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Abstract—Higher order statistics-based inverse filter cri-
teria (IFC) have been effectively used for blind equalization
of single-input multiple-output (SIMO) systems. Recently, Chi
and Chen reported a relationship between the unknown SIMO
system and the optimum equalizer designed by the IFC for
finite signal-to-noise ratio (SNR). In this paper, based on this
relationship, an iterative fast Fourier transform (FFT)-based
nonparametric blind system identification (BSI) algorithm and
an FFT-based multiple-time-delay estimation (MTDE) algorithm
are proposed with a given set of non-Gaussian measurements. The
proposed BSI algorithm allows the unknown SIMO system to have
common subchannel zeros, and its performance (estimation accu-
racy) is superior to that of the conventional IFC-based methods.
The proposed MTDE algorithm can simultaneously estimate all
the ( 1) time delays (with respect to a reference sensor) with
space diversity of sensors exploited; therefore, its performance
(estimation accuracy) is robust to the nonuniform distribution of
SNRs of 2 sensors (due to channel fading). Some simulation
results are presented to support the efficacy of the proposed BSI
algorithm and MTDE algorithm.

Index Terms—Blind system identification, cumulant-based in-
verse filter criteria, higher order statistics, time delay estimation.

I. INTRODUCTION

B LIND identification of single-input multiple-output
(SIMO) systems deals with the problem of esti-

mating a linear time-invariant (LTI) system, which
is denoted by (where
the superscript “ ” denotes vector or matrix transposi-
tion), with only the output vector measurements

,
generated from the following convolutional model:

(1)
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where is the scalar driving input, and
is the vector noise. The

SIMO system model given by (1) is typically based on the
following assumptions that are also made in this paper.

) The driving input is a zero-mean, independent
identically distributed (i.i.d.), non-Gaussian random
process with variance .

) The SIMO system is a finite impulse response
(FIR) system with frequency response [discrete-time
Fourier transform (DTFT) of ] (
zero vector) for all .

) The noise is zero-mean spatially uncorrelated
Gaussian and statistically independent of .

The problem of blind SIMO system identification arises in
diverse science and engineering areas where multiple sensors
are applied such as wireless communications with multiple
receiving antennas (or antenna array) and time delay estima-
tion (TDE). It also arises when multirate signal processing is
involved such as fractionally spaced equalization of communi-
cation channels [1]–[3].

The existing approaches to blind identification of SIMO
systems basically include the maximum likelihood (ML)-based
methods and the moment-based methods. The ML estimator,
which is derived from a presumed probability density function
of measurements, has the optimal asymptotic performance at
the expense of extraordinary computational complexity that
makes it unfavorable in practical applications. Reduction of
computational complexity of the ML estimator, however, is
possible; see [4] for further details. On the other hand, the
moment-based methods, typically with lower complexity than
the ML estimator, exploit either second-order statistics (SOS)
or higher order statistics (HOS) [5] of measurements to esti-
mate the unknown system. Since Tong et al. proposed [6] a
pioneering work of blind SIMO system identification using
SOS, many SOS-based SIMO blind system identification (BSI)
methods, which are often referred to as subspace methods,
have been reported over the last decade, including the noise
subspace (NS) method [7], [8], the least-squares smoothing
method [9], [10], and the linear prediction method [11]. These
subspace methods have the attractive property that an estimate
of the FIR system of interest can often be obtained in a closed
form by optimizing a quadratic cost function [3]. However,
some of these methods require the knowledge of the system
order, and their performance is sensitive to the system order
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mismatch [3]. Furthermore, a common identifiability condition
referred to as the channel disparity condition, which is required
by these subspace methods, is that the subchannels must be co-
prime (i.e., the subchannels have no common zeros), and these
methods tend to fail when this condition is nearly violated [12],
[13]. Recently, the NS method [7] that was modified by Ali
et al. [14] was shown to be robust in the presence of common
subchannel zeros and the system order overestimation errors
by virtue of exploiting the transmitter redundancy through the
use of a trailing zero precoder. However, the use of a precoding
procedure will limit applications of the modified subspace
method, as reported in [14]. As a consequence, the subspace
methods are usually not very flexible due to the restrictions
mentioned above.

