
Statistical signal processing has been one of the key technologies in the develop-
ment of wireless communication systems in recent years, especially for broad-
band multiuser communication systems which severely suffer from intersymbol
interference (ISI) and multiple access interference (MAI). This article reviews

batch processing algorithms for blind equalization using higher-order statistics for miti-
gation of the ISI induced by single-input, single-output channels as well as of both the ISI
and MAI induced by multiple-input, multiple-output channels. In particular, this article
reviews the typical inverse filter criteria (IFC) based algorithm, super-exponential algo-
rithm, and constant modulus algorithm along with their relations, performance, and im-
provements. Several advanced applications of these algorithms are illustrated, including
blind channel estimation, simultaneous estimation of multiple time delays, signal-to-
noise ratio (SNR) boost by blind maximum ratio combining, blind beamforming for
source separation in multipath, and multiuser detection for direct sequence/code division
multiple access (DS/CDMA) systems in multipath.

Introduction
The ever-growing demands of high-speed and high-quality wireless communication
services have stimulated research on further promotion of the related technologies, in-
cluding digital signal processing, antenna, and semiconductor. High-speed wireless com-
munication systems typically require a much larger radio spectrum that may suffer from
severe ISI due to the frequency-selective characteristics of the radio channels (including
the effects of multipath propagation and limited channel bandwidth). Also, they may suf-
fer from MAI when multiple users share the common radio resources. Mitigation of both
the ISI and MAI is accordingly essential to the various types of systems. Familiar examples
are single-carrier modulation systems with time-domain equalization, multicarrier mod-
ulation systems with frequency-domain equalization, and spread spectrum systems with
RAKE reception [88], [103].

With respect to the single-carrier modulation systems, there are three types of equal-
izers for mitigation of the ISI and MAI: nonblind, semiblind, and blind. The nonblind
and semiblind equalizers are designed through both the received and training (or pilot)
signals at the expense of system resources (e.g., bandwidth) whereas the blind equalizer
is designed with only the received signal. Due to the benefit of resource (bandwidth)
saving and no need of training phase, extensive research on blind techniques has been
reported, which usually exploit the properties of users’ symbol sequences and the re-
ceived signal such as their statistical properties or constellation properties. Examples of
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exploiting statistical properties of signals include maxi-
mum-likelihood (ML) methods, second-order cyclo-
stationary statistics (SOCS) (i.e., cyclic correlations)
based methods, and higher-order (≥3) statistics (HOS)
based methods. The ML methods derive the optimum
equalizer according to a presumed probability density
function (pdf) of signals, while the SOCS- and HOS-
based methods design the blind equalizer using the SOCS
and HOS of signals, respectively, as the names indicate.
Thus far, there have been extensive studies on these blind
equalization methods. Several works ([55], [56], [104],
[128], [129], [140], [153] to name a few) have given ex-
cellent overviews of these methods with emphasis on the
single-user case. This article, on the other hand, provides
an in-depth perspective of HOS-based methods in the
category of “batch processing” with emphasis on the gen-
eral framework of dealing with both the single-user and
multiuser cases.

The HOS-based methods for blind equalization of sin-
gle-input, single-output (SISO) channels (i.e., single-
user case) can be divided into two classes: implicit and ex-

plicit methods [56]. The former, using higher-order mo-
ments implicitly, is also known as the Bussgang-type algo-
rithms, which the include the Sato algorithm [110] and
the constant modulus algorithm (CMA) (or Godard-2 al-
gorithm) [45], [64], [75], [126], [127] as special cases.
In digital communications, the CMA has been a widely
applied approach to alleviating the ISI effect induced by
telephone, cable, or radio channels [128], [129]. More-
over, its counterparts for blind equalization of multiple-
input, multiple-output (MIMO) channels (i.e., multiuser
case) have been applied to multiuser detection in
DS/CDMA systems, blind beamforming, and source sep-
aration in multiple-antenna systems [1], [8], [47], [68],
[78,], [92], [93], [95], [119], [120], [142], [137],
[147]. On the other hand, the explicit SISO methods us-
ing HOS include the IFC-based algorithm [7], [13],
[14], [34], [48], [116], [118], [133], [146], the
super-exponential algorithm (SEA) [9], [46], [57], [58],
[111], [117], [118], and polyspectra-based algorithms
[2], [4], [51]-[53], [91]. The IFC-based algorithm and
SEA are suitable for seismic exploration as well as blind
equalization of communication channels, and their
MIMO counterparts have been also applied in multiuser
detection, blind beamforming, and source separation
[10], [20], [21], [28], [32], [60]-[63], [67]-[69], [76],
[81], [100], [101], [130[-[132], [137], [141], [142],
[144], [146], [149], [150]. As a result, successful appli-
cations of the IFC-based algorithm, SEA, and CMA in
blind equalization have motivated further exploration of
their relations, performance, improvements, and other
applications for both SISO and MIMO cases, which will
be reviewed in this article. However, most of the iterative
HOS-based blind equalization algorithms suffer from the
problem of ill convergence, though the global conver-
gence of some algorithms has been proven under ideal
conditions (e.g., noise-free and doubly infinite equalizer)
[21], [40], [70], [136]. Recently, research about the con-
vergence behavior of these algorithms under nonideal
conditions has been reported [29]-[31], [41], [49], [71],
[89], [112], [151], [152], and some globally convergent
techniques have also been suggested [97], [125].
Typically, a good initial condition is usually needed to ob-
tain the global optimum solutions. Only the properties of
the global solutions of the three basic algorithms
(IFC-based algorithm, SEA, and CMA) will be reviewed
in this article due to space limitations.

In the next section we present the problems and as-
sumptions for blind equalization of SISO and MIMO
channels. We then review the typical ones of the IFC-
based algorithm, SEA, and CMA, and their relations, per-
formance, and improvements for the SISO case, followed
by the MIMO case. Then, we illustrate several advanced
applications of these algorithms, where the MIMO algo-
rithms are applied, as special cases, to blind equalization
of single-input, multiple-output (SIMO) channels for
some applications.

26 IEEE SIGNAL PROCESSING MAGAZINE JANUARY 2003

Table 1. Summary of notations.

Notation Definition

*
Convolution operation of dis-
crete-time (scalar, vector or matrix)
signals

||||⋅ Euclidean norm of vectors or
matrices

0P P × 1 zero vector

δ P[ ]l
P × 1 vector whose lth entry equals
unity and the remaining entries
equal zero

E{}⋅ Expectation operator

�n{}⋅ Discrete-time Fourier transform
with respect to the index n

 t Largest integer no larger than t

Superscript “*” Complex conjugation

Superscript “T” Transpose of vectors or matrices

Superscript “H” Complex conjugate transpose
(Hermitian) of vectors or matrices

cum{ , ,..., }y y ym1 2
mth-order joint cumulant of
random variables y y ym1 2, ,...,

cum{ : , }y p K = = = =cum{ , ,..., , }y y y y y yp1 2 K

C yp q, { } = cum{ : , : }*y p y q



SISO and MIMO
Blind Equalization Problems
Prior to the presentation of blind equalization problems,
let us summarize the notations used throughout the arti-
cle in Table 1 and briefly review the definitions of HOS in
Table 2 for better understanding of the HOS-based meth-
ods to be presented.

SISO Blind Equalization
Blind equalization, also known as blind deconvolution, of
SISO channels is a signal processing procedure to restore
the source signal u n[ ] from the received signal x n[ ] given
by (see Figure 1)

x n x n w n[ ] [ ] [ ]= +
S

(1)

where

x n h n u n h i u n i
i

S
[ ] [ ]* [ ] [ ] [ ]= = −

=−∞

∞

∑
(2)

is the noise-free signal distorted by an un-
known linear time-invariant (LTI) SISO
channel h n[ ]and w n[ ] is the additive noise ac-
counting for sensor noise as well as physical
effects not explained by x n

S
[ ]. The problem

arises not only in digital communications but
also in a variety of other engineering and sci-
ence areas, such as seismic signal processing,
speech modeling and synthesis, ultrasonic
nondestructive evaluation (NDE), and im-
age restoration.

Since mid 1980s, the problem of SISO
blind equalization has been tackled using
HOS [6], [7], [9], [11]-[14], [34], [35],
[42]-[46], [48], [52], [55], [57], [58],
[64], [74], [75], [89], [94], [99], [102],
[111], [116], [117], [126], [127],
[133]-[135], [138], [146], [153] where
x n

S
[ ] is assumed to be non-Gaussian and

w n[ ] Gaussian, by virtue of the following
properties of HOS. Higher-order (≥3) sta-
tistics (cumulants or polyspectra) of the
non-Gaussian signal x n[ ] contain not only
the magnitude but also phase information of
the unknown channel h n[ ]. Moreover, they
are insensitive to Gaussian noise since all
HOS (≥3) of Gaussian random processes are
equal to zero. On the other hand, conven-
t ional second-order stat ist ics (SOS)
(autocorrelations or power spectra [54],
[56], [66], [122]) based methods, e.g.,
those using the well-known linear predic-
tion error (LPE) filter [79], are blind to the
phase of the channel h n[ ]and therefore can-

not be applied to equalization of nonminimum-phase
channels. Furthermore, their performance is sensitive
to additive noise simply because autocorrelations of
the received signal x n[ ] are the sum of autocorrelations
of the noise-free signal x nS [ ] and those of the additive
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SISO
LTI Channel

[ ]h n

Source
Signal

[ ]u n

Noise-Free
Signal

[ ]x ns

Received
Signal

[ ]x n

Noise
[ ]w n

� 1. The SISO channel model.

Table 2. Brief review of the definitions of HOS
[27], [84], [90], [91].

