves as a performance lower bound for other
strategies.

In the following simulations, we let and let be
a circularly symmetric complex Gaussian random variable with
zero mean and unit variance, i.e., . The results
shown in this section are obtained by averaging over 1500 inde-
pendent trials. The simulations have been conducted using (7)
to compute the MSE in each trial.

1) Example I—(Exponentially Distributed SNRs): In this ex-
ample, we assume that are i.i.d. exponentially
distributed with mean . This corresponds
to the case where the transmission channels are noiseless with
constant gain , for all , , and the observation
channel coefficients are i.i.d. with distribution

. In Figs. 4 and 5, we show the MSE performance
of the RT and the TO systems, respectively. In both systems,
we observe that both the MMR and the TMMR methods signif-
icantly outperform the conventional slotted ALOHA scheme,
but lose to the optimal scheduling due to collision.

In the RT system, we show in Fig. 4 that the TMMR method
has comparable performance with respect to the MMR method,
even though is not explicitly known. However, in the
TO system shown in Fig. 5, the MMR outperforms the TMMR
since the performance is further degraded by the error of the esti-
mation in . In fact, the threshold in the TMMR
method is often underestimated in the early stages and, thus, in-
creases the amount of transmissions that fail due to collision.
As a result, fewer sensors remain active in later time slots and,
thereby, limits the eventual MSE performance of TMMR.

Fig. 4. Performance of the proposed MMR and TMMR methods for Example I
in the RT system.

Fig. 5. Performance of the proposed MMR and TMMR methods for Example I
in the TO system.

Notice that, in the TO system, the average MSE saturates as
time increases since all sensors eventually transmit and become
inactive. However, in the RT system, the MSE of the estimate
steadily decreases with , as shown in Fig. 4. For suffi-
ciently large, we can approximate the transmission threshold as

and the average accumulated SNR as

which follows from derivations similar to (23). Then, the av-
erage MSE can be approximated as

(33)
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This can be viewed as an approximation for both the MMR and
TMMR performance curves for large and is plotted in Fig. 4
as a reference. We can see, from (33), that the MSE is inversely
proportional to when is sufficiently large.

2) Example II—(Rayleigh Distributed Channel Gains):
In this example, we assume that the observation channel
coefficients and the transmission channel
coefficients are both i.i.d. random processes
with distributions and , respectively.
The distribution of is given in the following Lemma, with
the proof provided in Appendix C.

Lemma 2:

(34)

and

(35)

where is the th order modified Bessel function of second
kind.

The threshold in the MMR method can be eval-
uated numerically by substituting (34) and (35) into the fixed
point equation given by (14). The upper and lower bounds of

, which are used in the TMMR method, can be ob-
tained similarly from Proposition 1. The simulation results are
shown in Figs. 6 and 7 for . Similarly,
both the MMR and the TMMR methods outperform the conven-
tional slotted ALOHA system but lose to the one with optimal
scheduling. More interestingly, the two schemes also outper-
form TDMA where sensors transmit in the order of their indices
regardless of their local SNRs. This shows that the advantage
of channel-awareness more than compensates for the loss due
to collision in random access networks. In both the RT and the
TO systems, the TMMR is clearly inferior to the MMR method,
which is not the case in Example I. This is because, in this ex-
ample, the upper bound of given in Proposition 1 is
used instead of the tighter upper bound given in Proposition 2.
Recall that the latter bound is applicable only to the model of
Example I.

To further improve the estimation performance, we employ
the EMMR-SC method that combines the observations recorded
in the buffer to exploit temporal diversity. To obtain the trans-
mission threshold, we first compute the asymptotic distribu-
tion function , where the values
of follow from (30) and is given in the
following.

Fig. 6. Performance of the proposed MMR and TMMR methods for Example II
in the RT system.

Fig. 7. Performance of the proposed MMR and TMMR methods for Example II
in the TO system.

Lemma 3: The conditional distribution function of
given is

(36)

The proof is given in Appendix D.
The MSE performance of EMMR-SC is shown in Figs. 8 and

9 for the RT and the TO systems, respectively. In Fig. 8, the
performance of EMMR-SC for 2, 5, 8 is compared with
the MMR method proposed in Section III. The MMR method
is equivalent to the EMMR-SC method when . In the
RT system, shown in Fig. 8, the EMMR-SC schemes do not
perform as well as the MMR in the early time slots because
the distribution function given in (31) holds only when is
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Fig. 8. Performance of the EMMR-SC method for � � 2, 5, 8 in the RT
system.