The HOS-based SIMO BSI methods basically comprise three
broad classes [15]: equation error-based methods [16], [17], fit-
ting error-based methods [18], [19], and inverse filter criteria
(IFC)-based methods [20], [21]. Assuming that the system order
is known in advance, the equation error-based methods pro-
posed by Hatzinakos and Nikias [16] and by Brooks and Nikias
[17] estimate the system by the least-squares solution from cer-
tain theoretical linear equations formed by channel parameters
and statistics of . These methods generally provide a unique
but not very accurate solution for the system impulse response,
and their performance is also sensitive to the modeling error.
The fitting error-based methods proposed by Swami et al. [18]
and by Tugnait [19] estimate by matching the model-based
statistics with the estimated data-based statistics, which involve
the estimation of a great amount of cumulants [5] and result in
a nonlinear optimization problem where a good initial estimate
is needed because of potential local minima of the cost func-
tion used. Therefore, in addition to higher complexity for cumu-
lants estimation than for correlations estimation, large sample
size is required to reduce the variance of estimated cumulants
(such as sample cumulants). The IFC-based methods proposed
by Tugnait [20] and by Chi et al. [21] find the equalizer by maxi-
mizing (or minimizing) a certain objective function of the equal-
izer output, which generally results in a nonlinear optimiza-
tion problem. Then, the system estimate is simply obtained by
cross-correlation of the equalizer output (input signal estimate)
and the noisy system output with no need for order deter-
mination. Unlike the fitting error-based methods, the IFC-based
methods usually involve computation of only one normalized
cumulant, and thus, they are significantly released from the high
variance issue induced by estimation of cumulants. However,
the obtained system estimate using the conventional IFC-based
methods has bias [22] due to the presence of noise in and
the estimation error of the input signal estimate (the equalizer
output).

Recently, Chi and Chen [23] established a relationship be-
tween the linear minimum mean-square error (MMSE) equal-
izer and the optimum equalizer associated with the IFC reported
in [20] and [21] for finite signal-to-noise ratio (SNR). Based on
this relationship, a novel iterative fast Fourier transform (FFT)-
based nonparametric SIMO BSI algorithm that allows the sub-
channels to have common zeros and exhibits better performance
than the conventional IFC-based methods is proposed in this
paper.

On the other hand, the estimation of time delay(s) between
the measurements received by two (or more) sensors is crucial
in many signal processing areas such as direction of arrival and
range estimation in sonar, radar, and geophysics, etc. The con-
ventional methods using SOS [24], [25] estimate a single time
delay with the associated two sensor measurements at a time
(instead of simultaneous estimation of multiple time delays) by
finding the peak location of the cross-correlation function of
the associated two sensor measurements. These methods may
yield ambiguous results when the noise components among sen-
sors are spatially correlated or coherent. Techniques based on
HOS [26]–[30] have been reported to avoid such ambiguous re-
sults. Among them, the performance of the integrated polyspec-
trum-based method proposed by Ye and Tugnait [30] has been
proven to asymptotically approach the Cramér–Rao (CR) lower
bound.

By the fact that the signal model for the TDE problem can
be formulated as an SIMO model and the fact that the complete
information of all the time delays is contained in the phase of the
SIMO system, a novel FFT-based TDE algorithm, which is also
based on the relationship between the linear MMSE equalizer
and the optimum equalizer associated with the IFC mentioned
above, is proposed for simultaneous estimation of all the time
delays (with respect to a reference sensor) with space diversity
of sensors exploited. Therefore, its performance is insensitive to
the nonuniform distribution of SNRs of sensors due to channel
fading.

The remaining parts of this paper are organized as follows.
In Section II, the relationship between the SIMO system and
the optimum equalizer designed by the IFC is presented. Then,
the proposed BSI algorithm and multiple-time-delay estimation
(MTDE) algorithm are presented in Sections III and IV, respec-
tively. Some simulation results are provided in Section V to
verify the efficacy of the proposed algorithms, and some con-
clusions are drawn in Section VI.

II. RELATIONSHIP BETWEEN THE UNKNOWN SYSTEM AND THE

OPTIMUM EQUALIZER DESIGNED BY THE IFC

For ease of later use, let us define the SNRs associated with
and given by (1), respectively, as follows:

SNR (2)

SNR (3)

where denotes the Euclidean norm of vector . Note that
SNR denotes the SNR of the th subchannel (or sensor), SNR
denotes the overall SNR, and that there exist many different
distributions of SNR corresponding to the
same SNR.

Processing the measurements given by (1) by a
-input single-output equalizer denoted by

yields the (scalar) equalized signal

(4)
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where corresponds to the noise part in
, and

(5)

is the scalar overall system (after equalization). The well-known
linear MMSE equalizer, which is denoted by , is a
nonblind equalizer that minimizes the mean square error (MSE)

, where . Note that
either system information or training phase is needed to obtain
the linear MMSE equalizer .

