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Abstract—This paper considers the blind maximum-likelihood
(ML) detection problem for orthogonal space-time block codes
(OSTBCs) in multiple-input multiple-output flat-fading channels.
While the blind ML detection problem for general space-time
codes is difficult to solve, it has been shown that for OSTBCs
with constant modulus constellations, the blind ML detection
problem can be formulated as a discrete quadratic program, and
then handled by a powerful convex approximation technique
known as semidefinite relaxation (SDR). In this paper, we turn
our attention to the case of higher order QAM OSTBCs. Due to
the nonconstant modulus nature of higher order QAM signals, the
blind ML detection problem turns out to be a discrete Rayleigh
quotient maximization problem, and as a result the current SDR
technique is no longer directly applicable. We propose a linear
fractional SDR (LFSDR) approach to this problem. This approach
first relaxes the higher order QAM blind ML detection problem
into a quasi-convex problem, followed by a simple solution ap-
proximation procedure. In general, quasi-convex problems are
computationally more complex to solve than convex problems, but
we show that an optimum solution of our quasi-convex problem
can be efficiently obtained by solving a convex semidefinite pro-
gram. The approximation accuracy of the proposed approach
relative to other possible relaxation approaches is also studied.
Simulation results are presented to demonstrate that the proposed
LFSDR-based blind ML detector outperforms some existing
suboptimal detectors and can yield promising performance even
with a small to moderate number of code blocks.

Index Terms—Blind detection, maximum-likelihood (ML) detec-
tion, noncoherent detection, orthogonal space-time block coding
(OSTBC), semidefinite relaxation.

I. INTRODUCTION

HE orthogonal space—time block codes (OSTBCs) have
been of great interest because they can achieve the full
transmit diversity by a simple symbol-by-symbol coherent max-
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imum-likelihood (ML) detector. For blind or noncoherent data
detection and channel estimation techniques, the OSTBCs are
also attractive because, compared to other space-time codes,
they have a much simpler blind receiver structure [1]. For in-
stance, blind OSTBC channel estimators based on second-order
statistics or signal subspace [2]-[4] have been found to yield
simple closed-form solutions and they may achieve near-co-
herent performance provided that the channel is static for a large
number of code blocks. For channels that are static only for two
code blocks, the differential OSTBC scheme [5] can be applied
with a symbol-by-symbol ML detector at the receiver. It how-
ever suffers from a 3-dB performance loss in signal-to-noise
ratio (SNR) compared to the coherent ML detector. By con-
trast, the blind ML detector [6]-[10] based on the deterministic
blind ML criterion [7], [11] has been shown to be able to pro-
vide near-coherent performance even for a small to moderate
number of code blocks (say, 8-20 code blocks). The blind ML
detection problem is a computationally difficult optimization
problem. For BPSK/QPSK constellations, it has been shown
[6] that the blind ML detection problem can be simplified to
a Boolean quadratic program (BQP). To solve the BQP, the
sphere decoding methods originally developed for integer least
squares (LS) problems [12] can be used [6]. It is empirically
found that sphere decoding is computationally very efficient in
solving BQP problems of small size; however its complexity
quickly becomes unaffordable for problems of moderate to large
size. Alternatively, it has been found that the BQP can be effi-
ciently (in polynomial time) and accurately approximated by a
semidefinite relaxation (SDR) method [6], [13]. This successful
endeavor has motivated some works that extend the framework
to M-ary PSK (MPSK) OSTBCs [9], [10], [14], [15] and to or-
thogonal space—time block coded orthogonal frequency division
multiplexing (OSTBC-OFDM) [16], [17].

In this paper, we consider blind OSTBC detection techniques
for higher order QAM signaling. The detection problems in this
case can be quite different compared with their BPSK/QPSK
and MPSK counterparts. First, we show in the paper that the
higher order QAM blind ML OSTBC detection problem is
equivalent to a discrete optimization problem with a Rayleigh
quotient objective function. This problem is much more diffi-
cult to handle than the BQP encountered in the BPSK/QPSK
case: Not only the former has more complex objective and
constraint structures, but the standard SDR and sphere de-
coding approaches used in the previous works [6], [9], [10],
[12] are no longer directly applicable. The modified sphere
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decoder by Cui and Tellambura [9] can be used to search for
the global blind ML solution in this nonconstant modulus case.
However, our simulation results will show that for higher order
QAM OSTBCs the complexity of the modified sphere decoder
increases very rapidly with the problem size (in an exponen-
tial fashion). Another work particularly worth mentioning is
that by Xu ef al. [18] who proposed a more efficient optimal
detector for nonconstant modulus blind ML single-input mul-
tiple-output (SIMO) detection. This very recently proposed
work has not considered the OSTBC scenario so far.