The mth-order joint cumulant of random variables y1, y2 , ..., ym is
defined as

cum{ , , , } ( ) ln ( ,..., )y y y jm
m

m
m

m
1 2

1

1
1

K
L

L

= − ∂
∂ ∂ = =

Φ ω ω
ω ω ω ω m = 0

where

Φ( ,..., ) { [ ( )]}ω ω ω ω ω1 1 1 2 2m m mE j y y y= + + +exp L

is the characteristic function of random variables y1, y2 ,..., ym.
The mth-order cumulant cum{ , , , }y y ym1 2 K is related to the mo-

ments of y1, y2 , ..., ym of orders up to m. For instance, assuming that y1,
y2 , y3 , and y4 are zero-mean random variables, then

cum
cum

cum

{ , } { },
{ , , } { },

{ ,

y y E y y
y y y E y y y

y

1 2 1 2

1 2 3 1 2 3

1

=
=

y y y E y y y y E y y E y y
E y y E y y

2 3 4 1 2 3 4 1 2 3 4

1 3 2 4

, , } { } { } { }
{ } {

= −
− } { } { },− E y y E y y1 4 2 3

and thus

{ } { }C y y y E y

C y y

1 1 1 1 1 1
2

2 2 1 1

,
*

,

{ } , | |

{ } ,

= =

=

cum (variance)

cum{ }
{ } { }( ) { }

y y y

E y E y E y

1 1 1

1
4

1
2 2

1
2 2

2

, ,

| | | |

* *

= − − (kurtosis).

Remark: In practice, the cumulants of a stationary random process y n[ ]
are usually estimated from the finite measurements
y y y N[ ], [ ],..., [ ]0 1 1− . For instance, the cumulants of y n[ ] (with zero
mean) can be obtained by their time-average estimates as

$ { [ ]} | [ ]| ,

$ { [ ]} | [ ]|

,

,

C y n
N

y n

C y n
N

y n

n

N
1 1

2
0

1

2 2
4

1

1

=

=

=

−∑

n

N

n

N

n

N

N
y n

N
y n

=

−

=

−

=

−

∑ ∑

∑

− 
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
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−

0
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0

1
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2
0

1 2

2 1

1

| [ ]|
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noise w n[ ]. According to the properties of HOS, the
HOS-based methods are generally based on the follow-
ing assumptions for the received signal x n[ ]modeled by
(1) and (2).
� (S-A1) The SISO LTI channel h n[ ](or H z( ), the trans-
fer function of h n[ ]) is stable.
� (S-A2) The source signal u n[ ] is a zero-mean, inde-
pendently and identically distributed (i.i.d.) non-Gaussi-
an random process with variance σ u E u n2 2= {| [ ]| } and
( )p q+ th-order cumulant γ p q p qC u n, , { [ ]}= ≠0.
� (S-A3) The noise w n[ ] is a zero-mean Gaussian ran-
dom process, which can be colored with correlation func-
tion r l E w n w n lw [ ] { [ ] [ ]}*= − .
� (S-A4) The source signal u n[ ] is statistically independ-
ent of the noise w n[ ].

Note that for uncoded digital communication systems
with efficiently compressed source signal u n[ ], each sample
in u n[ ] can be reasonably assumed to be independently
taken from a set of constellation points with equal probabil-
ity [85], [103]. The corresponding probability distribution
of u n[ ] is symmetrically non-Gaussian [satisfying (S-A2)]
and, therefore, the ( )p q+ th-order cumulant γ p q, =0 for
( )p q+ odd [84], [90], [91], implying that the HOS-based
methods apply only when ( )p q+ is even. In coded digital
communication systems, however, redundancy (memory)
in u n[ ] is introduced by the channel encoder to detect
and/or correct symbol errors at the receiving end. Different
types of channel encoding schemes result in different im-
pacts on the validity of (S-A2) [80]. For these systems, blind
equalization algorithms based on (S-A2) may still apply ei-
ther with carefully chosen channel encoding scheme [80] or
by scrambling (randomizing) the channel encoded data. On
the other hand, Dogancay and Kennedy [33] proposed a
least squares (LS) blind equalization algorithm based on re-
formulation of the CMA that is shown to be relatively insen-
sitive to channel input correlation.

As shown in Figure 2, let v n[ ]denote the equalizer to
be designed and be a linear finite impulse response
(FIR) filter with v n[ ]≠0 for n L L L= +1 1 21, ,..., and
length L L L= − +2 1 1. The corresponding equalized sig-
nal e n[ ] (the output of v n[ ]) can be expressed as

e n v n x n e n e n[ ] [ ]* [ ] [ ] [ ]= = +S N (3)

where

e n v n w nN [ ] [ ]* [ ]= [by (1)] (4)

corresponds to the noise component in e n[ ] and

e n v n x n g n u nS S[ ] [ ]* [ ] [ ]* [ ]= = [by (1) and (2)] (5)

is the corresponding signal component in which

g n h n v n[ ] [ ]* [ ]= (6)

is the overall system after equalization.
Under assumptions (S-A1) through (S-A4) and the

condition of linear equalization, the problem of SISO
blind equalization is equivalent to finding the coefficients
of the equalizer v n[ ]such that the signal component e nS [ ]
approximates the source signal u n[ ] as close as possible
(up to a scale factor and a time delay) while maintaining
smallest enhancement in the power of the noise compo-
nent e nN [ ]. Furthermore, under the following ideal con-
ditions [14], [116], [118], [133], the problem reduces to
finding the equalizer v n[ ] such that the equalized signal
e n u n[ ] [ ]= −α τ (perfect equalization) where α is a
real/complex constant and τ is an integer:
� (S-C1) the inverse system of h n[ ], denoted h nI [ ],
(whose transfer function H z H zI ( ) / ( )=1 ) is stable.
� (S-C2) the SNR associated with the received signal
x n[ ] defined as

{ }
{ }SNR S=

E x n

E w n

| [ ]|

| [ ]|

2

2
[see (1)]

(7)

equals infinity.
� (S-C3) the length of the equalizer v n[ ] is doubly infinite
(L1 → −∞ and L2 → ∞).

The equalization approach in this way is equivalent to
finding the equalizer v n[ ] as an inverse system estimate,
i.e., v n h n[ ] [ ]= −α τI , thereby leading to the name inverse

filtering approach. For evaluating
how the equalized signal e n[ ] is close
to α τu n[ ]− (i.e., how the resultant
overall system g n[ ] is close to
αδ τ[ ]n − ), a commonly used perfor-
mance index for the designed equal-
izer is as follows [118]:

{ }
{ }ISI

max

max
( )

| |

| |
η

η η

η
=

−2 2

2

i i

i i (8)
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Overall System [ ] = [ ] [ ]g n h n v nH

i.i.d.
Non-Gaussian

[ ]u n
SISO

LTI Channel
[ ]h n

Gaussian
[ ]w n

Signal
Component

Noise
Component

e n e n e n[ ] = [ ] + [ ]S N

Equalized
SignalLinear

Equalizer
[ ]v n

x ns [ ] x n[ ]

� 2. Block diagram of SISO linear equalization.

Fast real-time batch or adaptive
signal processing with low
complexity for blind channel
estimation and equalization is
still a challenging research.



where η = −[..., [ ], [ ], [ ],...]g g g1 0 1 T is a vector composed
of the sequence g n[ ], n = −..., , , ,1 0 1 K, and η i is the ith en-
try of η. Note that the smaller the value of ISI( )η , the
more the overall system g n[ ]approaches a delta function,
and ISI( [ ])αδ P l =0 for all P ≥1.

MIMO Blind Equalization
Consider that there are K different source signals u n1 [ ],
u n2 [ ], ..., u nK [ ] simultaneously transmitted through a
multipath channel and received by an M-element antenna
array in the presence of additive noise. The resultant chan-
nel model is depicted in Figure 3. The M ×1 vector re-
ceived signal can be written as

x x w[ ] [ [ ], [ ],..., [ ]] [ ] [ ]n x n x n x n n nM= = +1 2
T

S (9)

where

x H u H uS [ ] [ ]* [ ] [ ] [ ]n n n i n i
i

= = −
=−∞

∞

∑
(10)

is the noise-free signal distorted by the M K× MIMO LTI
channel, u[ ] [ [ ], [ ],..., [ ]]n u n u n u nK= 1 2

T is the K ×1vec-
tor source signal, and w[ ] [ [ ], [ ],..., [ ]]n w n w n w nM= 1 2

T

is the M ×1 vector noise.
It can be seen, from (9) and (10), that in addition to the

ISI, the MIMO system also involves MAI, because each
component of x S [ ]n is a mixture of all the source signals
u nk [ ], k K=1 2, ,..., . Accordingly, blind equalization of the
MIMO channel H[ ]n is a problem of eliminating both the
ISI and MAI, or equivalently, recovering the source signal
u[ ]n with only the received signal x[ ]n . The problem arises
not only in the above-mentioned multiple-antenna sys-
tems but also in multiuser DS/CDMA systems [76],
[100], [101], [130], [131], [144]. It reduces to the prob-
lem of SIMO blind equalization when there is only one
source signal transmitted or when fractionally spaced
equalization is employed in single-antenna wireless com-
munication systems [128], [140]. Moreover, it also arises
in applications using multiple sensors such as time delay es-
timation, source separation, and seismic signal processing.
It should be noticed that, for the SIMO case (K =1), a lot
of SOS-based blind channel equalization algorithms (usu-
ally referred to as subspace algorithms), as reported in
[86], [96], [121], [123], [128] have been developed based
on the equalizability of SIMO chan-
nels under certain assumptions. One
may refer to [124] for an overview of
these techniques as well as the embed-
ded assumptions/restrictions.

In the past decade, blind equaliza-
tion of MIMO channels using HOS
has been extensively reported [21],
[32], [46], [60]-[63], [70], [72],
[95], [109], [136], [139], [150],
which is generally based on the fol-
lowing assumptions for x[ ]n .

� (M-A1) The M K× LTI channel H[ ]n is stable.
� (M-A2) The source signal u nk [ ], k K∈{ , ,..., }1 2 , is a
zero-mean, i.i.d. non-Gaussian random process with var-
iance σ u kk E u n2 2[ ] {| [ ]| }= and ( )p q+ th-order cumulant
γ p q p q kk C u n, ,[ ] { [ ]}= ≠0 and is statistically independent
of u nj [ ] for all j k≠ .
� (M-A3) The noise w[ ]n is a zero-mean, Gaussian
vector random process, which can be spatially corre-
lated and temporally colored with covariance matrix
R w ww l E n n l[ ] { [ ] [ ]}= −H .
� (M-A4) The source signal u[ ]n is statistically independ-
ent of the noise w[ ]n .

Note that the assumption of statistical independence
between the source signals is reasonable for multiuser
communication systems with independent users. On the
other hand, extension of MIMO blind equalization meth-
ods to the case of temporally colored inputs is also possi-
ble; see [65] and [77] for further details.