On the other hand, with no need for system information and
training phase, the equalizer can be obtained by maxi-
mizing the following HOS-based IFC [20]–[23]

(6)

where , and

cum (7)

denotes the th-order joint cumulant of ’s and
’s in which the superscript ‘*’ denotes complex conju-

gation. Since is a highly nonlinear function of ,
iterative gradient-type optimization algorithms are required to
find the maximum of and the associated .

It has been shown [20] that, under the noise-free condition
(infinite SNR) and the assumptions and , the optimum
equalizer associated with with sufficient length re-
sults in perfect recovery of the driving input, i.e., the associated
equalized signal

(8)

where is an unknown scale factor, and is an unknown
time delay. As reported by Tugnait [20], the unknown SIMO
system can be accordingly estimated as

(9)

which is referred to as the input–output cross-correlation
(IOCC) method (which is also a conventional IFC-based BSI
method) for convenience. One can easily see, from (8) and (9),
that (perfect system identification)
for the case of infinite SNR. On the other hand, for finite SNR,
the optimum equalized signal , in the sense of maximizing

, is an MMSE-like estimate of the driving input
(see [15, ch. 8] for the detailed discussion), and the channel
estimation accuracy of the IOCC method that ignores noise
effects is degraded. Nevertheless, the channel-induced phase
distortion is completely removed by the optimum equalizer

, as described in the following fact [23]:
Fact 1: The optimum overall system [see (5)] as-

sociated with for finite SNR is a linear phase system, i.e.,

(10)

where and are an integer and a real constant, respectively.

With noise effects taken into account, we further propose an
SIMO BSI method based on a relationship between the system

and the equalizer associated with for any SNR
where only the case of for is considered in this paper.
The relationship has been reported by Chi and Chen (see [23,
Prop. 2]) for MIMO systems, which is summarized as follows.

Fact 2: With sufficient length of the equalizer , the
system is related to the equalizer associated with
for any SNR via the following relationship:

(11)

where (the power-spectral matrix of ) is the DTFT
of the autocorrelation function of , which is defined as

(12)

(where the superscript “ ” denotes complex conjugate of
vector or matrix transposition), is the DTFT of

(13)

and

(14)

is a real constant.
Note that not only the optimum equalizer associated with

the maximum of satisfies (11) but all the other local
optimum ’s and the trivial solution as well.
However, only the former is the equalizer of interest. Let us
conclude this section with the following two remarks.

R1) Fact 2 also holds true when the Gaussian noise vector
is spatially correlated and temporally colored

[23].
R2) In practice, sample cumulants and

, which are consistent estimates of
and regardless of SNR, are

used to compute ; therefore, the optimum
obtained by maximizing is also con-

sistent for finite SNR [32]. However, the IOCC method
[see (9)] is not a consistent estimator of for finite
SNR (with larger bias for smaller SNR) [15].

III. BLIND IDENTIFICATION OF SIMO SYSTEMS

It can be observed, from (11), as stated in Fact 2, that given
the optimum equalizer obtained using given by
(6) and the power-spectral matrix using an existing mul-
tichannel power spectral estimator, the system can be es-
timated by solving (11) if the solution for of the highly
nonlinear equation (11) is unique over the class that the overall
system is linear phase (motivated by Fact 1). Meanwhile, noise
effects embedded in [see (12)] and (through the
denominator of ) can also be taken into
account in the estimation of , regardless of the value of
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SNR. Prior to presenting the algorithm for obtaining , let us
present an analysis about the solution set of that is solved
from the highly nonlinear equation (11) with the following con-
straint.

C1) The overall system be linear phase.

A. Analysis About the Systems Solved from (11) Under
Constraint C1)

With (11), the system can be solved up to a linear phase
ambiguity as revealed in the following property.

Property 1: Any SIMO system

(15)

for any integer and real satisfies the relationship given by
(11).

See Appendix A for the proof of Property 1. Property 1 and
C1) imply that can be zero phase, which further leads to the
following property about the system given by (13).

Property 2: Assume that is zero-phase and that

) the number of zeros of on the unit circle is finite.

Then, the associated system given by (13) is a positive
definite sequence, i.e., .

The proof of Property 2 is given in Appendix B. Next, let us
present the following property regarding the solution set of
from (11) under constraint C1).

Property 3: The system can be identified up to a linear
phase ambiguity by solving (11) assuming that is zero-
phase and satisfies .