In this paper, we propose a linear fractional SDR (LFSDR)
approach to efficient approximation of the higher order QAM
blind ML OSTBC detection problem. In this approach, we
first apply an SDR idea similar to the bound-constrained
SDR (BC-SDR) in higher order QAM coherent multiple-input
multiple-output (MIMO) detection [19]. However, unlike the
work in [19], we will be faced with a relaxation problem that
is quasi-convex due to its linear fractional objective structure.
Though a quasi-convex problem can be optimally solved using
the bisection method [20], it is generally argued that solving
a quasi-convex problem would be more complex than solving
a convex problem. We will show that the optimum solution of
our quasi-convex problem can be obtained by simply solving
a convex semidefinite program (SDP). Hence, the proposed
LFSDR approach can be efficiently implemented, like the
previous SDR method for BPSK/QPSK OSTBCs [6]. For
the LFSDR approach, two more contributions are provided
in this paper. First, we provide a specialized interior-point
algorithm (IPA) for the proposed LFSDR, in order to improve
the computational efficiency in implementations. Simulation
results will show that the specialized IPA is much faster than
general-purpose SDP solvers such as SeDuMi [21]. Second,
we study the relationship of the proposed LFSDR with other
relaxation methods. For instance, we will show that the approx-
imation accuracy of the proposed LFSDR is at least no worse
than a simple norm relaxation method.

The rest of this paper is organized as follows. The higher
order QAM blind ML OSTBC detection problem and the asso-
ciated background are described in Section II. In Section III, the
proposed LFESDR-based approximation method is presented.
The relationship of the proposed LFSDR method with some
other relaxation methods is also investigated in that section.
Performance advantages of the proposed LESDR approach over
existing suboptimal methods are demonstrated in Section IV
by simulation results. Finally, we give the conclusions in
Section V.

II. PROBLEM STATEMENT AND BACKGROUND

We consider an MIMO OSTBC system with N; transmit an-
tennas and [V, receive antennas. It is assumed that the channel
is frequency flat and it remains static for a number of P consec-

utive code blocks. The respective received signal model is given
by

Y, =HC(u,)+W,, p=1,...,P. )
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Here,
Y, € CN-xT received code matrix at block p, with
T being the block length of the OS-
TBCs;
u, € UK transmitted symbol vector at block p,

with & C C being the symbol con-
stellation set and K being the number
of symbols per block;

function that maps the given symbol
vector to an OSTBC block;

MIMO channel matrix;

additive white Gaussian noise ma-
trix with the average power per entry
given by 02

C:CK - cWMixT

H c CerNi
W, € CN-xT

An OSTBC mapping function C(-) can always be expressed in
a linear dispersion form as [22], [23]

K K

C(up) = Z Re(“p,k)Ak +J Z Im(up,k)Bk 2)

k=1 k=1

where j = /—1 and A, B, € R T are the code basis
matrices. The basis matrices are specially designed such that,
for any u, € C¥, the orthogonal condition is satisfied:

C(u,)C™ (1) = ||uy [|* Ly, 3)

where I, is the N; x N, identity matrix.

Here we are interested in detecting {u,, };):1 from {Y, };):1
without knowing H (a.k.a. noncoherent OSTBC detection). To
this end, we consider the deterministic blind ML problem [7],

[11]

P
. . 2
uféglk {He(r:%\glx”t 2:1 ”Yp - HC(up)H } (4)
p=1,...,P p=

in which the unknown data {up};;l and channel H are jointly
detected and estimated. To see how the joint optimization
problem (4) can be handled, let us define

Y =[Y1,Ys,...,Yp] € CN*PT, 5)
C(u) = [C(u;),C(uyp),...,C(up)] € C¥*FT  (6)
u= [uf,ug,...,ug]TEZ/{PK./ @)

and write (4) as

min min
ucUFPK | HeECNrxNt

v - Hc<u>||%} L ®

The solution of the inner minimization term in (8) is given by

H = YC¥(u) [Cu)C" (u)] . ©)

By substituting (9) into (8) and after some matrix manipulations,
the blind ML problem (4) can be reformulated as the following
maximization problem

max Tr (YCH(u) [C(w)C” (u)] ™" C(u)YH) (10)

weUPK
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in which Tr(-) denotes the trace of a matrix. To show how (10)
can be further simplified, let us take the QPSK as an example,
ie., Y = {£1 £ j}. One can define

Sp = [Sp1y---s spok|l = [Re (u;‘f) ,Im (uT)]T € {+1}2K
(11)
and rewrite (2) into a more convenient form as
2K
C(u,) =C(sp) = Y 5,6 Xs, (12)
k=1

where X, = Ay and X1 = jBr fork = 1,..., K. Due
to the constant modulus property of QPSK and the orthogonal
property in (3), the term C(u)C* (u) in (10) can be reduced to

C(u)CH(u) = 2PKIy, (13)

which is constant and does not depend on {up};;l. By uti-
lizing the linear dispersion property in (12) and by (13), it can
be shown [6] that problem (10) can be expressed as a Boolean
quadratic program (BQP) as follows:

s* =arg max sTFs (14)
se{t1}2PK
where s = [T .. .7SIT,]T € {+1}2PK and
Fl,l Fl,P
F = : € R2PEx2PK

Fp1 Fpp
[Fpqlk,c =Re {Tr {YPXkHX[Y;{}} :

Though the BQP in (14) appears to be simple, it in essence is an
NP-hard problem, which indicates that the BQP is unlikely to
be solved in polynomial time. Fortunately, recent developments
[6] have shown that an approximation method based on semi-
definite relaxation (SDR) is able to provide a near-optimal so-
lution of (14) with a polynomial-time worst-case complexity of
O((2PK)3?®). Alternatively, the BQP can be optimally solved
by a standard sphere decoding algorithm. Readers are referred
to [6] for the details, and also to [9], [10], [15], [24], and [25]
for the extension of the SDR method and the sphere decoding
algorithm to MPSK signals.