Let v[ ] [ [ ], [ ],..., [ ]]n v n v n v nM= 1 2
T (as shown in Fig-

ure 4) denote a multiple-input, single-output (MISO)
equalizer to be designed that consists of a bank of linear FIR
filters, with v 0[ ]n M≠ ( M ×1 zero vector) for n L L= 1 1,
+1 2,..., L and length L L L= − +2 1 1. The equalized signal
can be expressed as

e n n n e n e n[ ] [ ]* [ ] [ ] [ ]= = +v xT
S N

(11)
where

e n n nN
T[ ] [ ]* [ ]= v w [by (9)] (12)

corresponds to the noise component in e n[ ] and

e n n n n n nS
T T[ ] [ ]* [ ]* [ ] [ ]* [ ]= =v H u g u [by (9)] (13)
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u[ ]n x[ ]n

u n1[ ] x n1[ ]

u nK [ ] x nM [ ]
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[ ]H n
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[ ]w n1
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[ ]w nM
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Signals

� 3. The MIMO channel model.

Gaussian
[ ]w n1

Gaussian
[ ]w nM

i.i.d.
Non-Gaussian

u n1[ ]

u nK [ ]
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[ ]H n

x n1[ ]

x nM [ ]

Signal
Component

Noise
Component

e n e n e n[ ] = [ ] + [ ]S N

Equalized
Signal

Linear Equalizer [ ]v n

v n1[ ]

v nM [ ]

� 4. Block diagram of MISO linear equalization.



is the corresponding signal component in which

g[ ] [ [ ], [ ],..., [ ]]n g n g n g nK= 1 2
T

=H vT [ ]* [ ]n n (14)

is the overall system after equalization. The signal part
given by (13) is depicted in Figure 5 in terms of the over-
all system g[ ]n .

Under assumptions (M-A1) through (M-A4) and the
condition of linear equalization, the problem of MIMO
blind equalization can be partially resolved by adjusting
the coefficients of the equalizer v[ ]n such that the signal
component e nS [ ] approximates u nl [ ] (one of the source
signals) with minimum enhancement of the noise com-
ponent e nN [ ]. Furthermore, under the following ideal
conditions [136]:
� (M-C1) M K≥ , i.e., there are at least as many outputs
as inputs
� (M-C2) �( )z (the transfer function of H[ ]n ) has full
column rank for any| |z =1
� (M-C3) the SNR associated with the received signal
x[ ]n defined as

{ }
{ }

SNR =
−E n n

E n

x w

w

[ ] [ ]

[ ]

2

2
[see (9)]

(15)

equals infinity
� (M-C4) the length of the equalizer v[ ]n is doubly infi-
nite (L1 → −∞ and L2 → ∞)
the problem reduces to finding the equalizer v[ ]n such
that the equalized signal e n u n[ ] [ ]= −α τl (perfect equal-
ization) whereα is a real/complex constant, τ is an integer,
and l ∈{ , ,..., }1 2 K . Correspondingly, g n nk [ ] [ ]= −αδ τ .
δ[ ]k − l (the kth component of the resultant overall system
g[ ]n ) for all k [see (13)], giving rise to the associated
ISI( )η =0 where η = −[..., [ ],g1 1 g g g K1 10 1 1[ ], [ ],..., [ ],−
g K [ ],0 g K [ ],...]1 T is a vector composed of all the entries
of g[ ]n , n = −... , , , ,1 0 1 K . Note that the equalizer v[ ]n
needs to be doubly infinite [see (M-C4)] for perfect
equalization of a general H[ ]n (could be a square matrix
with infinite length). Specifically, if H[ ]n has finite im-
pulse response with M K> , then a finite-length equalizer
may suffice for achieving perfect equalization [137].

Note that only one input signal u nl [ ]with unknown l
can be obtained by v[ ]n . Estimation of a specific input sig-

nal (specific l) needs more prior information about the
input or the associated channel depending on applica-
tions. Nevertheless, the K input signals can be estimated
through the multistage successive cancellation (MSC)
procedure [136] (which will be presented later) that may
suffer from the problem of error propagation from stage
to stage. On the other hand, the K input signals can also
be obtained simultaneously using an MIMO linear equal-
izer of M inputs and K outputs (i.e., a filter bank) [72],
[95], [97], [125], without going through the MSC pro-
cedure and thus avoiding error propagation effects. How-
ever, finding the coefficients of the MIMO equalizer is, in
general, computationally demanding and may prohibit
practical applications.

SISO Blind Equalization Algorithms
In this section, let us review the aforementioned typical
IFC-based algorithm, SEA, and CMA for blind equaliza-
tion of SISO channels. Then, their relations and perfor-
mance under the condition of finite SNR are described,
and several aspects of improvements on the convergence
rate of these algorithms are presented.

Basic Algorithms
Let ν = +[ [ ], [ ], , [ ]]v L v L v L1 1 21 K T (associated with the
equalizer v n[ ]) denote the L ×1unknown parameter vec-
tor to be determined. The equalized signal e n[ ] given by
(3) can be expressed in vector form as

e n n[ ] [ ]= ν χT (16)

where χ[ ] [ [ ], [ ],..., [ ]]n x n L x n L x n L= − − − −1 1 21 T is
an L ×1 vector associated with the received signal x n[ ].

IFC-Based Algorithm
The IFC-based algorithm, proposed by Wiggins,
Donoho, Shalvi and Weinstein, Tugnait, and Chi and Wu
[7], [13], [14], [34], [116], [118], [133], [146], finds
the optimum ν by maximizing the following class of in-
verse filter criteria (also known as absolute normalized
cumulants) using only two cumulants:

[ ]
J

C e n

C e n
p q

p q

p q,
,

,

( ) /
( )

{ [ ]}

{ [ ]}
ν =

+

1 1

2

(17)

where p and q are nonnegative integers and p q+ ≥3.
Note that (17) represents a general form of equaliza-
tion criteria using absolute cumulants. For instance, it
can be easily shown that the IFC J p q, with p q= =2 is
equivalent to the constrained kurtosis-based criterion
proposed by Shalvi and Weinstein [116], [118]. In ad-
dition, the IFC J p q, with p q+ =3 and 4 are usually
preferable to those for p q+ > 4 due to the fact that the
larger the cumulant order used, the larger the variance
of the designed equalizer and the computational com-
plexity [84], [90], [91].
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A remark regarding the IFC is as follows.
� (R3.1) Closed-form solution for determining the opti-
mum ν is almost formidable since J p q, is a highly nonlin-
ear function of ν. Accordingly, iterative gradient-type
optimization algorithms such as the steepest descent al-
gorithm and the Fletcher-Powell algorithm [5] can be
used to find the (local) maximum of J p q, as well as the
relevant ν, where an initial condition for ν is needed to ini-
tialize the iterative optimization algorithms.

Super-Exponential Algorithm
The SEA, proposed by Shalvi and Weinstein [117],
[118], is an iterative algorithm for finding the equalizer
v n[ ]. At the ith iteration, it updates the vector νvia the fol-
lowing set of linear equations [36], [117], [118]:

~ ( )
~ / ~

* [ ]

[ ]

ν

ν ν ν
χ χ= ⋅

=







− −R d1 1
e
i

i

(18)

where

{ }R χ χ χ= E n n[ ] [ ]H (19)

is the L L× correlation matrix of χ[ ]n and

{ }d e
i i ie n p e n q nχ χ[ ] [ ] [ ] * *[ ]: ,( [ ]) : , [ ]− − −= −1 1 1 1cum (20)

in which p and q are nonnegative integers and p q+ ≥3,
and e n ni i[ ] [ ][ ] ( ) [ ]− −=1 1ν χT is the equalized signal ob-
tained at the ( )i −1 th iteration. Shalvi and Weinstein
[117], [118] showed that under the conditions of
(S-C1), (S-C2), and infinite data length, the update equa-
tions given by (18) lead the resultant ISI towards zero at a
super-exponential (i.e., exponential to the power) rate,
provided that the initial ISI is smaller than unity.

Three remarks regarding the SEA are as follows.
� (R3.2) The SEA given by (18)-(20) is slightly different
from the original one reported in [117] and [118], which
also involves the variance and( )p q+ th-order cumulant of
the source signal u n[ ]. Thus, the former is a little bit sim-
pler than the latter, but it results in a designed equalizer
with an unknown scale factor.
� (R3.3) The major advantages of the SEA are its faster
convergence (at a super-exponential rate) and smaller
computational load (only solving a set of linear equations
at each iteration) over gradient-type algorithms (such as
the IFC-based algorithm) [20].
� (R3.4) Without an explicit objective function, the iter-
ative SEA may diverge as the data length, N, is insuffi-
cient and SNR is finite.

Constant Modulus Algorithm
Godard [45] proposed a family of algorithms, known as
Godard- p algorithm, for the design of the optimum
equalizer by minimizing the following objective function
(see also [55] and [56]):

{ }F E e n Yp
p

p( ) (| [ ]| )ν = − 2 (21)

where p is a positive integer and

{ }
{ }

Y
E u n

E u np

p

p
=

| [ ]|

| [ ]|

2

(22)

is referred to as constant modulus (CM). The special case,
Godard-2 algorithm ( p =2), was developed independ-
ently by Treichler and Agee [126] and is well known as
the CMA due to the design philosophy that the equalized
signal e n[ ]must be a signal with the same CM property as
the desired source signal.

Two remarks regarding the CMA are as follows.
� (R3.5) In practice, without the prior knowledge about
the statistics of the source signal, Y2 is usually replaced by
an arbitrary positive number resulting in a scalar ambigu-
ity in the equalizer output. The CMA works only when
the kurtosis γ 2 2, of the source signal is negative (known
as the sub-Gaussian case) [55], [64].
� (R3.6) The CMA needs iterative gradient-type optimi-
zation algorithms to obtain the (local) optimum ν be-
cause F2 ( p =2) is a highly nonlinear function of ν,
although most of the existing CM-based algorithms are
sample-by-sample-based adaptive algorithms rather than
batch processing algorithms.