See Appendix C for the proof of Property 3 in which Property
2 is needed. Property 3 implies that the solution of (11) under
the constraint C1) and the assumption is the true system

(without bias) except for a time delay (due to a linear
phase ambiguity) as long as the true and are given.
Therefore, Property 3 and R2) imply the following remark:

R3) The channel estimate solved from (11) under con-
straint C1) and the assumption is consistent for fi-
nite SNR if an estimate can be obtained using a
consistent multichannel power spectral estimator. With
our experience, assumption generally holds true in
practical applications and is never an issue in the de-
sign of BSI algorithms.

Again, one can see, from (5) and (13), that the left-hand side
of (11) is a highly nonlinear function of , implying that a
closed-form solution of (11) for is almost formidable under
constraint C1). Next, let us present an iterative FFT-based non-
parametric algorithm for estimating under the constraint
C1).

B. Algorithm for Obtaining the System Estimate from (11)
Under Constraint C1)

Let and be vectors defined as

(16)

(17)

where , and denote
the -point discrete Fourier transforms (DFTs) of

, and , respectively. Then, according to the relation-
ship given by (11), one can obtain

(18)

where and
, and is given by (14). Let us emphasize that the

positive constant in (18) is unknown, and this implies that
either must be estimated together with the estimation of
or its role must be virtual during the estimation of . Thus,
let us present an algorithm based on (18) without involving
estimation of for the estimation of .

Equations (16)–(18) reveal that the true system is the
one such that the resultant vector is equal to the vector ,
except for a real positive scale factor. Thus, at

can be estimated by maximizing

Re
(19)

where Re denotes the real part of scalar . Note that
for any and that

if and only if is equal to the vector up to a real positive scalar.
However, it is almost impossible to obtain the gradient

because is a highly nonlinear func-
tion of ; therefore, gradient-based optimization methods
are not considered for finding the maximum of . In-
stead, an iterative FFT-based BSI algorithm is proposed to
obtain the estimate of , which can be
thought of as a numerical optimization approach, as described
below.

BSI Algorithm:

Step 1) Blind Deconvolution and Power-Spectral Matrix Es-
timation:

With finite data , obtain the equalizer estimate as-
sociated with , and compute its -point FFT

. Obtain the power-spectral matrix es-
timate , using a multichannel
power spectral estimator. Form the vector via and

, according to (17).
Step 2) System Identification:
T1) Set the iteration number and the initial condi-

tion . Obtain

, followed by its -point inverse FFT
.

T2) Update by . Update , where

zero phase (20)

and then obtain

by (16) and (18)
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where is the -point FFT of
obtained by (13). Normalize such that

.
T3) Obtain [by (5)] fol-

lowed by its -point inverse FFT . If
, go to T4 . Other-

wise, compute
, and update via

where the step size is chosen such that
. Normalize

such that .
T4) If

where is a preassigned convergence tolerance, then
go to T2 ; otherwise, the frequency response estimate

at for
and its -point inverse FFT are obtained.

Several worthy remarks regarding the proposed BSI algo-
rithm are as follows.

R4) In Step 1, the equalizer estimate associated with
can be efficiently obtained using Chi and

Chen’s fast iterative gradient-type algorithm (see [23,
Alg. 2]), and the existing AR spectral estimators, such
as the multichannel Levinson recursion algorithm [31],
can be employed to estimate .

R5) In Step 2, the local convergence is guaranteed because
is upper bounded by unity, and its value

is increased at each iteration before convergence. The
closer to unity the convergent , the more re-
liable the obtained system estimate. Empirically, with
the estimate of obtained by (9) (Tugnait’s IOCC
method) for the initial condition in T1) of Step
2, the convergent is always obtained.

R6) In T3 of Step 2, the step size can be
chosen sequentially from the finite sequence

until whenever is
needed at each iteration, where is a preassigned
positive integer.

R7) Prior information of an upper bound of the system
order is needed. The FFT size should be chosen to be
larger than the upper bound of the order of such
that aliasing effects on the resultant are negligible.
Surely, the larger the FFT size, the larger the compu-
tational load of the proposed BSI algorithm, whereas
the estimation error of the resultant is almost the
same. If the true system is an infinite impulse response
(IIR) system, a finite-length approximation of will

be obtained by the proposed BSI algorithm. Further-
more, the system is allowed to have common sub-
channel zeros (i.e., regardless of whether the channel
disparity condition is satisfied).