In this paper, we investigate the blind ML OSTBC detection
problem (4) with nonconstant modulus signal constellations.
Specifically, we focus on the case of higher order QAM
signaling (e.g., 16-QAM and 64-QAM). Mathematically, a
49-QAM constellation set (where ¢ > 1 is a positive integer)
can be represented by

U={u=ugr+jurlur,ur € {£1,£3,...,£(27-1)}}.

Since a QAM symbol is composed of two independent pulse
amplitude modulated (PAM) symbols, the s, in (11) in this case
is a 29-PAM vector, i.e.,

1)1,

(15)
Because QAM signals are not constant modulus, we instead
have (13) as

Sp = [5pase s spor)T € {£1,43,..., +(27 —

C(u)CH(u) = [jul]’Ly, = [|s||*Ly,. (16)

2317

By following the same reformulation idea as for BPSK
and QPSK constellations [6], but considering (16), one can
show that the blind ML OSTBC detection problem [viz.,
Problem (10)] for the 47-QAM signaling case can be simplified
to a discrete maximization problem as

*

sTFs
s* = ar max

se{x1,43,.,£(20-1)}?Fx sTs

7)

Comparing (17) with the BQP in (14), one can observe that the
former has a Rayleigh quotient objective function. As a result,
one would find that the standard SDR method and sphere de-
coding algorithm for the QPSK constellation cannot be applied
to the higher order QAM case.

III. LINEAR FRACTIONAL SDR APPROACH

In this section, we present the main results of this paper,
namely the LFSDR approach to the approximation of the higher
order QAM blind ML OSTBC detection problem.

A. Linear Fractional Semidefinite Relaxation

In the higher order QAM blind ML OSTBC detection
problem in (17), one can see that the optimal symbol decision
suffers from ambiguity up to a scalar of {£1,+3,...,£(27 —
1)}. To fix this problem, we assume that one of the 22-PAM
symbols in s is known to the receiver; e.g., through the use of
one pilot symbol. Without loss of generality, 51,1 is assumed to
be the known symbol.

Let us partition

u v’ $1,1

F= [v R °7 | z
where v € R, v € R2PEK-1 R ¢ RGPK-1)xQ@PK-1) gpq
& e {£1,43,...,+£(27 — 1)}*7"~" With s, ; being known,

the blind ML detection problem [in (17)] is modified as

(18)

~T - N

A T R"’+2(81,1VT):1:+3% L
far = max N
FC{£1,43,...,4£(20-1)}2F K-

&' z+s3,

(19a)
We consider a homogeneous reformulation of (19) which is an
essential procedure in applying SDR [6], [13], [19]. By fol-
lowing the reformulation steps for semiblind ML OSTBC de-
tection (see Section VI in [6]), one can show that:

Fact 1: Define n = 2PK, and

_ R 51,1V _ In—l 0
G = [sl,lvT s%,lu]’ D= [ o” s%l] (20)
Problem (19) can be reformulated as
T
r T Gz

— 21
Sé%z zTDx (21a)
subject to (s.t.) = € {£1,£3,...,£(27 - 1)}, (21b)

k=1,...,n—1,

z, € {£1}, (21¢)

and the relationship between (21) and (19) is as follows: If

= [at,....x5_.xx]" is a solution of (21), then & =
[w32%, ... x5 _1ax]T is a solution of (19).
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Let us now introduce the LFSDR approach to (21). By

defining X = zz”, one can rewrite (21) in terms of X as
follows:
Tr(GX
. TDx) @
st [X]ex € {1,9,...,(27 = 1)%}, (22b)
k=1,..., n—1,
Xlnn =1, (22¢)
X * 0 (positive semidefinite (PSD)), (22d)
rank(X) =1, (22¢)

where [X]j x denotes the kth diagonal entry of X. In (22),
constraints (22b) and (22c¢) are due to (21b) and (21c), respec-
tively, and (22d) and (22e) are owing to X = zz”. It can be
observed from (22) that the discrete constraints in (22b) and
the rank-1 constraint in (22¢) are not convex and are difficult
to handle. The idea of SDR is to approximate problem (21) by
removing the rank-1 constraint but keep the PSD constraint
X > 0. To deal with the discrete constraint in (22b), we adopt
the idea of bound-constrained SDR (BC-SDR) in coherent
higher order QAM MIMO detection [19] where the discrete set
{1,9,...,(27 = 1)*} is relaxed to an interval [1,(27 — 1)].