Relations and Performance
Relations
Under the ideal conditions (S-C1) through (S-C3), the
three basic algorithms have been shown to lead to the
same solution v n h n[ ] [ ]= −α τI , except for a scale factor
and a time delay. On the other hand, a number of works
[16], [17], [49], [50], [82], [83], [106], [107], [113],
[114], [151], [152] have been reported to provide the
performance insights of these algorithms and their rela-
tions under the practical conditions of finite SNR and fi-
nite equalizer length L. Some of the related results are
summarized as follows.
� (S-F1) The designed equalizer v n[ ]using the IFC J p q,

is equivalent to that using the SEA for the case of real sig-
nals, and this also holds true as p q= ≥2 for the case of
complex signals.
� (S-F2) As the source signal u n[ ] possesses negative
kurtosis (γ 2 2 0, < ), the designed equalizer v n[ ] using the
CMA is equivalent to that using the IFC J 2 2, ( p q= =2)
and, therefore, also equivalent to that using the SEA with
p q= =2 according to (S-F1).

One can see from (S-F1) and (S-F2) that the IFC-
based algorithm, SEA, and CMA are closely related to
each other, implying that under certain conditions they
exhibit similar performance and common properties re-
garding the behavior of the designed equalizers. Thus, for
brevity, let us present these common properties via the
IFC-based algorithm.

JANUARY 2003 IEEE SIGNAL PROCESSING MAGAZINE 31



Properties About the Behavior of the Equalizer
For finite SNR, it is highly desirable that the designed
blind equalizer v n[ ] approximates the linear minimum
mean square error (MMSE) equalizer, denoted v nMMSE [ ]
and hence possesses both the ISI reduction and noise re-
duction capabilities. Notice that the linear MMSE equal-
izer is a nonblind equalizer that minimizes the mean
square error (MSE) E e n u n{| [ ] [ ]| }− 2 and requires train-
ing sequences to obtain the optimum solution [54], [56],
[66], [122], [145]

{ }V v n
H
Sn u

xx
MMSE MMSE( ) [ ]

( )
( )

*

ω σ
ω
ω

= = ⋅�
2

(23)

where H h nn( ) { [ ]}ω = � and

{ }{ }S E x n x n lxx l( ) [ ] [ ]*ω = −�

= ⋅ +σ ωu l wH r l2 2| ( )| { [ ]}� .
(24)

The connection between the blind equalizer v n[ ] (associ-
ated with J p q, ) and the linear MMSE equalizer v nMMSE [ ]
has been established as follows.

Property S-1
With infinite equalizer length, the optimum equalizer
v n[ ] associated with J p q, is related to the linear MMSE
equalizer v nMMSE [ ] via [38]

V v n V Qn( ) { [ ]} ( ) ( )ω ω ω= = ⋅� MMSE (25)

where

{ }Q G G
u

p q p q p q q p q p q p( ) ~ ( ) ~ ( ), , , , , ,ω
σ

α γ ω α γ ω= ⋅ + ⋅1
2

(26)

in which

α p q
p q

q
p q

C e n

C e n,
,

,

{ [ ]}

{ [ ]}
=

+
⋅ 1 1 ,

(27)

{ }~ ( ) ~ [ ], ,G g np q n p qω = � (28)

and

( )~ [ ] ( [ ]) [ ],
*g n g n g np q

p q
=

−1
. (29)

Further observations on the relationship between v n[ ]
and v nMMSE [ ] are inferred as follows.

Property S-2
With infinite equalizer length, the optimum equalizer
v n[ ] associated with J p q, approaches the linear MMSE
equalizer v nMMSE [ ]up to a scale factor and a time delay as
SNR or the cumulant order ( )p q+ increases. The former
also approaches the latter as the channel has wider band-
width for the white noise case [38].

This property implies that the equalizer v n[ ] is equiva-
lent to the linear MMSE equalizer v nMMSE [ ]as 1) SNR = ∞
or p q+ = ∞ or as 2) the channel is an allpass system when
the noise is white. Moreover, a property regarding the
phase response of v n[ ] is as follows.

Property S-3
With infinite equalizer length, the phase response,
arg[ ( )]V ω , of the optimum equalizer v n[ ] associated with
J p q, is given by

arg arg[ ( )] [ ( )] ,V Hω ω ωτ ξ π ω π= − − + − ≤ < (30)

where τ and ξ are real constants [38].
This property states that the equalizer v n[ ] com-

pletely cancels (equalizes) the channel-induced phase
distortion (except for a time delay τand a constant phase
shift ξ) and thus performs as a perfect phase equalizer.

Note that properties S-1 through S-3 of the optimum
equalizer v n[ ]associated with J p q, are valid for an infinite
equalizer length. For any finite equalizer length L, these
properties can still provide some performance insights of
this equalizer. Moreover, some characteristics of v n[ ] for
finite L can be found in [107]. By the connection estab-
lished in Property S-1, Feng and Chi [37]-[39] proposed
a computationally efficient FFT-based iterative algorithm
to obtain the theoretical optimum v n[ ] associated with
J p q, from the linear MMSE equalizerVMMSE ( )ω given by
(23) and (24). The obtained theoretical v n[ ](or the theo-
retical g n[ ]) provides a good prediction to the designed
equalizer v n[ ](the overall system g n[ ]), as demonstrated
in Figure 6, which shows the average and the average ±1
standard deviation of 30 overall system estimates $[ ]g n s
obtained from 30 sets of synthetic data using the IFC
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J p q, with p q+ =3, where SNR =0 dB, data
length N =2 048, , and the equalizer length
L =17 (L1 0= and L2 16= ). One can see, from
Figure 6, that the estimate $[ ]g n approximates
the theoretical g n[ ]well in spite of the low SNR
(0 dB). Moreover, $[ ]g n is approximately
zero-phase (symmetric), which is consistent
with Property S-3.

Algorithm Improvements
The convergence rate of the basic algorithms
may be further improved using hybrid frame-
work, whitening preprocessing, and better ini-
tial conditions, as described below.

Hybrid Framework
Recall that the computationally efficient SEA [see
(R3.3)] is closely related to the IFC-based algorithm [see
(S-F1)]. This suggests that the optimum ν associated
with J p q, can be obtained using the following hybrid
framework of the IFC-based algorithm and SEA [16].

Hybrid IFC Algorithm (see Figure 7)
At the ith iteration, the parameter vector ν[ ]i is obtained
through the following two steps:
� (T1) Obtain ν[ ]i using the SEA update equations given
by (18)-(20).
� (T2) If J Jp q

i
p q

i
,

[ ]
,

[ ]( ) ( )ν ν> −1 , go to the next itera-
tion; otherwise, update ν[ ]i through a gradient-type opti-
mization algorithm such that J Jp q

i
p q

i
,

[ ]
,

[ ]( ) ( )ν ν> −1 .
Two remarks regarding the hybrid IFC algorithm are

as follows.
� (R3.7) According to (S-F1), the hybrid IFC algorithm
is always applicable for the case of real signals and only ap-
plicable for the case of complex signals as p q= ≥2.
� (R3.8) In comparison with gradient-type algorithms
for finding the maximum of J p q, , the hybrid IFC algo-
rithm exhibits fast convergence and significant computa-
tional saving by taking advantages of the SEA in (T1).
Furthermore, the hybrid IFC algorithm does not suffer
from the divergence problem of the SEA [see (R3.4)]
due to the guaranteed convergence of (T2).

Figure 8 demonstrates the efficacy of the hybrid
IFC algorithm, where 30 independent runs using the
IFC-based algorithm (solid line) and the hybrid IFC
algorithm (dashed line) were performed to obtain the
averaged values of 30 J 2 2, ( )ν s for SNR =20 dB and
data length N = 4 096, . It can be seen that the step (T1)
of the hybrid IFC algorithm significantly improves
the convergence rate of the IFC-based algorithm, as
stated in (R3.8).

Whitening Preprocessing
It is well known [54], [56], [66], [79], [122] that when
the signal of interest is processed by a whitening filter
such as the forward LPE filter of sufficient length, the fil-

ter output is basically an amplitude equalized signal. This
fact may be useful to all the existent blind equalization al-
gorithms. As illustrated in Figure 9, the amplitude equal-
ized signal y n[ ] simplifies the equalization task of the
equalizer v n[ ] because basically only the channel phase
distortion remains to be compensated by v n[ ], thereby
speeding up the convergence of the blind equalization al-
gorithms. Note that as the channel is minimum phase, the
LPE filter, which itself is also minimum phase, is suffi-
cient for blind channel equalization.

Improved Initial Condition
Required by iterative blind equalization algorithms,
the initial condition for v n[ ] is usually chosen as
v n n L[ ][ ] [ ]0 = −δ C for the sake of simplicity where

 L L LC = +( ) /1 2 2 . However, a better initial condition
may be needed to further improve the convergence rate as
well as reliability of the blind equalization algorithms in
practical conditions. Next, let us present a low complexity
method for providing a better initial condition [36].
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Procedure for Obtaining Improved Initial Condition:
� (S1) Preprocess the data x n[ ] by a (causal) forward
LPE filter a n[ ] of length L La < and obtain the forward
prediction error (the filter output) y n[ ].
� (S2) Further process the forward prediction error
y n[ ] by an FIR filter b n[ ] where b n[ ]≠0 for n L= 1 ,
L L La1 21 1+ − +,..., . Obtain the parameter vector
b = + − +[ [ ], [ ],..., [ ]]b L b L b L La1 1 21 1 T via

[ ] [ ]{ }d y

b d d

y

y y

y n L p y n L q n= − − −

=







cum ~ : , ~ : , [ ]

/|| ||

* *1

(31)

where

[ ]y[ ] [ ], [ ],..., [ ]n y n L y n L y n L La= − − − − + −1 1 21 1 T

and  
~ ( ) /L L L La= + − +1 2 1 2 .

� (S3) Obtain the initial condition v n a n b n[ ][ ] [ ]* [ ]0 = .
A remark regarding this procedure is as follows.

� (R3.9) The second step (S2) is a simplified version of
the SEA given by (18)-(20) where the correlation ma-
trix of y n[ ] is replaced by an identity matrix (because
y n[ ] approximates an amplitude equalized signal) with
b n n L[ ][ ] [ ~]0 = −δ (i.e., e n b n y n y n L[ ] [ ][ ] [ ]* [ ] [ ~]0 0= = − ).
In other words, the improved initial condition is obtained
through whitening preprocessing followed by one itera-
tion of the SEA with reduced computational complexity.