R8) Noise effects have been taken into account in the es-
timation of and the power-spectral matrix
in Step 1. Let us emphasize that the larger data length

, the better the estimates and , regardless
of the value of SNR [see R2) and R3)], which implies
that the better approximation to will be ob-
tained for larger , except for an unknown time delay
(by Property 3) and a scale factor (due to

), whereas the associated overall system
is guaranteed to be zero phase due to (20) in T2 of
Step 2. Moreover, as long as the SNR is higher than a
threshold, the estimation error of the obtained estimate

basically reaches a floor which is lower for larger
by R3).

Next, let us turn to the estimation of multiple time delays that
is also based on the relationship given by (11).

IV. SIMULTANEOUS ESTIMATION OF MULTIPLE TIME DELAYS

Assume that the measurements
, are measured from

spatially separated sensors that satisfy

(21)

where is the source signal (could be colored), and
is an LTI system of frequency response

(22)

where and are (real or com-
plex) gains and real numbers, respectively, and

is a vector noise whose
components can be spatially correlated and temporally colored.
Note that given by (22) is called the (scaled) ideal
delay system of sample delay, even if is not an integer.
Therefore, for notational convenience, let us rewrite the signal
model given by (21) as

(23)

The goal is to estimate all the time delays
simultaneously from the measurements

. Note that the signal model given by (23) consists of a
colored signal that passes through flat fading (frequency-flat)
channels and impinges on an array of sensors. Multipath TDE
with only two sensor measurements can be found in [33]–[35].

Let us further assume that the source signal is stationary
colored non-Gaussian and can be modeled as

(24)
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where is a stable LTI system, and is a zero-mean,
i.i.d. non-Gaussian random sequence. Substituting (24) into (23)
gives rise to an SIMO system model, as given by (1), with

(25)

Note that all of the subchannels of the SIMO system
given by (25) have the same zeros. The time delays

can be extracted from the SIMO system ,
which can be estimated from the measurements ahead of
time by means of blind SIMO system identification methods
such as the proposed BSI algorithm. In light of the specific form
of given by (25) and the fact that the phase information
of is sufficient for retrieving the multiple time delays,
the estimation of can be quite efficient, as
illustrated below.

The specific form of given by (25) leads to

(26)

where denotes the phase response of is
the DTFT of , and the constant phase denotes the phase
of . On the other hand, because is real and positive, it can be
easily seen, from the key relationship given by (11) [which holds
true as the Gaussian noise vector is spatially correlated and
temporally colored by R1)], that

(27)

where

(28)

By subtracting and (i.e.,
the first element of ) from each element of
given by (26) and (27), respectively, one can obtain

(29)

Then, letting

(30)

simply leads to

(31)

It can be found that the inverse DTFT of
is

(32)

which can be thought of as a sequence obtained by sampling a
continuous-time signal

(33)

with sampling period . Note that
and, thus, can be estimated by

(34)

Approximately, can be estimated within an acceptable
resolution via sampling with a higher sampling period,
as described below. Consider another sequence , which
is obtained from sampling with sampling rate , i.e.,

, where is a positive integer such
that apporximates an integer. Then, it can be shown that

, which implies that can be esti-
mated by finding the time index associated with the maximum
value of . Because (with sampling period )
is essentially an interpolated version of (with sampling
period ), the above idea can be efficiently implemented by
calculating the zero-padded FFT, as reported in [29]. Given

, let ,
and define

otherwise
(35)

Then, the -point inverse DFT of
is exactly the interpolated version of

. Moreover, let us define

modulo

i.e., circular shift of (36)

Then, the time delays can be estimated as

(37)

where

(38)

Note that (37) means that the resolution of the estimated time
delays is . The larger the , the better the estimation accu-
racy of ’s, especially for the case of noninteger time delays.
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The proposed FFT-based MTDE algorithm is summarized as
follows.

MTDE Algorithm:

S1) With finite data , obtain the equalizer estimate
associated with , and compute its

-point FFT , where .
Obtain the power-spectral matrix estimate

using a multichannel power
spectral estimator.

S2) Compute , according to (30)
and (28), and then compute for
[by (35) and (36)].

S3) Estimate by (37) and (38).

Let us conclude this section with the following two remarks.

R9) Unlike the conventional TDE methods (which estimate
a single time delay with the associated two sensor mea-
surements at a time), the proposed MTDE algorithm
simultaneously processes all the sensor measurements.
In other words, the space diversity of multiple sensors
has been exploited by the proposed MTDE algorithm,
implying that its performance is robust to the nonuni-
form distribution of SNR resulting
from channel fading, as long as the overall SNR keeps
the same.