We then end up with the following LFSDR problem:

X* = arg hax % (23a)

st 1< [Xer < (27-1)%, (23b)
k=1,...,n—1,

X]nn =1, (23¢)

X > 0. (23d)

Note that the notation X* in (23a) represents a globally op-
timum solution of problem (23). We should emphasize that
problem (23) is structurally quite different from the BC-SDR
problem in coherent MIMO detection [19]. In the latter, the
relaxation problem is a convex SDP and can be directly solved
by an interior point SDP algorithm [26], [27]. By contrast,
problem (23) is a quasi-convex problem. In general, this class
of problems can be solved in a globally optimal fashion by the
classical bisection method [20] in which a sequence of SDP
feasibility problems need to be solved. Fortunately, we will
show in the next subsection that a globally optimum solution to
problem (23) can be obtained by solving just one SDP.

B. SDP Reformulation of LFSDR and Custom-Built
Interior-Point Algorithm

The quasi-convex LFSDR problem in (23) can be turned into
a (convex) SDP as follows

Z* = arg max Tr(GZ) (24a)
ZERnxn
st. Te(DZ) =1, (24b)
[Zn < [Zek < (21 = 1)%[Z] 0, (240)
k=1,....n—1
7> 0, (24d)

as stated in the following proposition.
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Proposition 1: The linear fractional quasi-convex problem
(23) has the same optimum objective value as the SDP in (24).
Moreover, an optimum solution of (23) can be obtained from
that of (24) through the relation

X*=Z"/[Z") - (25)

Proof: We first show that for any feasible Z of problem
(24), |Z],,,, # 0. Suppose that [Z],, , = 0. Then by (24c) and
(24d), Z = 0, which however violates (24b). Therefore, we
can always define a point X = Z/[Z],, . It is easy to show
that X is feasible for problem (23) and has the same objec-
tive value Tr(GX)/Tr(DX) = Tr(GZ). On the other hand,
it can be seen from (20), (23c), and (23d) that for any feasible
X of problem (23), Tr(DX) = 37 [X]ex + 53, > 0.
Let Z = X/Tr(DX). Then it is also easy to show that Z
is feasible for problem (24) and has the same objective value
Tr(GZ) = Tr(GX)/Tr(DX). Hence, we conclude that prob-
lems (23) and (24) are equivalent and X* = Z*/[Z*], . [ ]

Proposition 1 implies that the optimum solution X* of (23)
can simply be obtained by solving the SDP (24) in lieu of the
bisection method. The SDP (24) can be solved in polynomial
time using an interior-point algorithm (IPA) [26]. While (24)
can be solved conveniently by calling popular, general-purpose
SDP solvers such as SeDuMi [21], we can build a specialized
IPA for (24) to further improve the computational efficiency.

Table I shows our custom-built IPA. This specialized IPA can
be shown to have a worst-case complexity of O(n3-3) (through
counting the arithmetic operations and using known results in
convergence of interior-point methods). The specialized IPA
follows the primal-dual path following principle in [26] (see also
[24] and [27]), but carefully exploits structures of the inequality
and equality constraints of (24) to trim down the computations.
In particular, the search direction computations in Step 2 of
Table I are specially designed for (24). Since the development
involves tedious, laborious derivations, the complete details are
omitted here.

To give some insights, let us briefly describe how the devel-
oped IPA works in principle. Essentially we consider solving
(24) by solving its dual which can be shown to be

min v (26a)
st. veR,t e RZ™ D YeR*" (26b)
Y>0,t=0 (26¢)
. Vln—l_tl+t2
Y=D -G
1ag<[3{1u+1g1(t1—(2q—1)2t2)D
(26d)

where (Y, t, ) are the dual variables of (24), 1,,_; is an all-one
vector with dimension n — 1, Diag(x) denotes a diagonal ma-
trix with the diagonal elements given by the elements of x, and
t1,ts € R" ! respectively represent the upper and lower part of
t;ie, t = [tT tg]T. The idea is to apply a logarithmetic bar-
rier approximation to (26) to implicitly handle the constraints
Y »0andt > O:

2(n—1)

min v — u | logdet(Y) + Z log t; (27a)
i=1
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st. veRteR*™ YD, YR, (27b)
. Vln—l_t1+t2
Y=D -G
lag<|:s%’ll/+1g_1 (tl_(2(1 — l)ztg) :|> ’
(27¢)

where ;o > 0 is called the barrier parameter. It is known that
(27) approaches (26) as ;1 — 0. At each iteration of the pro-
posed IPA, we reduce p in a data adaptive fashion (Step 1 in
Table I), and then compute a primal-dual search direction that
approximates the Karush—Kuhn—Tucker conditions of (27) with
respect to the updated p (Steps 2-3 in Table I). The IPA termi-
nates when . is sufficiently small. One essential implementation
aspect about the specialized IPA is that we need a primal-dual
strictly feasible point (Z,Y,t,v) as an initialization. Here we
provide a simple closed-form initial point: Let q € R™ with the
ith element given by

gi=ay |Gl (28)
j=1

for some o > 1. The following point can be shown to be strictly
primal-dual feasible (and thus can serve as an initialization):

1 5,1 O
Z=—_—~—5| o 0 29
5<n—1>+s%,1[ 0 1]* @
Y = Diag <[1/1n1 ;' Q1:n1]> _Gs0 (29
T
t= I:t’{/ tg] ’ t; = di:n—1, ty = 2q1;n_1 (29C)
v=[gn+ 17 (29 =1%o — t1)] /51, (294d)

where qi.,—1 € R”~! contains the first n — 1 elements of q.