Figure 10 demonstrates the efficacy of the improved
initial condition, where SNR =20 dB, La =5, L1 0= ,
L2 20= , and LC =10. From this figure, one can see that
the initial values of ISI( )η associated with the improved
initial condition v n a n b n[ ][ ] [ ]* [ ]0 = (dashed lines) are

about 10 dB below those associated with the initial
condition v n n[ ][ ] [ ]0 10= −δ (solid lines). Moreover, one
can observe that the SEA using the improved initial
condition works well for all data length N with much
faster convergence speed than that using the initial con-
dition v n n[ ][ ] [ ]0 10= −δ and the latter converges slower
for smaller N (1,024, 2,048, and 4,096) and diverges for
N =512 [as mentioned in (R3.4)]. These results indicate
that the improved initial condition significantly improves
the convergence and reliability of the SEA.

MIMO Blind
Equalization Algorithms
This section reviews the typical IFC-based algorithm,
SEA, and CMA for blind equalization of MIMO chan-
nels, together with their relations, performance, and con-
vergence improvements. To distinguish the MIMO case
from the SISO case, let us refer to the three algorithms as
the M-IFC-based algorithm, M-SEA, and M-CMA.

Basic Algorithms
Estimation of One Source Signal
Let νm m m mv L v L v L= +[ [ ], [ ],..., [ ]]1 1 21 T , and ν ν= [ ,1

T

ν2
T ,..., ν M

T T] denote the ML ×1unknown parameter vec-
tor (associated with the equalizer v[ ]n ) to be determined.
The equalized signal e n[ ]given by (11), the output of the
MISO equalizer v[ ]n , can be expressed as

e n n[ ] [ ]= ν χT (32)

where χ χ χ χ[ ] [ [ ], [ ],..., [ ]]n n n nM= 1 2
T T T T is an ML ×1

vector associated with the received signal x[ ]n in which

[ ]χ m m m mn x n L x n L x n L[ ] [ ], [ ],..., [ ]= − − − −1 1 21 T .

Comparing the formulation (32) with (16) reveals that
finding the vector ν would be similar to the SISO case. In
fact, the vector ν can be obtained using the IFC-based al-
gorithm given by (17) [21], [136] and the SEA given by
(18)-(20) [63], [150] without any modifications. How-
ever, for the CMA given by (21) and (22) [127], [137],
the constant modulus Y2 must be modified as

{ }
{ }Y k

E u n

E u n
k

k
2

4

2
[ ]

| [ ]|

| [ ]|
= .

(33)

It has been shown that under the
conditions (M-C1) through (M-C4),
the three algorithms all lead to the
equalized signal

e n u n[ ] [ ]= −α τl (34)

where α is a real/complex constant, τ
is an integer, and l ∈{ , ,..., }1 2 K is an
unknown index.
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Some remarks regarding the basic
algorithms are as follows.
� (R4.1) Similar to the SISO case
[see (R3.3) and (R3.4)], the M-SEA
is computationally efficient with
faster convergence than the
M-IFC-based algorithm but may di-
verge for finite data length N and fi-
nite SNR.
� (R4.2) The M-CMA can only
recover those input signals with
negative kurtosis. Even if Y k2 [ ] (cor-
responding to an interested input sig-
nal u nk [ ]) is given for the M-CMA,
the algorithm may still recover a dif-
ferent input signal as given by (34).
Therefore, Y k2 [ ] is usually chosen as an arbitrary positive
number when using the M-CMA. Recently, Schniter and
Johnson [112] have reported the sufficient conditions
under which the M-CMA will locally converge to an
equalizer associated with the desired input source signal
with a particular delay.
� (R4.3) Let h k n[ ] (an M ×1 vector) be the kth column
of the M K× channel impulse response matrix H[ ]n and
express the received signal x[ ]n given by (9) as

x h h h u w

h

[ ] [ [ ], [ ],..., [ ]]* [ ] [ ]

[ ]*

n n n n n n

n
K

k

K

k

= +

=
=
∑

1 2

1

u n nk [ ] [ ].+ w
(35)

With the source signal estimate $ [ ] [ ]u n e nl = by (34) (up
to an unknown scale factor and an unknown time delay),
the channel h l [ ]i can be estimated as [136]

{ }
{ }

$ [ ]
[ ] $ [ ]

| $ [ ]|

*

h
x

l

l

l

i
E n i u n

E u n
=

+
2

(36)

where l ∈{ , ,..., }1 2 K .
In addition to the reviewed three MIMO blind equal-

ization algorithms (M-IFC, M-SEA, and M-CMA), we
note that there exist some other related methods such as
the contrast criteria proposed by Comon [24] for blind
source separation from noisy multichannel observations.
One can refer to [24]-[26] for the details.

Estimation of All Source Signals
Estimates $ [ ]u n1 , $ [ ]u n2 , ..., $ [ ]u nK of all the source signals
can be obtained by the M-IFC, M-SEA, or M-CMA
through an MSC procedure [136] (possibly in a
nonsequential order) that includes the following two
steps at each stage.
MSC Procedure (see Figure 11)
� (T1) Find a source signal estimate, said $ [ ]u nl (where l
is unknown), by the M-IFC, M-SEA, or M-CMA, and
obtain the associated channel estimate $ [ ]h l n by (36).

� (T2) Update x[ ]n by x h[ ] $ [ ]* $ [ ]n n u n− l l , namely, can-
cel the contribution of $ [ ]u nl from x[ ]n .

Relations and Performance
Relations
Under the conditions of finite SNR and finite equalizer
length, the relation between the M-IFC-based algorithm
and M-SEA, as summarized below, was reported by Chi
and Chen [10], [20], while their relations to the M-CMA
still need to be explored.
� (M-F1) The designed equalizer v[ ]n using the M-IFC
is equivalent to that using the M-SEA for the case of real
signals, and this also holds true for the case of complex
signals as p q= ≥2.

This fact reveals that the M-IFC is closely related to the
M-SEA, and the designed equalizers by them thus exhibit
similar performance and behaviors. Next, let us present
some properties of the M-IFC that are therefore shared by
the M-SEA.

Properties About the Behavior of the Equalizer
Let D p q, be a K K× diagonal matrix defined as

{ }D p q p q p q p q K, , , ,[ ], [ ],..., [ ]= diag γ γ γ1 2 (37)

where D1 1
2 1, { [ ]= diag σ u , σ u

2 2[ ], ..., σ u K2 [ ]}. It is known
that the nonblind MIMO linear MMSE equalizer, de-
noted �MMSE ( )ω (K M× matrix), can be derived by
orthogonality principle [122] as
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n
k nω = � is an M ×1 MISO lin-

ear MMSE equal izer associated with u nk [ ],
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is the cross-spectral matrix of x[ ]n .
Two properties of the equalizer v[ ]n associated with

the M-IFC-based algorithm for any SNR are summarized
as follows [10], [20].

Property M-1
With infinite equalizer length, the equalizer v[ ]n associ-
ated with J p q, is related to the MIMO linear MMSE
equalizer �MMSE ( )ω via

V Q( ) ( ) ( )ω ω ω= ⋅�MMSE
T (40)

where

{ }Q D D G D G( ) ~ ( ) ~ ( ), , , , , , ,ω α ω α ω= +−
1 1

1
p q p q p q q p q p q p (41)

in which α p q, is given by (27),

{ }[ { }~ ( ) ~ [ ; ] , ~ [ ; ] ,...,

~ [ ;

, , ,

,

G p q n p q n p q

n p q

g n g n

g n K

ω = � �

�

1 2

{ }]]
T

(42)

and
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*g n k g n g np q k

p
k

q
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−1
. (43)

Property M-2
As the noise w nm [ ] (the mth component of w[ ]n ) is
uncorrelated with w nj [ ] for all m j≠ , each component of
the optimum overall system g[ ]n associated with J p q, is
linear phase for infinite equalizer length, i.e.,

arg[ ( )] ,Gk k kω ωτ ξ π ω π= + − ≤ <
(44)

whereG g nk n k( ) { [ ]}ω = � , and τ k and ξ k are real constants.
As in the SISO case, properties M-1 and M-2 of the

equalizer v[ ]n associated with J p q, are valid for infinite
equalizer length, and they can still provide some per-
formance insights of this equalizer for finite L. Some
characteristics of v[ ]n for finite L can be found in [108]
and [115]. According to the connection established in
property M-1, the theoretical optimum v[ ]n associated
with J p q, can also be efficiently obtained from �MMSE ( )ω
given by (38) and (39) using FFT-based iterative algo-
rithm, as reported in [10] and [20].

Hybrid IFC Algorithm
The fact of (M-F1) implies that the hybrid IFC algorithm is
still applicable for the MIMO case, which is referred to as
the M-hybrid IFC algorithm [20] to distinguish between
the SISO case and the MIMO case. In other words, the opti-
mum νassociated with the M-IFC can be obtained by virtue
of the M-SEA in the first step (T1) when x[ ]n is real or when
x[ ]n is complex and p q= ≥2. Moreover, the M-hybrid IFC

algorithm can also be combined with
the MSC procedure for the estimation
of all the source signals.

Figure 12 demonstrates the efficacy
of the M-hybrid IFC algorithm, where
a two-input, two-output channel was
considered. The data x[ ]n were synthe-
sized for data length N =900and SNR
[defined by (15)] equal to 15 dB.
Thirty independent runs were per-
formed using the M-IFC-based algo-
rithm, M-SEA, and M-Hybrid IFC
algorithm (all with p q= =2) to obtain
the equalizer v[ ]n and the correspond-
ing 30 ISI(�)s. Figure 12 exhibits that
the M-IFC-based algorithm, M-SEA,
and M-hybrid IFC algorithm result in
similar ISI reduction after conver-
gence, while the M-hybrid IFC algo-
rithm converges faster than the other
two algorithms.

Applications of Blind
Equalization Algorithms
Numerous applications of the afore-
mentioned blind equalization algo-
rithms have been reported such as
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channel estimation, time delay estimation (TDE), SNR
boost by maximum ratio combining, beamforming for
source separation in multipath, and multiuser detection
for DS/CDMA systems, as illustrated below.

Blind Channel Estimation
Recalling the signal model given by (1) [or (9)], blind
channel estimation (BCE) is a fundamental problem in
communications that estimates the unknown channel
h n[ ] (or H[ ]n ) with only the channel output measure-
ments x n[ ] (or x[ ]n ). Applying the aforementioned blind
equalization algorithms to BCE can be performed
through the following two steps.
BCE Procedure:
� (T1) Process the given data χ[ ]n (associated with x n[ ]
or x[ ]n ) by the equalizer ν (associated with v n[ ] or v[ ]n )
using the aforementioned blind equalization algorithms.
� (T2) Obtain the channel estimate through the equal-
ized signal e n n[ ] [ ]= ν χT or the equalizer ν.

