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Abstract—Consider a downlink multicast scenario where a base
station equipped with multiple antennas wishes to simultaneously
broadcast a number of signals to some given groups of users
over a common bandwidth. The goal of the base station is to
select appropriate beamforming vectors so as to maximize the
minimum signal-to-interference-plus-noise ratio (SINR) among
all users under a power budget constraint. Since this max-min-fair
transmit beamforming problem is NP-hard in general, a ran-
domized polynomial time approximation approach based on
semidefinite relaxation (SDR) has been proposed recently where
excellent performance in both simulated and measured wireless
channels has been reported. This paper shows that the SDR-based
approach can provide at least an �� � approximation to the
optimum solution, where is the total number of users. This
estimate implies that the SDR solution achieves an SINR that is
at most ���� � ���� dB away from the highest possible
value. The existence of such a data independent bound certifies
the worst-case approximation quality of the SDR algorithm for
any problem instance and any number of transmit antennas. For
real-valued problems, the corresponding approximation ratio is
shown to be �� ��, while the SINR loss due to SDR approxi-
mation is at most �� ��� � ���� dB.

Index Terms—Approximation bound, multicast, semidefinite re-
laxation (SDR), transmit beamforming.

I. INTRODUCTION

T RADITIONAL methods for broadcasting rely on a single
antenna to radiate signal power isotropically in space, and

use nonoverlapping spectrum to separate user signals. Recently,
transmit beamforming for multicast has become a subject of
great interest [1]–[8]. In this approach, a transmitter (e.g., a base
station) employs multiple antennas to form appropriate spatial
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beampatterns and uses them to simultaneously broadcast mul-
tiple signals over a common frequency band. The beampatterns
are carefully designed to reduce co-channel interference be-
tween different groups of receivers so as to achieve a desired
quality of service (QoS) at each receiver. In this manner, the
base station can communicate with multiple receivers simulta-
neously over a common frequency band, achieving higher spec-
trum efficiency.

For the max-min-fair transmit beamformer [1], [8]–[10], the
beampatterns are designed such that the minimum signal-to-in-
terference-plus-noise ratio (SINR) at receivers is maximized
under a power constraint at the base station. The max-min-fair
transmit beamforming problem is nonconvex and has been
shown [1], [8] to be NP-hard in general. Thus, we are naturally
led to high-quality approximate solutions for this problem
which are efficiently computable in polynomial time. In
the single-group multicast scenario where SINR reduces to
signal-to-noise ratio (SNR), an approximation method based
on iterative diagonalization was proposed in [4]. This method,
however, requires the assumption that the number of receivers
is no more than the number of transmit antennas. Moreover,
this method cannot guarantee the quality of the approximate
solutions nor an upper bound on its computational complexity.
An alternative convex relaxation approach was introduced
in [8] for this problem. It was found that a good approxi-
mate solution can be obtained by a semidefinite relaxation
(SDR)-based approach. The latter is a powerful technique to
tackle nonconvex optimization problems and has been success-
fully applied to several other signal processing problems; see
[11]–[13] and references therein. The SDR approach requires
solving a semidefinite program (SDP) followed by a simple
randomization procedure to obtain a feasible solution, all of
which can be completed in polynomial time. It has been proven
in [14] that, the SDR-based approach provides a worst-case

approximation quality for the single-group multicast
problem, where denotes the total number of receivers.

In the paper, we focus on the multigroup multicast transmit
beamforming problem and study the worst-case performance of
the associated SDR approach. The SDR approach for this multi-
group multicast scenario was proposed in [1], where extensive
simulations were carried out to demonstrate the effectiveness of
this approach. Unlike the single group multicast case which in-
volves the max-min of a set of convex quadratic functions (de-
fined by SNR), the multigroup multicast formulation involves
max-min of a set of fractional convex quadratic functions, with
denominators signifying the interference between groups. The
presence of the interference term significantly complicates the
performance analysis of the SDR approach. In the paper, we
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present an analysis to show that the SDR-based approach can
provide at least an approximation to the otherwise dif-
ficult-to-compute globally maximum min-SINR, where de-
notes the total number of receivers among all groups. This re-
sult implies that the SDR solution achieves a min-SINR that
is at most dB away from the highest possible
value. The existence of such a data independent bound certifies
the worst-case approximation quality achievable by the SDR al-
gorithm for any problem instance and any number of transmit
antennas. For real-valued problems, we also show that the corre-
sponding SDR-based approach can achieve at least an
approximation quality, while the SINR loss due to SDR approx-
imation is at most dB. Some simulation results
are presented to illustrate the empirical worst-case and average
approximation qualities of the SDR-based approach.