We provide the MATLAB source codes of the spe-
cialized IPA in http://www.ee.cuhk.edu.hk/~wkma/SDR/
download/blind_Ifsdr.rar, for readers who are interested in
implementing our method.

C. Solution Approximation Procedures

The development above has enabled an efficient way to com-
pute the optimum solution X* of the LESDR problem (23). We
now turn our attention to the last step of the proposed LFSDR
approach: Using X* to find a feasible, rank-1 approximate
solution of the original problem (21). One straightforward
method to do this is to compute the principal eigenvector
of X* (thereby performing rank-1 approximation), and then
quantize the principal eigenvector into one belonging to the
set {£1,43,...,4(2¢ —1)}""" x {£1}. Another method
practically proven to be effective is the Gaussian randomiza-
tion [19], [28]. In this method, we first generate L random
vectors 5(2) € R*, ¢ = 1,...,L, following the Gaussian
distribution A/(0,X*) (i.e., zero mean and covariance matrix
equal to X*), and then quantize f(e) into one belonging to
the set {+1,+3,...,+(27 — 1)}"~" x {£1}. Denote by
" e {£1,43,...,£27—1)}" ! x {£1} the quantized

vector of 5(@)’ that is,

-’i'“) = [UPAM (f;z)> -3 OPAM (fr(ﬁl) , SgN (6,2"))]T

2319

where sgn R — {%1} is the sign function, and
opam : R — {£1,£3,...,£(27 — 1)} is a function in
which opan () is obtained by rounding z to an integer in the
set {£1,+£3,...,+(29 — 1)}. We pick the quantized vector

that yields the largest objective value, i.e.,

(_,;:w))T @)
0* = arg max ——rlmp—,
¢=1,...,L (.’fr([)) Dﬁ(e)

and choose " as the approximate solution of problem (21).
By our experience, L = 50 ~ 100 is typically sufficient to
obtain a good approximation performance.

D. Relationships With Other Relaxation Methods

In the subsection, we present some other relaxation methods
for the higher order QAM blind ML OSTBC detection problem
and study their connections to the proposed LFSDR.

One simple approach to approximating the higher order QAM
blind ML OSTBC detection problem in (17) is actually to relax
the discrete set {1, £3,...,4+(27 — 1)} to the real space R:

A sTFs

max
serR2Px sTg

Inr (30)
which we call the norm relaxed blind ML problem. It can be
seen that the principal eigenvector of F is the associated op-
timum solution. A feasible, approximate solution to (17) can
then be obtained by quantizing the principal eigenvector into the
set {+1,+3,...,+(27 — 1)}*"* . More specifically, let v* €
R2PK denote the principal eigenvector of F, and assume that
51,1 1s known to the receiver. Then an approximate solution of
(17) by norm relaxation is given by

A _ 51,1 &
SNR = OPAM e v

1

3D

where opan @ RZPK — {£1,43,..., 421 - 1)}*"" isa
function in which the ith element of opan(2) is obtained by
rounding z; to an integer in the set {£1,+3,...,+(27 — 1)}.
It can be proved that the proposed LFSDR approach has an
approximation accuracy at least no worse than this simple norm
relaxation method, as stated in the following proposition.

Proposition 2: Let fLrspr 2 Tr(GZ*) be the optimum ob-
Jective value of the SDP problem (24), and recall that fyir, and
fNR are the optimum values of the original blind ML detection
problem [in (19)] and the norm relaxed problem [in (30)], re-
spectively. Then

|fur — fursor| < |fve — farl|-

Proof: The idea of this proof follows that of Theorem 1 in
[6]. Since frrspr > fumL and fxr > fuL (a basic result in
relaxation), it suffices to show that frrspr < fnr. Suppose
that

z*:[qT ?]EO
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where P € R(*=Dx("=1) ¢ € R*~! and r € R. Let

51,19 P -

Then one can readily show from (18), (20), and (24) that

Tr(GZ*) = Tr(FZ)

; (32)
Tr(DZ*) = Tr(Z) = 1.

(33)

Consider the eigenvalue decomposition of 7= S \grkgl,
where \; > 0 is the kth eigenvalue of Z, and g, € R™ is the
associated unit-norm eigenvector. Then

Tr(FZ) = AelFeg, < A max g!F
(FZ) ; 8k '8k = ; k et g rg
=Tr(Z) fxr (34)

where the last equality is due to (30) and Tr(Z) = S ¢_; A
By (32), (33), and (34), we obtain frrspr = Tr(GZ*) =
Tr(FZ) < fxg. u

In fact, we will further show by simulations in Section IV
that this simple norm relaxation method has symbol error
performance far from what the proposed LFSDR approach
offers.