R10) The proposed MTDE algorithm can also be employed
to estimate each time delay using the associated
two sensor measurements as the conventional TDE
methods. In other words, the MTDE algorithm reduces
to a single time delay estimation algorithm, which is
referred to as the “MTDE-1 algorithm” for distinction
from the MTDE algorithm using all the sensor mea-
surements. However, the performance of the MTDE-1
algorithm is inferior to that of the MTDE algorithm
because the space diversity is not exploited [see R9)]
by the former.

V. SIMULATION RESULTS

In this section, some simulation results are provided to justify
the efficacy of the proposed BSI algorithm (to be presented in
Part A with Examples 1–3 below) and MTDE algorithm (to be
presented in Part B with Example 4 below) for blind identifica-
tion of SIMO systems and simultaneous estimation of multiple
time delays, respectively. In each of the examples, 100 indepen-
dent runs were performed for different data length and dif-
ferent SNR [defined by (3)], and all the cumulants needed were
replaced by the associated sample cumulants [5].

A. Blind Identification of SIMO Systems

This part considers the estimation of single-input three-output
systems. The driving input was assumed to be a

zero-mean i.i.d. binary sequence of with equal prob-
ability. The data were synthesized using (1) with real spa-
tially independent and temporally white Gaussian noise .
The synthetic data were then processed by the proposed
BSI algorithm with the following settings. In Step 1 of the BSI
algorithm, a 3 1 causal FIR filter of order equal to 7 was used

for the equalizer associated with the IFC
, and an AR multichannel power spectral estimator of

order equal to 4 was used to estimate the power-spectral matrix
of . In Step 2 of the BSI algorithm, the FFT size , the
convergence tolerance , and the parameter to
choose the parameter [see R6)] were used.

Let denote the estimate of the th subchannel
(the th entry of ) obtained at the th run with both the time
delay and scale factor removed. Since the order of each system
considered in the following examples is either smaller than or
approximately equal to 15, only 16 coefficients of each estimate

were used for the performance evalua-
tion of the proposed BSI algorithm. Specifically, the normalized
mean square error (NMSE) associated with defined as

NMSE (39)

was computed for all the subchannels and then averaged to ob-
tain the overall NMSE (ONMSE) [20]

ONMSE NMSE (40)

which was used as the performance index.
On the other hand, for comparison, the HOS-based IOCC

method [20] and the SOS-based NS method [7] were also em-
ployed to estimate with the same simulation data. Note that
both the proposed BSI algorithm and the IOCC method only
require an upper bound of the system order, whereas the NS
method requires the exact system order. Therefore, in Examples
1 and 2 below, where the systems are FIR, the NS method with
system order assumed to be known was used to attain its best
performance. Next, let us turn to the first example.

Example 1—FIR System without Common Subchannel
Zeros: In this example, a 3 1 MA(3) system (taken from
[20]) with the transfer function

(41)

is considered. Fig. 1 shows the simulation results (ONMSEs
versus SNR) associated with the proposed BSI algorithm (in-
dicated by “Proposed BSI”), the IOCC method (indicated by
“IOCC”), the NS method with the system order assumed to be
3 (indicated by “NS order ”), and the NS method with the
system order assumed to be 4 (indicated by “NS order ”).
One can observe, from this figure, that the NS method with
system order assumed to be 4 (i.e., order over-determined by
1 only) totally failed, verifying the fact that it has a high sen-
sitivity to system order mismatch. One can also observe, from
Fig. 1(a) and (b), that the proposed BSI algorithm always out-
performs the IOCC method and that both of them perform well
with the estimation error (ONMSEs) basically reaching a floor
for SNR dB (a threshold), and that the floor is lower for
larger , as described in R8). On the other hand, the NS method
(with the order exactly known) performs much better than the
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Fig. 1. Simulation results of Example 1. Plots of ONMSEs versus SNR
associated with the proposed BSI algorithm, the IOCC method, and the NS
method, respectively, for data length (a) N = 1024 and (b) N = 4096.

proposed BSI algorithm and the IOCC method for high SNR,
and its performance significantly improves with the increase of
SNR.

Example 2—FIR System with Common Subchannel
Zeros: This example considers the estimation of a 3 1
MA(4) system , where

is given by (41). Obviously, the system has a common
subchannel zero at and, thus, does not satisfy the
channel disparity condition. Fig. 2 shows the simulation results
obtained using the proposed BSI algorithm, the IOCC method,
and the NS method with system order equal to the true order
of . One can see, from this figure, that both the proposed
BSI algorithm and the IOCC method perform well, whereas
the NS method failed in this example due to the violation of
channel disparity condition. Moreover, the performance of the
proposed BSI algorithm, again, is always superior to that of the
IOCC method.