II. MULTICAST TRANSMIT BEAMFORMING VIA

SEMIDEFINITE RELAXATION

Consider a scenario where a base station equipped with
transmit antennas broadcasts independent data

streams to single-antenna receivers over a
common frequency band. Each of the receivers belongs to one
of the groups, with receivers from the same group interested
in a common data stream. Let and denote the
broadcasting data stream and the transmit weight vector (or
beamforming vector) for the th group, respectively. The trans-
mitted signal at the base station is given by .
Assume that , , are statistically independent
and are temporally white with zero mean and unit variance.
Let denote the channel vector between the base
station and the th receiver in group . The SINR of the th
receiver in group is given by

SINR

where is the channel correlation matrix and
is the noise variance.

The idea of transmit beamforming is to design the beam-
forming weight vectors such that each receiver can retrieve
the signal of interest with the desired quality of service (QoS).
The QoS is usually measured in terms of SINR. To this end,
there are two criteria widely considered in the literature [1]: The
QoS-guaranteed transmit beamformer and the max-min-fair
transmit beamformer. The QoS-guaranteed transmit beam-
forming problem is to minimize the transmit power at the base
station while making sure the SINR in each receiver is no
smaller than some specified value. Mathematically, it can be
written as the following optimization problem

(1a)

subject to s.t.

(1b)

where is the target SINR value for the th receiver
in group . The difficulty of the QoS-guaranteed beamforming
problem is that, when the target SINR values are set too

high or when the number of receivers is much greater than
the number of transmit antennas , the problem easily becomes
infeasible [15]. By contrast, the max-min-fair transmit beam-
forming problem, which maximizes the minimum SINR value
among receivers subject to the power constraint at the
base station, is always feasible. It can be mathematically formu-
lated as follows:

(2a)

s.t. (2b)

It can be seen that both problem (1) and problem (2) are
nonconvex optimization problems. Moreover, they have been
proven [1] to be NP-hard in general.1 2 Therefore, an approx-
imation method for obtaining a good approximate solution in
polynomial time is desired. In [1], Karipidis et al. proposed an
approximation method based on SDR. To illustrate this, we de-
fine and rewrite problem (2) as

(3a)

s.t. (3b)

positive semidefinite (3c)

rank (3d)

where stands for the trace of a matrix. By dropping the
only nonconvex constraint , we obtain the relaxation
counterpart of problem (2) as

(4a)

s.t. (4b)

(4c)

Note that since the feasible set of problem (3) is
a subset of that of problem (4). Instead of being NP-hard
as problem (2), problem (4) is a quasi-convex optimization
problem where the global optimum can be obtained in poly-
nomial time by the bisection algorithm [17] via a sequence
of semidefinite feasibility subproblems. The SDR-based ap-
proximation method proposed in [1] consists of two stages.
In the first stage, problem (4) is solved, while in the second
stage, a randomization/multigroup-power-control procedure is
applied to the optimal solution of problem (4) for obtaining an
approximate solution of problem (2). We refer readers to [1]
for further details. In Table I, we present an SDR procedure
without involving multigroup power control. Theoretically, the
size of random samples can be chosen as a polynomial of

in order to guarantee a high-quality approximate solution.

1A problem is called NP-hard if and only if the problem is at least as compu-
tationally difficult as a known NP-complete problem. Readers may refer to [16]
for details about NP-hard problems.

2A special scenario for which problem (2) can be solved in polynomial time
is investigated in [5].
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TABLE I
SDR PROCEDURE TO SOLVE PROBLEM

However, in practice, a choice of suffices. Ac-
cording to [1], the SDR algorithm for (2) in Table I can deliver
excellent performance in both simulated and measured wireless
channels.