In addition to the LESDR proposed in the previous subsec-
tions, there are two other possible ways of relaxations that may
also provide effective approximations to the higher order QAM
blind ML OSTBC detection problem. Specifically, by applying
the virtually-antipodal SDR (VA-SDR) [29] and polynomial-in-
spired SDR (PI-SDR) [30] concepts respectively (which were
developed for coherent higher order QAM MIMO detection),
we can propose two more relaxation methods to the blind ML
problem. But, interestingly, our recent theoretical analysis in co-
herent MIMO detection has shown [27], [31] that the rationale
adopted in the proposed LFSDR, and the relaxation methods
based on VA-SDR, and PI-SDR are equivalent in attaining the
same optimal values. More importantly, the SDR equivalence
theorems in [31] are directly applicable to the blind ML OSTBC
detection problem here.! Hence, we conclude that:

Proposition 3: The proposed LFSDR, given in (23), is equiv-
alent to the two relaxation alternatives where the VA-SDR [29]
and PI-SDR [30] are respectively applied to the higher order
QAM blind ML OSTBC detection problem [in (21)]. The equiva-
lence lies in the identical optimum objective values for the three
relaxation methods.

The details of the VA-SDR and PI-SDR alternatives and their
equivalence to the proposed LFSDR are given in a separate tech-
nical report [32] rather than in this paper due to space limit. That
technical report also gives useful simulation results, namely,
verification of the SDR equivalence in Proposition 3, and
numerical complexity comparisons. There one can see that the

'While the focus of [31] is on proving the equivalence of SDRs under the
coherent MIMO detection context, the analysis there does not place an assump-
tion on the objective function structures. For this reason, the SDR equivalence
theorems in [31] can be applied to the blind ML problem.
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TABLE I
PSEUDO CODE OF THE SPECIALIZED INTERIOR-POINT
ALGORITHM FOR SOLVING (24)

Given

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.
Step 6.

Step 7.

a primal-dual strictly feasible initial point (Z,Y,v,t) [see (29)]
and a solution accuracy € > 0.

Set p:= 0.5 X [v — tr(GZ)]/(3n — 2).

Compute the search directions (Awv, At) by solving the linear

system of equations
F Av|
At - ga

where F and g are constructed by the following formulae

L £
_ W T J1 21 31
Y loz= |:W1121 :Z;ﬂ , Fi=|fy Fa FL

f31 F32 Fas3

(in which ® denotes the Hadamard (componentwise)
product of matrices),

fi1 =

. 2 T 2
for :=——Wiq11,,_1 — s1,1wi12 + (1,,—1wi2 + 31’17«022)171—1,

T 2 T 4
1n_1W11 1,-1+ 231,1 ln_1W12 + $1,1W22,

f31 =Wl 1+ Silwm
— (29 = 1)2(1]_ w2 + 87 jwaz)ln-1,
Fao := Wi — w21l | —1,_1wT,
+wa2lp—11F_; + Dy,
Fao = —Wip +wipll_ | + (29 — 1)%1,,_1wT,
— (27 —1)?walp_11f_
Faz := Wi — (29 — 1)2wi21%_; — (29 —1)%1,_1w,

+ (Qq - 1)4w221n—112_1 + D2,

171 (211 = (Z]nn)
D; := Diag >
_t'y_Lil [Z]n—l,n—l - [Z]n,n)
tn (29 = 1)2([Z]n,n — [Z]1,1)
D5 := Diag R
tom—1) (27 = D2[Z]nn = [Z]n-1,n-1)

gi=u K1 0
K2 0

Z?:_ll [Y_l]i.i + 5%1[Y_1]n4,n -1
+ )
[ =Y i A Y e+ 87
K1 = N
_7[Y_1]'n—1,n—1 + [Y_l]n,n + t;il
Y"1, = 27 = DY o + 80

_[Y_l]n—l,n—l - (2q - 1)2[Y_1]n,n + t2_(17,—1)
Compute the search directions

e Avl,_1 — Aty + At
AY := Diag ([s{lm +17_ (Aty — (29 — 1)2At2)D ;

AZ:=pY ' —Z-Y LAY)Z

and symmetrize AZ by AZ := (AZ + (AZ)T)/2.

Use line search to find a primal step-size oy € (0, 1] such that
Z+ ap(AZ) = 0 and [Z]n,n + [AZ]nn < [Z)ii + [AZ)i: <
(27 — 1)2([Z]n,n + [AZ]pyn) fori=1,...,n — 1.

Use line search to find a dual step size ag € (0, 1] such that
Y + ag(AY) > 0 and t + ag(At) > 0.

Update Z := Z + ap(AZ), Y =Y + a4(AY), v :=
oq(Av), and t :=t + ag(At).

If v —tr(GZ) < € (i.e., duality gap is less than €), then terminate
and output (Z,Y, v, t); otherwise go to Step 1.

v+
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Fig. 1. Performance (SER versus SNR) comparison results of the proposed LESDR blind ML detector with some existing methods for the complex 3 X 4 OSTBC
under various settings. (a) 16-QAM, N,. = 1, P = 8; (b) 16-QAM, N,. = 4, P = §;(c) 64-QAM, N,. = 1, P = §; (d) 64-QAM, N,. = 4, P = 8.

proposed LFSDR costs less amount of computations than its
VA-SDR and PI-SDR alternatives.