Fig. 9. Performance of the EMMR-SC method for � � 2, 5, 8 in the TO
system.

sufficiently large. Nonetheless, the EMMR-SC method eventu-
ally outperforms the MMR in later time slots since the diver-
sity order increases due to the selective combining performed
on the buffered set of observations. The MSE decreases faster
as increases but the improvement is limited for large . In
Fig. 9, the performance of the EMMR-SC for 2, 5, 8 is also
compared with the MMR method in the TO system. We notice
that, in the TO system, the EMMR-SC schemes outperform the
MMR method even in early time slots since the actual distri-
bution in (32) is used instead of the asymptotic approximation.
Similarly, the gain improves as increases, but is limited for
large .

VII. CONCLUSION

In this paper, we studied the performance of the distributed
estimation problem in a cooperative slotted ALOHA system
with channel-aware sensors. It is shown that the transmission
probability assignment that results in maximal throughput does

not yield desirable estimation performance. Therefore, by ex-
ploiting the local sensor information, i.e., the sensor’s measure-
ment gain and the transmission channel gain, we showed that
a lower distortion can be achieved in each time slot. Specifi-
cally, we found that the optimal transmission control function
takes on the form of a thresholding function where the sen-
sors transmit only if their effective local SNR values exceed
a certain threshold. Two methods were proposed to derive the
transmission control thresholds: the MMR and the suboptimal
TMMR methods. For the MMR method, sensors compute a new
threshold at the beginning of each time slot based on the knowl-
edge of the number of active sensors and the accumulated es-
timation performance. In the TMMR method, sensors do not
require the explicit knowledge of the above mentioned system
parameters, but switch between two predetermined thresholds
based only on the local estimates of these parameters. Even so,
we found that TMMR achieves a reasonably good performance,
one that is comparable with the MMR scheme. Additionally, to
improve upon the MMR and TMMR methods, the EMMR-SC
method was presented which effectively exploits both the spatial
and temporal diversities and thus outperforms the MMR method
at the expense of increased computational complexity.

APPENDIX A
PROOF OF PROPOSITION 1

To show that is monotonically non-decreasing as
increases, it is sufficient to show that is monoton-

ically non-decreasing with respect to since the accu-
mulated SNR cannot decrease with time. In fact, it can be easily
shown that the right-hand side (RHS) of (14) is non-decreasing
as increases. Thus, when increases, must also in-
crease in order to satisfy the equality in (14). Hence, is
monotonically non-decreasing with respect to and .

Since is non-decreasing with respect to , the
smallest value of is obtained when . In this case,
we have

where follows from the fact that is monotonically
increasing with respect to , for . For , it follows
from (14), (15), and the previous bound on that

Thus, we have obtained the lower bound.
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Since is monotonically non-decreasing, the largest
value is obtained when . Therefore, it is sufficient to
obtain an upper bound on as . To obtain the
upper bound on , we first recognize the fact that

(37)

Then, for sufficiently large, such that

it follows from (14), (15), and (37) that

By taking , we have

(38)
where the last inequality is obtained by substituting with

. Notice that . The upper bound is thus
obtained.

Remark 1: Please note that a tighter upper bound, de-
noted by , can be found numerically by solving the fixed point
equation

(39)

instead of replacing with as done in (38). The rea-
soning is that, by restating the first inequality in (38) as

we can see that, as increases, the left-hand-side (LHS)
increases while the RHS decreases. Therefore, the largest value
of that satisfies the above inequality is the solution
that is obtained from the fixed point equation in (39).

APPENDIX B
PROOF OF PROPOSITION 2

In Proposition 2, we provide lower and upper bounds for
for the case where the local SNRs are exponentially

distributed with mean . The lower bound follows directly
from Proposition 1 while the upper bound is derived as
follows.

First of all, by reorganizing the terms in (14), the fixed point
equation becomes

(40)

Then, by substituting (37) into (40), we have

where follows the fact that

and holds since

is smaller for larger .
By substituting (19) into (40) and with , we have

(41)

which leads to the upper bound that

This completes the proof.

APPENDIX C
PROOF OF LEMMA 2

From (5), we have

(42)

where . For convenience, we
shall omit the time index . Then, by letting ,

and from the fact that

the distribution function can be computed as
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where
and

with

where follows from the fact that

for

Hence, we have

By taking the derivative of with respect to , we obtain
the density function given by (35).

APPENDIX D
PROOF OF LEMMA 3

From (29), it follows that

where

and . Let and

with the distribution functions and

, respectively. Then, by omitting the

time index and by following the procedures of Appendix C,
we have

where and

Thus

The proof is complete.
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