Similarly, the QoS-guaranteed problem in (1) can be relaxed
to

(5a)

s.t. (5b)

(5c)

and an SDR procedure [1] can be applied for obtaining an ap-
proximate solution of problem (1).

III. APPROXIMATION RATIO

Consider the NP-hard max-min-fair transmit beamforming
problem (2), as well as its SDR problem (4). Let denote the
objective value of the approximate solutions of (2) that is gen-
erated by the randomized polynomial time SDR procedure in
Table I. Then the approximation quality of the SDR solution
can be measured by the ratio of

Clearly, the approximation ratio is always greater than or equal
to 1. If for some particular problem instance of (2) and
(4), then there is no relaxation gap between (2) and (4), and
the corresponding nonconvex problem (2) has been solved to
global optimality. If , then the SDR approach generates
an approximate solution that is within fraction to the
optimum minimum SINR . Empirically, it has been observed
[1] that the approximation ratio is quite small (in the range
of 1 3) and grows linearly with the number of receivers. The
goal of this paper is to theoretically estimate the approximation
ratio for the max-min-fair transmit beamforming problem (2).
Specifically, we are interested in the worst-case bound which
is independent of the channel correlation matrices , noise

variance , the number of transmit antennas , and the power
budget :

(6)

From its definition, the value of directly translates into a
guaranteed bound on the SINR performance loss due to SDR
approximation: The SINR gap to the maximum achievable is
at most in dB. In general, we cannot compute ex-
plicitly due to our inability to compute the quantity in (6)
which represents the optimum value of the NP-hard problem
(2). Nonetheless, we can provide a tight estimate of the order of

, as is done in the ensuing analysis.
There has been no prior study of approximation ratios for

the multicast transmit beamforming problem under the max-min
fairness criterion. All existing analyses have focussed on QoS-
guaranteed formulation [14], [18]. However, it is possible to
translate some of the existing results to the max-min fairness
formulation (2), as we show next.

A. Unicast Scenario:

The unicast situation corresponds to the case of each group
having exactly one user. Consequently, the multicast transmit
beamforming problem (2) becomes the conventional multiuser
transmit beamforming problem [9], [10], [18]–[21]:

(7a)

s.t. (7b)

and its relaxation counterpart is given by

(8a)

s.t. (8b)

(8c)

For this special case, one can show that problem (8) is actually
equivalent to problem (7), and hence the corresponding approx-
imation ratio . This result can be proved by the facts
that the max-min-fair problems (7) and (8) are equivalent to the
QoS-guaranteed problems (1) and (5) with equal to and

, respectively, and the approximation ratio of the QoS-guar-
anteed problem in the unicast scenario is equal to one [18].

B. Single Group Multicast Scenario:

In the special case of and , the multigroup
broadcasting problem reduces to the single group broadcasting
problem as studied in [8]. At each receiver, only the additive
noise is present which degrades the signal quality. Thus, the
QoS is measured by the SNR instead of the SINR. The max-
min-fair transmit beamforming problem in this case reduces to

(9a)

s.t. (9b)
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and its relaxation counterpart is given by

(10a)

s.t. (10b)

(10c)

It is easy to verify [8] that, problems (9) and (10) are equivalent
up to a scalar to the following two problems, respectively

(11a)

s.t. (11b)

(12a)

s.t. (12b)

(12c)

The approximation bound between problems (11) and (12) has
been analyzed in [14] which shows that the ratio for

, and for ,

(13)

The bound in (13) indicates that the SDR-based method can
have a worst-case approximation to the optimum so-
lution of (9) for any channel correlation matrices , noise
variance , and the number of transmit antennas . More-
over, a rank-1 approximate solution can be computed in a ran-
domized polynomial time (by a simple randomization proce-
dure) which achieves a minimum SNR of that is within a
constant factor of to [14]. Thus, the worst-case ap-
proximation ratio is bounded by .

IV. SDR APPROXIMATION RATIO FOR GENERAL

MULTIGROUP MULTICAST

Consider the general multigroup multicast case with
and for all . The corresponding max-min-
fair transmit beamforming problem (2) can be written in a more
compact form

(14a)

s.t. (14b)

where , and , for
. This can be seen by defining

with , and by letting and be block diagonal
matrices defined by channel correlation matrices and noise
variance . When , are general positive semidefinite
matrices, problem (14) serves as a generalization of problem
(2). In what follows, we derive SDR approximation bounds for
the generalized formulation (14). Clearly, such bounds can be
directly applied to problem (2).