Different signal processing in (T2) leads to different
channel estimates, as described as follows.

SISO Channels
Assume that the data x n[ ]are generated from (1) and (2)
under assumptions (S-A1) through (S-A4). With the
source signal estimate $[ ] [ ]u n e n= (obtained by (T1) of the
BCE procedure), the channel h n[ ] can be simply esti-
mated via

{ }
{ }

$[ ]
[ ] $ [ ]

| $[ ]|

*

h i
E x n i u n

E u n
=

+
2

.
(45)

When SNR = ∞, the equalized signal e n u n[ ] [ ]= −α τ , giv-
ing rise to the channel estimate $[ ] [ ]h n h n= (except for a
scale factor and a time delay). When SNR is finite, how-
ever, the resultant $[ ]h n has bias due to the noise in x n[ ]and
the estimation error e nN [ ]in the input signal estimate $[ ]u n .

To provide noise-insensitive channel estimate $[ ]h n , Chi
and Feng [37], [15] proposed an iterative FFT-based al-
gorithm for (T2) of the BCE procedure that is based on
the properties of the designed equalizer presented earlier.
From (23) and (25), it follows that

| ( )| ( )
| ( )|
| ( )|

H S
V
Qxxω ω

ω
ω

∝ ⋅ ,
(46)

which can be used to provide the magnitude response es-
timate for h n[ ]. Since Q( )ω is a nonlinear function of the
overall system g n[ ] and thus the channel h n[ ], Chi and
Feng’s algorithm iteratively updates the estimate| $ ( )|H ω
using (46) with a chosen initial condition for | $ ( )|H ω
(e.g.,| $ ( )|H ω =1 ∀ω), where the power spectrum Sxx ( )ω
can be estimated using conventional power spectrum es-
timation methods [54], [56], [66], [122]. The phase re-
sponse of h n[ ], on the other hand, is estimated via
arg arg[ $ ( )] [ $( )]H Vω ω= − due to Property S-3. As a result,

the obtained estimate $[ ]h n is equivalent to h n[ ] (up to a
scale factor and a time delay). A remark regarding Chi and
Feng’s iterative FFT-based algorithm is as follows.
� (R5.1) Chi and Feng’s algorithm is never limited by
the length of $[ ]h n as long as the FFT length used is chosen
sufficiently large such that aliasing effects on the resultant
$[ ]h n are negligible.

Figure 13 shows some simulation results for estima-
tion of an ARMA(5,3) narrowband channel using (45)
and Chi and Feng’s FFT-based algorithm where SNR =
10 dB and data length N =8000. This figure reveals that
the channel estimate $[ ]h n obtained by Chi and Feng’s al-
gorithm (dashed line) is much closer to h n[ ] (solid line)
than using (45) (dotted line) for this case.

SIMO Channels
Consider that the data x[ ]n are generated from (9) with
assumptions (M-A1) through (M-A4). As the number of
source signals is equal to one (i.e., K =1), the data x[ ]n re-
duces to the SIMO model as follows:

x h w[ ] [ ] [ ] [ ]n i u n i n
i

= − +
=−∞

∞

∑ 1 1 [see (35)].
(47)

With the source signal estimate $ [ ] [ ]u n e n1 = (obtained
by (T1) of the BCE procedure), the channel h1 [ ]n (al-
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lowed to have common subchannel zeros and with no
need of the channel order information) can be simply esti-
mated via (36) with l =1. As the SNR is finite, the resul-
tant $ [ ]h1 n has bias as mentioned in the SISO case above.

Chi et al. [22] further proposed a noise-insensitive ap-
proach for (T2) of the BCE procedure that is based on the
properties of the designed equalizer presented previously.
Letting p q= and K =1 in (38) and (40) results in

{ }( )� �
�

�

* *

,

( ) [ ]
( ) ( )

{~ [ ; ]}
ω α

ω ω
= = ⋅n

xx

n p p

n
g n

h
V

1 1

T

(48)

where α >0 is a constant. Based on this relationship, Chi
et al. [22] proposed an SIMO-BCE criterion as well as an
iterative FFT-based SIMO-BCE algorithm for estimating
h1 [ ]n from the obtained M-IFC equalizer v[ ]n and the
cross-spectral matrix � xx ( )ω of x[ ]n .

Some simulation results for blind3 1× channel estimation
are shown in Figure 14. This figure displays the averaged
overall normalized mean square error (ONMSE) (defined as
the averaged mean square error of $ [ ]h1 n over all sub-
channels) of 100 independent runs using (36) and the
FFT-based SIMO-BCE algorithm using J 2 2, , respectively,
for different data lengths and SNRs [defined by (15)]. One
can see in Figure 14 that the FFT-based SIMO-BCE algo-
rithm performs better than that using (36).

MIMO Channels
Given x[ ]n modeled by (9)
with assumptions (M-A1)
through (M-A4), the esti-
mate of the MIMO channel
H[ ]n can be obtained using
the blind equalization algo-
rithms and the MSC proce-
dure [136]. As mentioned in
(T1) of the MSC procedure
(see Figure 11), one column
of H[ ]n can be estimated by
(36) in each stage. Therefore,
the whole MIMO system es-
timate can be obtained after
K stages of the MSC proce-
dure. Due to the same reason
as the SIMO case, the esti-
mate of each column of the
MIMO system has bias for fi-
nite SNR. In addition, the es-
timate of a column of H[ ]n
obtained at the kth stage may
suffer from severer estimation
error for larger kdue to the er-
ror propagation problem of
the MSC procedure. On the
other hand, possible im-
provements by the MIMO
extension of Chi et al.’s

FFT-based SIMO-BCE algorithm are currently under study.

Simultaneous Estimation of
Multiple Time Delays
The estimation of time delay(s) between received sig-
nals at two (or more) sensor locations is crucial in many
signal processing areas such as direction of arrival and
range estimation in multisensor arrays, sonar, radar,
biomedicine, and geophysics [59], [133], [73], [23].
Consider that a single source signal x nS [ ] modeled by
(2) is transmitted and received by M (≥2) spatially sep-
arated sensors. The received signal vector x[ ]n can be
modeled as

x x w[ ] [ ] [ ]
[ [ ], [ ],..., [ ]]

n n n
x n a x n d a x n dM M

= +
= − −

S

S S S
T

2 2 + w[ ]n
(49)

where a m and dm , m M=2 3, ,..., , are (real or complex)
gains and integer time delays, respectively, and w[ ]n is a
zero-mean Gaussian noise. The goal here is to estimate
all the ( )M −1 time delays { , ,..., }d d dM2 3 simulta-
neously from the measurements x[ ]n . Unlike the con-
ventional TDE approaches which estimate a single
time delay with the two associated sensor measure-
ments at a time, approaches processing all the measure-
ments simultaneously are insensitive to the distribution
of SNRs of sensors.
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Substituting (2) into (49) gives rise to the following
SIMO model:

x h w[ ] [ ] [ ] [ ]n i u n i n
i

= − +
=−∞

∞

∑
(50)

where u n[ ] is zero-mean, i.i.d. non-Gaussian and

h[ ] [ [ ], [ ],..., [ ]]n h n a h n d a h n dM M= − −2 2
T . (51)

Note that all the M sub-channels of the SIMO system
h[ ]n given by (51) have the same zeros. The time de-
lays { , ,..., }d d dM2 3 can be extracted from h[ ]n , which
can be estimated from the measurements x[ ]n ahead of
time by means of SIMO BCE algorithms. On the
other hand, in light of the specific form of h[ ]n given
by (51) and the fact that the phase information of h[ ]n
is sufficient for retrieving the multiple time delays, the
estimation of { , ,..., }d d dM2 3 can be quite efficient as il-
luminated below.

According to the relation given by (48), let

{ }ψ ω ψ ω ψ ω ψ ω ω ω( ) [ ( ), ( ),..., ( )] ( ) ( )= = −1 2 M xx
T Targ � V

|(52)
where V( )ω is the designed MISO equalizer associated
with the measurements x[ ]n and � xx ( )ω is the cross-
spectral matrix. Note that V( )ω and � xx ( )ω can be ob-
tained using the MIMO blind equalization algorithms
and the multichannel spectral estimator [66], respec-
tively. By letting

[ ]B( ) , ,...,( ( ) ( )) ( ( ) ( ))ω ψ ω ψ ω ψ ω ψ ω= − −1 2 1 1e ej j M
T

(53)

and

b[ ] [ [ ], [ ],..., [ ]] { ( )}n b n b n b nM n= = −
1 2

1T
� B ω , (54)

Chi et al. [22] showed that

| [ ]| [ ], , ,...,b n n d m Mm m= − =δ 2 3 (55)

and therefore the ( M −1) time delays can be simulta-
neously estimated as

{ }$ | [ ]| , , ,..., .d b n m Mm n m= =argmax 2 3 (56)

Some simulation results of Chi et al.’s TDE algorithm
for estimating two time delays d2 and d3 among three
separate sensors are shown in Table 3, where the noise
w[ ]n was assumed to be spatially correlated and tempo-
rally colored Gaussian. Table 3 lists the means, standard
deviations (STDs), and root mean square errors
(RMSEs) of 100 estimates of d2 and d3 . One can see,
from this table, that Chi et al.’s TDE algorithm performs
well even when the SNR is as low as −5 dB.
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Table 3. Means, standard deviations (STDs), and root mean square errors (RMSEs)
of the estimated time delays $d2 and $d3 using Chi et al.’s TDE algorithm [22].

True time delays: d2 2= and d3 11=

Data length N $dm

SNR = −5 dB SNR =0 dB

Mean STD RMSE Mean STD RMSE

1,024

$d2 2.0400 0.4000 0.4000 2.0000 0.0000 0.0000

$d3 10.9600 0.5109 0.5099 11.0000 0.0000 0.0000

2,048

$d2 2.0000 0.0000 0.0000 2.0000 0.0000 0.0000

$d3 11.0000 0.0000 0.0000 11.0000 0.0000 0.0000

4,096

$d2 2.0000 0.0000 0.0000 2.0000 0.0000 0.0000

$d3 11.0000 0.0000 0.0000 11.0000 0.0000 0.0000

The analytic results for these
algorithms provide a perspective
on the behavior of the designed
blind equalizers as well as the
relation to the nonblind linear
MMSE equalizer.