IV. SIMULATION RESULTS

Extensive simulation results are given in this section to
demonstrate the effectiveness of the proposed LFSDR-based
higher order QAM blind ML OSTBC detector. The channel
coefficients in H were independent and identically dis-
tributed (i.i.d.) circular complex Gaussian random variables
with zero mean and unit variance. The SNR was defined as

E{IHCG)IE ) vk
B{W,IF} 7o

w

where v = 10 for 16-QAM and v = 42 for 64-QAM. If not
mentioned specifically, the complex 3 x 4 OSTBC (IV; = 3,
T =4, K = 3) [33]

SNR =

s1+js2 —s3+jss —s5+ s 0
C(s) = | s3+7sa s1— 752 0 —85 + JjSg
S5 +j$6 0 S1 —j82 S3 —j84

(35)

was used in the simulation, and the LFSDR problem (24) was
solved by the specialized IPA in Table I. An approximate so-
lution of problem (21) was obtained either by quantizing the
principal eigenvector of X* or by the Gaussian randomization
procedure in Section III-C with 100 random vectors (L = 100)
generated. The detector performance was evaluated using av-
erage symbol error rate (SER), and at least 10000 trials were
performed for each simulation result.

A. Performance Comparison With Some Existing Methods

Here, we present the performance comparison results of the
proposed LFSDR blind ML detector, the norm relaxed blind
ML detector [i.e., (31)], the blind subspace channel estimator
by Shahbazpanahi et al. [2], the cyclic ML method [7] (ini-
tialized by the norm relaxed blind ML detector), and the co-
herent ML detector [which assumes perfect channel state in-
formation (CSI)]. Note that for the white Gaussian noise case,
the Shahbazpanahi’s blind subspace channel estimator is equiv-
alent to the norm relaxed blind ML detector [2], [6] from a
theoretical viewpoint. However, the former employs a different
method of using the pilot to fix the channel ambiguity (please
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Fig. 2. Performance (SER versus P) comparison results of the proposed LFSDR blind ML detector with some existing methods for the complex 3 x 4 OSTBC.

(a) 16-QAM, SNR = 17dB, N,. = 4; (b) 64-QAM, SNR = 23dB, N,. = 4.

see [2] for the details). As a result, the two methods will be seen
to exhibit different simulation performances. Fig. 1(a) and (b)
show the performance results (SER versus SNR) for the case of
16-QAM OSTBC, and Fig. 1(c) and (d) display the results for
the 64-QAM OSTBC.

One can see from Fig. 1(a) and (c) that Shahbazpanahi’s
subspace method, the norm relaxed blind ML detector, and the
cyclic ML method cannot properly decode the transmitted OS-
TBCs when N,. = 1. In comparison with these two methods,
the proposed LFSDR-based blind ML detector exhibits consis-
tent SER performance. For the multiple-receive-antenna case
(N, = 4) as presented in Fig. 1(b) and (d), Shahbazpanahi’s
subspace method can properly identify the transmitted symbols
(some theoretical reasoning for the significant performance
difference of the subspace method in the one-receive-an-
tenna and multiple-receive-antenna cases has been provided
in [4]). Nevertheless, one can see from these figures that the
LFSDR-based blind ML detector outperforms the subspace
method as well as the norm relaxed blind ML detector, thereby
providing a numerical support to Proposition 2. By comparing
Fig. 1(a) and (c), it can be seen that for N, = 1, the per-
formance difference between the proposed LFSDR and the
coherent ML detector for 64-QAM OSTBC is larger than that
for 16-QAM OSTBC. However, as observed from Fig. 1(b)
and (d), where N,. = 4, the performance differences between
the LFSDR-based blind ML detector (randomization) and the
coherent ML detector at SER = 10~ can be less than 1 and
0.5 dB, respectively. These results illustrate that in the case
of N, = 4 and either for 16-QAM or 64-QAM OSTBCs, the
proposed LFSDR approach is accurate in the approximation
of the true blind ML solution. The simulation results in Fig. 1
also indicate that the Gaussian randomization procedure is a
better approximation method than the principal eigenvector
procedure.

In Fig. 2, we further present some performance comparison
results for various numbers of block size . One can see from
both Fig. 2(a) and (b) that all the methods under test can have
improved symbol error performance when P increases, but the

proposed LFSDR based blind ML detector outperforms all the
other methods for all P. The performance advantage is more sig-
nificant for 64-QAM OSTBCs as shown in Fig. 2(b). These sim-
ulation results demonstrate that the proposed LFSDR blind ML
approach is more effective than other methods when the channel
is static for small to moderate number of OSTBC blocks, which
is consistent with the results for BPSK/QPSK OSTBCs in [6]
and [8].

B. Performance Comparison With Higher Order QAM
Differential OSTBC Scheme

Traditionally the differential OSTBC scheme can only be ap-
plied to the constant modulus case, but a recent work in [34] has
revealed that the differential OSTBC scheme can be extended to
the nonconstant modulus case through some decision feedback
procedure (see in [34, eqs. (27) and (30)] for the details). This
example aims to compare the differential OSTBC scheme and
the proposed LFSDR-based blind ML detector. The following
4 x 4 OSTBC (N; = 4,T = 4, K = 3) [22] was used in this
simulation example

S1 + j32 —S3 +j$4 —S5 +j86 0
C(s) = 83 +j34 51— Js2 0 ' —85 +j86
s5+ 786 0 S§1—JS2 83— ]S4
0 —85+js6 83+ jsa —s1+js2

(36)

Fig. 3 shows the performance comparison results for P = 8§,
N,. = 4. One can see from this figure that, either for 16-QAM
or 64-QAM QSTBC, the proposed LFSDR-based blind ML de-
tector outperforms the differential scheme.