Following the same procedure as outlined in Section II, the
SDR of problem (14) can be written as

(15a)

s.t. (15b)

(15c)

The nonconvex fractional quadratic optimization problem (14)
can be approximated using the SDR procedure in Table II. We

TABLE II
SDR PROCEDURE TO SOLVE PROBLEM (14)

can establish an upper bound on the worst-case approximation
ratio for solving problem (14) by this SDR procedure.

Theorem 1: Let and be obtained by applying the poly-
nomial time SDR procedure to problem (14) and its relaxation
problem (15). Then

(17)

holds with probability at least .
Theorem 1 implies that the SDR-based approach has a worst-

case approximation to the optimum solution of . It
also implies that the SDR-based approach can have at least an

approximation to the optimum solution of the max-
min-fair transmit beamforming problem in (2). The following
example demonstrates that this worst-case approximation ratio
estimate in (17) is tight up to a constant factor.

Example 1: Consider the special instance of (14) that is orig-
inally considered in [14]. Let , where

in which , , (thus ),
and with . Let

. Without loss of generality,
assume that where

and . It has been shown in [14] that there exists
an index such that

(18)

By (14) and (18), one can have

(19)

A feasible point of (15) can be
which leads to

(20)
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Combining (19) and (20) gives

(21)

which indicates that the upper bound given by (17) can be at-
tained within a constant factor. Equation (21) also serves as a
theoretical lower bound for the value of .

Interestingly, when the data matrices and are real-
valued and the beamforming vector is restricted to a real
vector, the corresponding worst-case approximation ratio
deteriorates to . One of the possible applications for this
real-valued model may be found in the pulse-based ultra-wide-
band system [22]–[24] where the transmitted baseband pulses as
well as the received signal model are real valued. For theoret-
ical completeness, we provide in Appendix II an approximation
ratio analysis for the real-valued formulations of problems (14)
and (15). The obtained approximation bound is given by

(22)

with probability at least . The upper bound in (22)
can also be shown to be tight (up to a constant scalar) via an
example similar to Example 1. See Example 2 in [14] for details.
Next, let us present the detailed proof of Theorem 1.

A. Proof of Theorem 1

The proof of Theorem 1 consists of a probabilistic analysis of
the event that the randomized polynomial time SDR procedure
in Table II fails to generate a good approximate solution. We
will first establish two lemmas which are needed in the proof of
Theorem 1. We first bound the rank of the optimal solution of
the SDP relaxation (15).

Lemma 1: There exists an optimum solution of problem
(15) whose rank is upper bounded by .

Proof: It is easy to show that problem (15) is equivalent to
the following optimization problem:

(23a)

s.t. (23b)

(23c)

Since problem (23) is a complex-valued SDP, it has been shown
[25] that there exists an optimum solution with rank

.
We also need the following key lemma to bound the prob-

ability that a random fractional quadratic quantity falls in the
small neighborhood of the origin.

Lemma 2: Let and be two Hermitian
positive semidefinite matrices ( and , ), and

be a random vector with complex Gaussian distribution
. Then

(24)

where rank rank ,
and . The proof

of Lemma 2 is presented in Appendix I. With Lemmas 1 to 2,
we can prove Theorem 1.

Proof of theorem 1: By Lemma 1, for there exists
a solution of problem (15) with rank . Hence, for

, . This rank-1 solution, which is feasible to
(14) and has an objective value equal to , can always be
obtained via a matrix decomposition procedure [25]. Therefore,

for . To obtain (17) for , we need prove
that

(25)

for and , where is a random
vector with complex Gaussian distribution . If (25)
is true, then there exists a realization of which satisfies

and

Let which then is feasible for problem (14) (i.e.,

) and satisfies

(26)

which is part of (17).
We now prove (25). Note that the left-hand side (LHS) of (25)

can be lower bounded as follows:

(by (15))

since

by Markov inequality

(27)

where the last step in (27) is due to Lemma 2. Because
by Lemma 1, by choosing and one
can show that for ,

(28)
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Fig. 1. Empirical approximation ratios for � � ��, � � �� and full rank� for (a) complex-valued problem and (b) real-valued problem.