SNR Boost by Blind Maximum
Ratio Combining (BMRC)
Consider the following SIMO model:

x w[ ] [ ] [ ]n x n n= ⋅ +a S (57)

where x nS [ ] is the desired signal, a is an M ×1 unknown
column vector, and w[ ]n is the M ×1 vector noise. The
data { [ ], [ ],x n x n1 2 ..., [ ]}x nM (components of x[ ]n ) can
be thought of as the received signals from M diversities
(such as multiple paths or multiple sensors or antennas).
Then, the problem is to linearly combine these signals
into an estimate x nS [ ] (up to a scale factor) with maxi-
mum SNR.

Let us assume that the desired signal x nS [ ] is zero-
mean non-Gaussian and the noise w[ ]n is zero-mean
Gaussian, and they are statistically independent of each
other. The data x[ ]n is processed by an MISO equalizer
v[ ]n of length L =1 (L L1 2 0= = ), which also performs as
a linear combiner (or a beamformer in array signal pro-
cessing) producing the combiner output

( )e n n x n n[ ] [ ] [ ] [ ] [ ] [ ] [ ]= = +v x v v wT T
S

T0 0 0a . (58)

It has been shown [10], [18], [19], [32] that the opti-
mum combiner v[ ]0 obtained by the M-IFC or the M-hy-
brid IFC algorithm is given by

( )v R[ ] [ ] ,* *0 0 0
1

= ⋅ ≠
−

λ λw a (59)

that is identical to (up to a scale factor) the nonblind lin-
ear MMSE estimator of x nS [ ] with maximum SNR in
e n[ ] as follows:

{ }
{ }

{ }

SNR max

T
S

T

S
H

=

= ⋅

E x n

E n

E x n

|( [ ] ) [ ]|

| [ ] [ ]|

| [ ]|

v

v w

0

0

2

2

2

a

a ( [ ])R w 0 1− a. (60)

In other words, the one-tap equalizer v[ ]0 , with only spa-
tial processing involved, performs maximum ratio com-
bining of the signals { [ ], [ ],x n x n1 2 ..., [ ]}x nM with no
need of any information about a.

Blind Beamforming for Source
Separation in Multipath
Blind beamforming is an array signal processing problem
concerned with automatically shaping the antenna beam
pattern to receive signals of interest without need of prior
information of the array directional characteristics. Con-
sider the case of K independent source signals arriving as
planewaves at an M-element antenna array in the pres-
ence of multipath and additive noise. The received M ×1
signal vector is given by

x a w[ ] ( ) [ ] [ ]n u n n
k

K

m

M

km km k km

k

= − +
= =
∑ ∑

1 1

α θ τ
(61)

where α km , θ km , τ km , and Mk are, respectively, the fading
factor, direction of arrival, and propagation delay of the
mth path and the number of paths associated with the
source signal u nk [ ], a( )θ is the M ×1 steering vector, and
w[ ]n is a zero-mean Gaussian noise vector. The received
signal model x[ ]n given by (61) can be also expressed as

x As w[ ] [ ] [ ]n n n= + (62)

where s[ ]n is an � ×1 (� = + + +M M M K1 2 L ) col-
umn vector comprising all the source signals from differ-
ent paths u nk km[ ]− τ and A is an M × � matrix formed
by α km and a( )θ km . Note that the MIMO model given by
(62) is a special case of the MIMO model given by (9)
(H A[ ] [ ])n n= δ and the SIMO model given by (57) is also
a special case of the former. Next, let us present how to ex-
tract the K source signals u nk [ ] with a given set of mea-
surements x[ ]n , n =0, 1, ..., N −1.

Under the assumptions that M ≥ �, A has full col-
umn rank, and u nk [ ], k K=1 2, , ,K , are zero-mean,

i.i.d., non-Gaussian, Chi and Chen
[19] proposed a multistage source
separation (MSS) algorithm whose
signal processing procedure at each
stage is shown in Figure 15. Let
S u n m Mk k km k= − ={ [ ], , ,..., }τ 1 2 and
assume that $ [ ]u nk is the obtained
estimate at the ( )l −1 th stage. At the
lth stage, a source signal from one
path, denoted by e n u nk km[ ] [ ]≈ −α τ ,
is extracted using the M-hybrid IFC
algorithm (with equalizer length
L =1, i.e., only spatial processing is
involved) followed by classification
of e n[ ] to the associated Sk (i.e.,
e n Sk[ ]∈ ) and the time delay estima-
tion of τ km by crosscorrelation of
e n[ ] and $ [ ]u nk , and then BMRC of
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$ [ ]u nk and e n km[ ]+ τ is performed to
update $ [ ]u nk . Meanwhile, cancella-
tion of the contribution of the ex-
tracted source signal e n[ ] from the
received signal x[ ]n is performed
(see (T2) of the MSC procedure).

Some simulation results for separat-
ing three sources [source 1 is 16-QAM
signal, the other two sources are
4-QAM signals and the numbers of
paths ( , , ) ( , , )M M M1 2 3 2 3 1= ] using
Chi and Chen’s MSS algorithm with a
ten-element sensor array for N =1 024,
and SNR =20 dB are shown in Figure
16. One can see from Figure 16 that all
the three sources were separated suc-
cessfully, and that sources 1 and 2 (with
multipath diversity) are estimated
more accurately than source 3 (without
multipath diversity).

Blind Multiuser Detection
for DS/CDMA Systems
in Multipath
Consider a K-user asynchronous
DS/CDMA communication sys-
tem in the presence of multipath
where the source signals associ-
ated with the active users arrive as
planewaves at a ~J -element an-
tenna array. The received baseband
continuous-time ~J ×1 signal vector
x( ) [ ( ), ( ),..., ( )]~t x t x t x t

J
= 1 2

T can
be expressed as [144]

x a w( ) ( ) [ ] ( )t A u n s t nT
k

K

n m

M

km km k k km

k

= − − +
= =−∞

∞

=
∑ ∑ ∑

1 1

θ τ ( )t

(63)
where θ km , Akm , τ km , u nk [ ], and Mk are, respectively, the
direction of arrival, amplitude, and propagation delay of
the mth path, symbol sequence, and number of propaga-
tion paths associated with user k, a( )θ is the ~J ×1steering
vector, w( ) [ ( ), ( ),..., ( )]~t w t w t w t

J
= 1 2

T is a zero-mean
white Gaussian noise vector, T is the symbol period, and
s tk ( ) is the signature waveform of unit energy associated
with user k. In particular,

s t
T

c n p t nTk k
n

c( ) [ ] ( )= −
=

−

∑1
0

1�

(64)

where � is the processing gain, T Tc = / � is the chip pe-
riod, c nk [ ], n = −0 1 1, ,...,� is a binary pseudo random se-
quence of { , }+ −1 1 , and p t( ) is the chip waveform [e.g.,
rectangular chip pulse of magnitude equal to unity within
the interval t Tc∈[ , )0 ].

The objective of the blind multiuser detection is either to
estimate the symbol sequence of the desired user (e.g.,
u n1 [ ]) or to estimate all the symbol sequences
( [ ], [ ],..., [ ])u n u n u nK1 2 with only the received signal x( )t .
Recently, there have been many methods reported for
multiuser detection of the DS/CDMA system either by tem-
poral processing [18], [20], [21], [68], [130]-[132], [141],
[142], [147] or by space-time processing [87], [98], [105].
Due to the space limit, we will only introduce one of these
methods to exhibit how the M-hybrid IFC algorithm can be
applied to multiuser detection in wireless communications.

The continuous-time model x( )t needs to be trans-
formed into an equivalent discrete-time MIMO model first
for applying the aforementioned MIMO blind equalization
algorithms to blind multiuser detection. As will be illus-
trated below, two discrete-time MIMO models associated
with antenna j (x j n( ) [ ]1 and x j n( ) [ ]2 ) can be formed
through signature waveform matched filtering of x( )t , and
one (x j n( ) [ ]3 ) through chip waveform matched filtering of
x( )t . With the established discrete-time MIMO models, Chi
and Chen [18], [20], [21] proposed a blind multistage
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multiuser detection (BMMD) algo-
rithm [18], [20], [21] shown in Figure
17 for estimation of the desired symbol
sequence (e.g., u n1 [ ] in Figure 17).
Specifically, at each stage, the BMMD
algorithm includes blind equalization
using the M-hybrid IFC algorithm to
extract one user’s symbol sequence and
estimate the corresponding channel,
user identification (UID) with the esti-
mated channel, and signal cancellation.
The UID associated with x j n( ) [ ]3 is
based on a detection criterion involv-
ing cross correlation of the estimated
channel with the active users’ spreading
codes, whereas the UID associated
with x j n( ) [ ]1 and x j n( ) [ ]2 exploits some
inherent characteristics of the discrete-
time MIMO channels, respectively.
Furthermore, when J (≤ ~J ) antennas
are used, a straightforward algorithm,
called a BMMD-BMRC( J) algorithm,
is depicted in Figure 18 which com-
prises J parallel signal processing pro-
cedure of Chi and Chen’s BMMD
algorithm (with only temporal pro-
cessing involved) followed by appro-
priate compensation of relative time
delays, and a BMRC procedure over J
antennas (with only spatial processing
involved) for obtaining the maximum
SNR estimate of the desired user’s
symbol sequence. Note that the
BMMD-BMRC(1) algorithm is ex-
actly the same as Chi and Chen’s
BMMD algorithm. Next, let us present
the formulation of the three dis-
crete-time MIMO models and the as-
sociated simulation results with some
notations defined as follows:
� x njkm [ ]: s ignature waveform
matched filter output (sampled at
symbol rate) synchronized with the
mth path of the kth user at antenna j
(see Figure 19)
� x nj [ ]: chip waveform matched fil-
ter output (sampled at chip rate) at
antenna j (see Figure 22)
� x jk n[ ]: [ [ ], [ ],...,x n x njk jk1 2
x njk k�

[ ]] T (1≤ ≤�k kM ).