C. Performance Comparison With Cui—Tellambura Modified
Sphere Decoder

In this subsection, the proposed LFSDR is compared with
an optimal blind ML detection method, namely the modified

Authorized licensed use limited to: National Tsing Hua University. Downloaded on March 22,2010 at 08:22:06 EDT from IEEE Xplore. Restrictions apply.



CHANG et al.: A LINEAR FRACTIONAL SDR APPROACH TO ML DETECTION OF HIGHER-ORDER QAM OSTBC

SER

—O— Differential 16-QAM 0STBC [34]
—&— FSDR blind ML (randomization)
— — ML with perfect CSI

10-5 1 1 1 1 1 1

7 9 11 13 15
SNR (dB)

(a)

2323

1072

1078

SER

104

—©—Differential 64-0AM OSTBC [34]

—&— | FSDR blind ML (randomization)

— — ML with perfect CSI
1 1

10°%

T
SNR (dB)
(b)

12 14

Fig. 3. Performance (SER versus SNR) comparison results of the LFSDR and the differential OSTBC scheme for the complex 4 x 4 OSTBC. (a) 16-QAM,

N, =4, P = 8;(b) 64-QAM, N, = 4, P = 8.
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Fig. 4. Complexity comparison results of the proposed LFSDR (solved respectively by SeDuMi [21] and the specialized IPA in Table I) and Cui-Tellambura’s
modified sphere decoder [9]. (a) SNR = 13dB, N,. = 4; (b) 16-QAM, N, = 4, P = 2.

sphere decoder by Cui and Tellambura [9]. Let us first ex-
amine the computational complexity of the modified sphere
decoder and the proposed LFSDR-based blind ML detector.
Fig. 4(a) and (b) present the average computer running time (in
second) of the two methods with respective to the block size P
and SNR, respectively. Our implementation for the modified
sphere decoder was based on C language. To improve the search
efficiency, we incorporated the Schnorr—Euchner enumeration
[12] in the modified sphere decoder. For the proposed LFSDR
approach, the specialized IPA in Table I was implemented in
C language as well. To demonstrate the computational ad-
vantage of the specialized IPA, we also included the LFSDR
implementation using the general-purpose SDP solver SeDuMi
[21]. The simulation was conducted under MATLAB using a
desktop computer with a 2.66-GHz dual-core CPU and 2-GB
RAM. The initial square search radius for the modified sphere
decoder was obtained by using the norm relaxed blind ML

solution (31). It can be seen from Fig. 4(a) that the average
running time of the LFSDR-based blind ML detector either
implemented by the specialized IPA or by SeDuMi increases
with P at a much slower rate than the modified sphere decoder.
Moreover, either for 16-QAM OSTBC or 64-QAM OSTBC,
the proposed LFSDR approach has almost the same com-
putational complexity. Besides, the modified sphere decoder
quickly becomes impractical when P > 2 for 16-QAM and
when P > 1 for 64-QAM. From Fig. 4(b), one can see that the
average running time of the modified sphere decoder remains
almost constant with respect to SNR, and is much higher than
that of the LFSDR-based blind ML detector. This is in sharp
contrast to its BPSK/QPSK counterpart in [6] where the com-
putational time of the BPSK/QPSK sphere decoder decreases
when SNR increases. From both figures, it can also be seen that
the specialized IPA is around ten times faster than SeDuMi,
showing its advantages in practical implementations.
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Fig. 5. Performance (SER) comparison results of the proposed LFSDR with some existing suboptimal methods and Cui-Tellambura’s modified sphere decoder
[9] for various settings. (a) N, =1, P =2;b) N, =2,P =2;(¢c) N, =3, P=2;(d) N, =4, P = 2.

Fig. 5 shows the performance comparison results for P = 2
and 16-QAM OSTBC (we cannot further increase P since we
have seen that the complexity of the modified sphere decoder be-
comes overwhelming for P > 2). One can see from this figure
that the performance gap between the LFSDR-based blind ML
detector and the modified sphere decoder decreases when the
number of receive antenna NV, increases. Together with the per-
formance results in Fig. 1, we can see that the proposed LESDR
approach can yield promising approximation quality when P >
8 or when N, > 2.

V. CONCLUSION

In the paper, we have presented a suboptimal LFSDR ap-
proach to blind ML detection of higher order QAM OSTBCs.
The proposed LFSDR approach is efficient, involving solving
only one SDP followed by a simple rank-1 solution approxima-
tion procedure. Moreover, this approach has been shown to be at
least no worse than the simple norm relaxation method. Exten-
sive simulation results for both 16-QAM and 64-QAM OSTBCs

have demonstrated that the proposed LFSDR approach outper-
forms some existing suboptimal methods. Moreover, we have
seen that, for both 16-QAM and 64-QAM OSTBCs, the pro-
posed LESDR approach is effective in approximating the true
blind ML detection solution, especially when there are multiple
receive antennas.
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