Hence, for and ,

(29)

which establishes (25). This further implies that (26) holds.
To complete the proof, let be generated by the SDR pro-

cedure for solving (14) in Table II. Then, for each , it follows
from (16), (26) and (29) that satisfies

(30)

with probability at least 0.0607. If one generates indepen-
dent realizations of from the distribution , then it
is at least with probability3 to obtain one

which can achieve the approximation quality in (30). Since
, it follows that

(31)

holds with probability at least . Theorem 1 is
proved.

V. SIMULATIONS AND DISCUSSIONS

In this section we present simulation results which help illus-
trate the effectiveness of the approximation bounds in (17) and
(22). We generate 1000 random problem instances of (14) and
its real-valued counterpart (A19). For each problem instance,
the positive semidefinite matrices and were generated as
follows [26]: For full rank , we set

(32)

3For � � ��, this probability is 0.9563.

Fig. 2. Histogram of empirical approximation ratios for � � ��, � � ��,
� � �� and full rank � .

where in which were ran-
domly generated, and is a unitary matrix obtained
by QR factorization of a randomly generated complex
matrix. For rank-1 , all for while was
randomly generated. Matrices were generated through the
same procedure as full rank . For real-valued and ,
we replaced in (32) with an orthonormal matrix obtained by
QR factorization of a randomly generated real-valued ma-
trix. The problems (15) and (A20) [the real-valued counterpart
of (15)] were solved by the bisection algorithm [17] wherein
SeDuMi [27] was employed to handle the associated semidefi-
nite feasibility problems. The randomized polynomial time SDR
procedure in Table II was tested with randomization
candidates generated for each problem instance. Because the
empirical approximation ratio is greater than or equal to
the true ratio , the former was used to ap-
proximate the latter. For the real-valued problem, the associated
SDR procedure is the same as the complex-valued problem, but
random vector were drawn from the real Gaussian distribution

.
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Fig. 3. Empirical approximation ratios for � � ��, � � �� and rank one� for (a) complex-valued problem and (b) real-valued problem.

Simulation Example 1: We first consider the results when
matrices are full rank. Fig. 1 shows the empirical approx-
imation ratios for and , and Fig. 2 shows
the associated histogram for . The symbols “ ”
(“ ”) denote the maximum (minimum) value of for
1000 problem instances, and the symbols “ ” represent the
average value. One can see from these figures that the empirical
approximation ratios get larger when increases, and the
approximation ratios of complex-valued problems are smaller
than those of real-valued problems. It can also be seen from
these figures that in the average sense the SDR-based approx-
imation method provides very good approximation qualities
( for complex-valued
problems).

Simulation Example 2: This example shows the results when
matrices are rank one. Fig. 3 illustrates the empirical approx-
imation ratios for and , while Fig. 4 shows the
associated histogram for . By comparing Figs. 1 and 3,
one can observe that the approximation ratios for full rank
are much smaller than those for rank one . One can also ob-
serve from Fig. 3 that the maximum values of (symbols
“ ”) increase with roughly in a linear manner for the com-
plex-valued problem [Fig. 3(a)], and in a quadratic manner for
the real-valued problem [Fig. 3(b)]. These results coincide with
our analytic results and Example 1 in Section IV where the pro-
posed approximation bound in (17) is tight (to the first-order of

) in a specific problem instance with all being rank one.
Although the presented approximation bound in (17) is

tight (up to a constant factor) for general matrices , ,
in (14), it is possible that this bound is loose when ,
have block diagonal matrices as in the case of max-min-fair
transmit beamforming problem in (2). We conjecture that the
worst-case approximation ratio for the max-min-fair transmit
beamforming problem in (2) is , instead
of which is proved in this paper. This conjecture
is supported by the simulation results presented in [1] and
deserves further analysis in future.

Fig. 4. Histogram of empirical approximation ratios for � � ��, � � ��,
� � �� and rank one � .