Signature Waveform Matched Filtering
Based MIMO Models [10], [18],  [20]
By concatenation of x jk n[ ],
k K=1 2, ,..., each comprising �k
matched filter outputs as shown in
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� 17. Signal processing procedure of each stage of Chi and Chen’s BMMD algorithm us-
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Figure 19, a discrete-time MIMO model (Model I) can be
established as

[ ]x x x x
H u

j j j jK

j

n n n n
n n

( )

( )

[ ] [ ], [ ],..., [ ]

[ ]* [

1
1 2

1

=
=

T T T T

] [ ]( )+ w j n1

(65)

where H h hj j jn n n( ) ( ) ( )[ ] [ [ ], [ ],...,1
1
1

2
1= h jK n( ) [ ]]1 is a

( )∑ ×=k
K

k K1 � system, and w j n( ) [ ]1 is a zero-mean spa-
tially correlated and temporally colored Gaussian noise
vector due to w( )t .

Another MIMO model can be established by concate-
nation of the signals obtained by BMRC over each
x jk n k K[ ], , ,...,=1 2 as shown in Figure 20. The BMRC
method using the M-hybrid IFC algorithm presented ear-
lier can be employed to combine the signals from the �k
paths for each user as follows

x n n k Kjk jk jk[ ] [ ], , ,...,= =v xT 1 2 (66)

where v jk is the weight vector of the combiner. Then one
can form the following MIMO model (Model II):

x
H u

j j j jK

j

n x n x n x n
n n

( )

( )

[ ] [ [ ], [ ],..., [ ]]
[ ]* [ ]

2
1 2
2

=
=

T

+ w j n( ) [ ]2

(67)

where H h h hj j j jKn n n n( ) ( ) ( ) ( )[ ] [ [ ], [ ],..., [ ]]2
1
2

2
2 2= is a K K×

system and w j n( ) [ ]2 is a zero-mean spatially correlated
and temporally colored Gaussian noise vector. Note
that Model II can be thought of as a dimension reduced
version of Model I and that x xj jn n( ) ( )[ ] [ ]2 1= when
�k k= ∀1 .

Next, let us show some simulation results using the pro-
posed BMMD-BMRC( J) algorithm with x j n( ) [ ]1 (Model
I) and x j n( ) [ ]2 (Model II) for a case of a five-user ( )K =5
asynchronous DS/CDMA system with three paths for each
user ( Mk =3∀k). There were 30 independent runs for data
length N =2 000, performed with Gold codes of length
� =31 for users’ spreading codes c nk [ ]. The symbol se-
quences u nk [ ], k =1 2 5, ,..., were synthesized as equally
probable binary random sequences whose amplitudes were
adjusted so that the signal energies in the discrete-time sig-
nal [( [ ]) ,( [ ]) ,...,( [ ]) ]( ) ( )

~
( )x x x1

1
2
1 1n n n

J

T T T T satisfying

{ }� �k k kE n u n k= = =|| [ ]* [ ]|| , ,...,( )h 1 2 2 5 (68)

where h k n( ) [ ]1 denotes the kth column of

( ) ( ) ( )H H H H( ) ( ) ( )
~
( )[ ] [ ] , [ ] ,..., [ ]1

1
1

2
1 1n n n n

J
= 





T T T T

.

The averaged output signal-to-interference-plus-noise
ratios (SINRs) of user 1 (the weak user) are shown in Fig-
ure 21 associated with Models I and II for J J= =~ 1[18],
and Figure 22 associated with Model II for ~J = 4 and
J =1, 2, and 4. One can observe, from Figure 21, that the
performance of the BMMD-BMRC(1) algorithm (i.e.,

Chi and Chen’s BMMD algorithm) is quite close to that
of the nonblind linear MMSE equalizer and better for
larger �k (i.e., more multipath diversity). The similar
performance for the near-far ratio (NFR), defined as
NFR=� �/ 1 , equal to 0 dB and 9 dB also implies that the
BMMD-BMRC(1) algorithm is near-far resistant. One
can also observe, from Figure 22, that the performance of
the BMMD-BMRC( J) algorithm is also close to that of
the nonblind linear MMSE equalizer, and that the output
SINR of user 1 is higher for larger J (i.e., more antennas
or spatial diversity used).

Chip Waveform Matched Filtering
Based MIMO Model [10], [21]
As shown in Figure 23, a discrete-time MIMO model
(Model III) by polyphase decomposition [101], [130]-
[132] of x nj [ ] is expressed as

x
H

j j j j

j

n x n x n x n
n

( )

( )

[ ] [ [ ], [ ],..., [ ]]
[

3

3

1 1= + + −
=

� � � �
T

]* [ ] [ ]( )u wn nj+ 3

(69)

where H h h hj j j jKn n n n( ) ( ) ( ) ( )[ ] [ [ ], [ ],..., [ ]]3
1
3

2
3 3= is a � × K

system and w j n( ) [ ]3 is a white Gaussian noise vector. In
comparison with Models I and II based on signature
waveform matched filtering, the formulation of Model
III dose not require synchronization with user’s paths but
may result in lower SNR for the desired user in the ob-
tained discrete-time signal x j n( ) [ ]3 .

Let us present some simulation results using the pro-
posed BMMD-BMRC( J) algorithm associated with
Model III for a case of a six-user (K =6) asynchronous
DS/CDMA system with three paths for each user ( Mk =3
∀k). Thirty independent runs for data length N =2 500,
were performed with Gold codes of length � =31 for us-
ers ’ spreading codes. The symbol sequences
u n kk [ ], , ,...,=1 2 6 were assumed to be equally probable bi-
nary random sequences of { , }+ −1 1 with

{ }� �k k kE n u n k= = =|| [ ]* [ ]|| , ,...,( )h 3 2 2 6 (70)

where h k n( ) [ ]3 denotes the kth column of
H H H H( ) ( ) ( )

~
( )[ ] [( [ ]) ,( [ ]) ,...,( [ ]) ]3

1
3

2
3 3n n n n

J
= T T T T .

The output SINRs for J J= =~ 1are shown in Figure 24
together with those obtained using the blind minimum
variance (MV) receiver [21], [132], and those for ~J = 4
and J =1, 2, and 4 are shown in Figure 25. One can ob-
serve, from Figure 24, that the BMMD-BMRC(1) algo-
rithm performs much better than the MV receiver for
NFR=0 dB with larger performance difference for higher
input SNR, whereas for NFR =10 dB the former outper-
forms the latter only by about 1 ~ 3 dB. Moreover, the per-
formance of the BMMD-BMRC(1) algorithm is close to
that of the nonblind linear MMSE equalizer for NFR =0
dB (i.e., the near-far problem is not existent), but the latter
is superior to the former for NFR =10 dB (high NFR).
On the other hand, from Figure 25, one can see that the
performance of the BMMD-BMRC( J) algorithm as well
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� 21. Averaged output SINR of user 1 for (a) NFR = 0 dB and (b)
NFR = 9 dB, respectively, associated with the nonblind linear
MMSE equalizer for �k k= ∀1 (dashed lines) and �k k= ∀3
(solid lines), the BMMD-BMRC(1) algorithm with Model I used
for �k k= ∀1 ( ) and �k k= ∀3 (×) and the BMMD-BMRC(1)
algorithm with Model II used for �k k= ∀3 ( ) [18].
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� 22. Averaged output SINR of user 1 for (a) NFR = 0 dB and (b)
NFR = 9 dB, respectively, associated with the BMMD-BMRC(J)
algorithm with Model II used for single antenna ( ), two an-
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nas (dashed lines), and four antennas (solid lines), where
�k = 3 ∀k was used for all the results.
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as the nonblind linear MMSE equalizer can be significantly
improved by using more antennas, even though the latter
is superior to the former for high NFR. The performance
degradation of the BMMD-BMRC( J) algorithm for high
NFR (see Figures 24(b) and 25(b)) results from the error
propagation in the MSC procedure because of more stages
in the MSC procedure performed in the BMMD algo-
rithm. Specifically, we found that antenna 2 performs sig-
nificantly worse than the other three antennas for high
NFR, leading to less contribution to
performance improvement as shown
in Figure 25(b).

Conclusions
We have reviewed several widely
known HOS-based blind equalization
algorithms, i.e., the IFC-based algo-
rithm, SEA, and CMA, along with
their relations and performance for
both the SISO and MIMO cases,
which can be mapped to the sin-
gle-user and multiuser (wired or wire-
less) communication systems,
respectively. The analytic results for
these algorithms provide a perspective
on the behavior of the designed blind
equalizers as well as the relation to the
nonblind linear MMSE equalizer.
Some possible improvements and ap-
plications of these blind equalization
algorithms (including BCE, TDE,
BMRC, blind beamforming for source
separation in multipath, and blind
multiuser detection of the DS/CDMA
systems) were presented. Note that a
blind multiuser detection algorithm
with multiple antennas, also known as
a blind space-time multiuser detection
algorithm, reduces to a blind beam-
forming algorithm (needed by smart
antennas) when the lengths of both the
associated discrete-time MIMO chan-
nel and the designed MISO equalizer
are equal to one. Also note that the re-
viewed blind equalization algorithms
are all formulated in batch processing
(block processing) forms that could be
implemented by real-time DSP proces-
sors with sufficient computation
power or field-programmable gate ar-
rays. This may be a foreseeable reality
in the near future, particularly for the
software-defined radio with a pro-
grammable module of implementing
blind multiuser detection algorithms.

Notice, however, that all the reviewed algorithms for
the SISO case are based on the linear time-invariance as-
sumption of the channels and the assumption that both the
channel and its inverse system are stable [see (S-C1)],
namely, the channel has no zeros on the unit circle. In prac-
tical applications, the locations of the channel’s zeros are al-
most out of the designer’s control. Accordingly, Feng and
Chi [39] have shown that the IFC-based algorithm [and
therefore the SEA according to (S-F1)] is still applicable
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for finite SNR regardless of the channel having zeros on
the unit circle or not. As for the MIMO case, whether simi-
lar results are also applicable to the M-IFC-based algo-
rithm and M-SEA needs further studies though they seem
to be. On the other hand, due to the “mobilities” of users
and the wireless characteristics, the channel between trans-
mitter and receiver is naturally time varying. Fast real-time
batch or adaptive signal processing with low complexity
for blind channel estimation and equalization is still chal-
lenging research. Moreover, for practical utilization of the
blind equalization algorithms in wireless communication
systems, the available data length (such as the number of
samples in a data frame) and the allowed equalizer length
(or the number of equalizer coefficients) are the key points
to be taken into account. Therefore, the effects of finite
data length, finite equalizer length, and number of users on
the performance of the blind equalization algorithms re-
viewed in this article also need to be further studied.
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