Example 3—IIR System with Common Subchannel
Poles: This example considers the estimation of a 3 1
system with a common
subchannel pole at . Note that itself is an IIR
system, and so, its length is actually equal to infinity. The IIR
system was approximated by FIR systems with length
equal to 3, 4, and 5 for the NS method in the simulation. The
simulation results corresponding to those shown in Fig. 1 are
shown in Fig. 3. One can see, from Fig. 3, that the NS method
failed because the system to be identified is not an FIR system
with well-defined order and that both the proposed BSI algo-

Fig. 2. Simulation results of Example 2. Plots of ONMSEs versus SNR
associated with the proposed BSI algorithm, the IOCC method, and the NS
method, respectively, for data length (a) N = 1024 and (b) N = 4096.

rithm and the IOCC method perform well, and the performance
of the former is superior to that of the latter.

In summary, the above three examples demonstrate the ef-
ficacy of the proposed BSI algorithm for different SNRs, data
lengths, and channel models, and typically only 2–5 iterations
in Step 2 were spent in obtaining in the above simulation
results.

B. Simultaneous Estimation of Multiple Time Delays

This part considers the problem of simultaneously estimating
two time delays ( and ) of a non-Gaussian source signal
impinging on three sensors (i.e., ) using the proposed
MTDE algorithm. For comparison, and are also sepa-
rately estimated by the MTDE-1 algorithm [see R10)] as well
as Ye and Tugnait’s integrated bispectrum based time delay es-
timator (IBBTDE) [30] with the associated two sensor mea-
surements used. That is, with respect to the first sensor, and

are also separately estimated by the MTDE-1 algorithm and
the IBBTDE, respectively, with the data sets and

in the following example, respectively.
Example 4: The source signal was assumed to be a

zero-mean, i.i.d. one-sided exponentially distributed sequence,
as assumed in the simulations in [30]. The noise sequence
(in the first sensor) was assumed to be a zero-mean colored
Gaussian sequence generated as the output of the following
MA(1) system:
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Fig. 3. Simulation results of Example 3. Plots of ONMSEs versus SNR
associated with the proposed BSI algorithm, the IOCC method, and the NS
method, respectively, for data length (a) N = 1024 and (b) N = 4096.

driven by a real white Gaussian sequence. The noise sequence
(in the second sensor) was perfectly correlated

with , and the noise sequence (in the third sensor)
was correlated with by ,
where was chosen such that for are
the same (i.e., equal noise power for the three sensors). The
data were synthesized according to (23) with the two time
delays and two gains given as
follows.

Case A: (i.e., SNR SNR SNR ).
Case B: and (i.e., SNR SNR
SNR SNR SNR ).

The synthetic data were then processed by the proposed
MTDE algorithm with the following settings: a 3 1 causal FIR
filter (or a 2 1 causal FIR filter) of order equal to 9 for the
equalizer associated with the IFC ,
an AR multichannel power spectral estimator of order equal to
12 for power-spectral matrix estimation, the FFT size ,
and . On the other hand, for the IBBTDE, the en-
tire record of each independent run was divided into 128-sample
nonoverlapping segments for the integrated bispectrum estima-
tion, and the initial condition required for phase matching was
obtained by the method of [29] with a resolution of .

The simulation results for Case A and Case B are displayed
in Figs. 4 and 5, respectively. These figures show the root-mean-
square errors (RMSEs) and means of the time delay estimates
and associated with the proposed MTDE algorithm (denoted
by “ ” with all the sensor measurements used), the MTDE-1
algorithm (denoted by “ ”), and the IBBTDE (denoted by “ ”)

(a)

(b)

(c)

(d)

Fig. 4. Simulation results of Case A of Example 4 for estimating two time
delays of d = 2:5 and d = 11:4. (a) and (b) Plots of the RMSEs of d̂ and
d̂ , respectively. (c) and (d) Plots of the means of d̂ and d̂ , respectively.
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(a)

(b)

(c)

(d)

Fig. 5. Simulation results of Case B of Example 4 for estimating two time
delays of d = 2:5 and d = 11:4. (a) and (b) Plots of the RMSEs of d̂ and
d̂ , respectively. (c) and (d) Plots of the means of d̂ and d̂ , respectively. Note
that the IBBTDE failed in the estimation of d ; therefore, its RMSEs are not
displayed in (b).