APPENDIX I
PROOF OF LEMMA 2

Let be a unitary matrix satisfying

where since rank , and
. Let , where

follows the complex Gaussian distribution . Since
has the same complex Gaussian distribution as , we have

(A1)
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where .
Let where is a unitary

matrix satisfying

where with and
rank rank . Further define

Then

The right-hand side (RHS) of (A1) can be upper bounded by

(A2)

(A3)

Without loss of generality, assume that
. Consider the case of for some . The RHS

of (A3) can be further bounded as follows:

(A4)

(A5)

since

(A6)

where (A4) is due to , and (A5) is
due to and . Because are statistically
independent, the probability function in (A6) solely depends on
the distribution of . Since has complex Gaussian distribu-
tion , is exponentially distributed with mean equal
to 1. The cumulative distributed function of can be shown
to be upper bounded by

(A7)

for . Applying (A7) to (A6) gives rise to an upper bound
for the LHS of (A1)

(A8)

(A9)

where (A8) is owing to that are zero mean and are statistically
independent, and (A9) is due to . Thus, we
obtain one of the upper bounds in (24).

Consider the case of . Since
, we have

According to (A2), the LHS of (A1) is upper bounded by
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(A10)

(A11)

where (A10) is owing to and
. By using the conditional expectation and from

(A11), the LHS of (A1) is further upper bounded by

(A12)

(A13)

(A14)

where we have applied (A7) to the inequality in (A13). The ex-
pectation term in (A14) can be expressed as

(A15)

Since , have complex Gaussian distribution
, we have

Then it can be shown that

(A16)

where (A16) is due to Cauchy–Schwartz inequality. For ,
(A16) becomes

(A17)

Substituting (A16) and (A17) into (A15), one then obtains

(A18)
By substituting (A18) into (A14), we obtain the other desired
bound in (24).
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APPENDIX II
APPROXIMATION BOUND FOR THE REAL-VALUED PROBLEM

We rewrite problem (14) and its relaxation counterpart (15)
with real-valued data as follows:

(A19a)

s.t. (A19b)

(A20a)

s.t. (A20b)

(A20c)

The randomized polynomial time SDR procedure for problem
(A19) is the same as its complex-valued counterpart (14) in
Table II, but the random vectors have real Gaussian distribu-
tion . The approximation bound for problems (A19)
and (A20) is given in the following theorem.

Theorem 2: Let and be obtained by applying the poly-
nomial time SDR procedure to problem (A19) and its relaxation
problem (A20). Then

(A21)

holds with probability at least .

A. Proof of Theorem 2

To prove Theorem 2, we develop the following two lemmas.
Lemma 3: There exists an optimum solution of problem

(A20) whose rank is less than .
Proof: The proof basically follows the same procedure as

the proof for Lemma 1. For the real-valued SDPs, according
to [28] there exists an optimum solution with rank

.
Lemma 4: Let and be two sym-

metric positive semidefinite matrices ( , and ,
), and is a random vector with Gaussian dis-

tribution . Then

(A22)

where rank rank ,
and .

Proof: We follow the same procedure as the proof for
Lemma 2, except that and are or-
thonormal matrices, and complex conjugate transpose of

matrices and vectors reduces to transpose of matrices and
vectors. For the case of , by (A6) we have

(A23)

Because , has chi-squared distribution (with
degree of freedom equal to one). The cumulative distribution
function of can be shown to be upper bounded by

(A24)

By applying (A24) to (A23), one can have

(A25)

where (A25) is due to for .
For the case of , by (A12) we have
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(A26)

By applying (A24) to (A26), we then obtain the upper bound

Then the proof is complete.
Proof of theorem 2: From Lemma 3, for there ex-

ists an optimum solution with rank . Hence,
for . By applying a matrix decomposition procedure [29]
if necessary, this rank-1 solution can be obtained with the objec-
tive value equal to . Therefore, for . For

, the approximation bound in (A21) can be proved in the
same manner as that in Theorem 1 where (25) must be proved
for some data independent and . By (27) and by Lemma 4,
we then obtain

Since by Lemma 3, by choosing and
, one can show that for ,

Hence for and ,

Thus we have completed the proof of this theorem.
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