with the associated two sensor measurements used, for different
data lengths and overall SNRs. From Fig. 4, one can see that the
MTDE algorithm performs better than the MTDE-1 algorithm
due to the exploitation of space diversity by the former [see
R9) and R10)]. One can also see that the proposed MTDE algo-
rithm performs much better than the IBBTDE for lower SNR,
whereas the latter performs better than the former for higher
SNR. Furthermore, comparing Figs. 4 and 5, one can observe
that the performances of the MTDE algorithm, the MTDE-1 al-
gorithm, and the IBBTDE for Case B are worse than those for
Case A. However, the proposed MTDE algorithm still works
well for a wide range of overall SNR for Case B, justifying
that the performance of the MTDE algorithm is less sensitive
to the nonuniform SNR among sensors because of space diver-
sity gain, as mentioned in R9). On the other hand, the IBBTDE
failed to estimate for Case B because the phase shift of
(since and ) between the received measure-
ments and is never considered in the model in [30],
whereas the model given by (23) does.

VI. CONCLUSION

Based on the relationship (see Fact 2) between the SIMO
system and the optimal equalizer associated with the IFC for fi-
nite SNR, we have presented an FFT-based nonparametric blind
SIMO system identification algorithm (i.e., the BSI algorithm)
and an FFT-based TDE algorithm (i.e., the MTDE algorithm).
As the conventional IFC-based methods, the proposed BSI algo-
rithm also allows the unknown SIMO system to have common
subchannel zeros and is thus more flexible than most SOS-based
SIMO BSI methods. Moreover, some simulation results were
provided to support that the proposed BSI algorithm outper-
forms the conventional IFC-based method. On the other hand,
the proposed MTDE algorithm, which is robust against spatially
correlated and coherent Gaussian noise and insensitive to the
distribution of SNRs of sensors, can simultaneously estimate
multiple time delays with space diversity exploited. The pre-
sented simulation results also support that the proposed TDE
algorithm (i.e., the MTDE algorithm) with space diversity out-
performs the IBBTDE (one of the conventional single-time-
delay-based TDE approaches) for the case of nonuniform SNRs
among sensors due to channel fading.

APPENDIX A
PROOF OF PROPERTY 1

The overall system associated with given by (15) can
be seen to be

(A.1)

Then, it can be established that

[by (13)]
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(A.2)

Moreover, it can be shown, from (15), (A.2), and (11) that

(A.3)

Thus, we have completed the proof.

APPENDIX B
PROOF OF PROPERTY 2

Because both and are stable linear time-
invariant systems, the overall system is also
a stable sequence. The zero phase of the stable overall system

implies that is a continuous function of and

(B.1)

By (A.2) with , we obtain

by (B.1) and (B.2)

APPENDIX C
PROOF OF PROPERTY 3

For the sake of the proof, we need the following fact.
Fact K1) Assume that , and that is a

positive integer. If , then .
The proof of Fact K1) is omitted here.
Let be an arbitrary system satisfying (11), and thus, we

have

(C.1)

Without loss of generality, let us assume that both and
are zero phase with positive and , i.e.,

with (C.2)

with (C.3)

It can be obtained, from (C.1), that

(C.4)

where

by Property 2 (C.5)

and that

by (C.1) and Property 2 (C.6)

Let be the inverse Fourier transform of ,
i.e.,

by (13) (C.7)

where , and . One can easily infer from
(C.6) that

(C.8)

where , and , as
given by (C.7).

Let us further assume that only for , and
thus, only for by (13), and only
for . Then, given by (C.7) can be expressed
as

(C.9)

and the equality implies that and
only for , and only for .
Furthermore, it can be easily seen from (C.9) and (C.8) that

(C.10)
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which implies

or (C.11)

Again, by (C.9), simplifying [by (C.8)]
results in

(C.12)

It can be easily shown from (C.11), (C.12), and Fact K1) (with
, and ) that

(C.13)

Moreover, it can be inferred from (C.11)—(C.13) that

(C.14)

By the same fashion, simplifying [by (C.8)] for
, one can also prove, by (C.9) and

Fact K1), that

(C.15)

and

(C.16)

which together with (C.11) leads to

since and

(C.17)

Moreover, one can infer from (C.2), (C.3), and (C.17) that

(C.18)

It can be easily seen from (C.18) and (13) that ,
which gives rise to [by (C.5)]. Therefore, one can
obtain from (C.4) that

(C.19)

under the zero-phase assumption for both and . Further-
more, by Property 1 and (C.19),

is also a solution of (11) under constraint
C1). The assumption that only for can
be relaxed by allowing . Thus, the proof has been
completed.
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