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Performance of Cumulant Based
Inverse Filters for Blind Deconvolution

Chih-Chun Fengstudent Member, IEEEAnd Chong-Yung ChiSenior Member, IEEE

Abstract—Chi and Wu proposed a class of inverse filter criteria The conventional linear prediction error (LPE) filter [1]-[4]
Jrm using rth-order and mth-order cumulants (where r is ysing second-order statistics (correlations or power spectra)
even andm > r > 2) for blind deconvolution (equalization) a5 peen widely used in blind deconvolution in the past
of a (nonminimum phase) linear time-invariant (LTI) system th d d The LPE filt h . - h
with only non-Gaussian measurements. The inverse filter criteria _ree eca_ es. e ier, 9wever= IS mlnlmum phase
Jr.m for » = 2 are frequently used such as Wiggins’ criterion, With magnitude response proportional to that of the inverse
Donoho’s criteria, and Tugnait’s inverse filter criteria for which ~ system ofh(n). Therefore, when the unknown systeiin)
the identifiability of the LTI system is based on infinite signal-to- ijs not minimum phase, phase distortion will remain in the
noise ratio (SNR). In this paper, we analyze the performance e jictive deconvolved signal, and meanwhile, the perfor-

of the inverse filter criteria J2.,. (r = 2) when the SNR is f the LPE filter i itive to additi . imol
finite. The analysis shows that the inverse filter associated with mance or the liter 1S sensilive 1o addiive noise simply

Jo.m is related to the minimum mean square error (MMSE) because correlations of the measuremertts) are the sum
equalizer in a nonlinear manner, with some common properties of correlations of the noise-free signak(n) and those of
such as perfect phase (but not perfect amplitude) equalization. the additive noisew(n). On the other hand, inverse filter
Furthermore, the former approaches the latter elther for higher criteria [5]-[19] using higher order statistics (cumulants or
SNR, cumulant-order m, or for wider system bandwidth. More- .

over, as the MMSE equalizer does, the inverse filter associated pOIVSPeCtra [20]_[25_]) have been, r_eported in the past decade
with J.,. also performs noise reduction besides equalization. for blind deconvolution of nonminimum-phase LTI systems

Some simulation results, as well as some calculation results, arewhen zg(n) is non-Gaussian, and(n) is Gaussian for the

provided to support the proposed analytic results. following reasons. Higher orddr> 3) cumulants of the non-
Index Terms—Blind deconvolution, equalization, higher order Gaussian measurementgn) contain not only the amplitude
statistics, inverse filter criteria. but also phase information of the unknown systéim);

furthermore, they are insensitive to Gaussian noise since all
higher order(> 3) cumulants of Gaussian random processes
are equal to zero.

LIND deconvolution (or blind equalization) is a signal |n practical applications, the signal-to-noise ratio (SNR)
processing procedure that recovers a desired sighal defined as

from a given set of measurements

I. INTRODUCTION

E{zg(n)}
z(n) = xzs(n) + win) 1) SNR= m [see (1) 3)
h
where - may not be very high, and thus, the presence of the mea-
. . ) . surement noisew(n) may lead to serious effects on the
zs(n) = u(n) « hn) = k;m hk)u(n = F) 2) deconvolved (equalized) signal as well as on the behavior

of the deconvolution filter (equalizer) for finite SNR. For

is the noise-free signal distorted by an unknown linear timexample, in digital communications, it is well known that
invariant (LTI) system (channef)(n), andw(n) is the mea- the infinite-length zero-forcing (ZF) equalizer [26] can ideally
surement noise accounting for sensor noise as well as physigighinate the intersymbol interference (ISI) induced by the
effects not explained bys(n). The problem of blind decon- channel distortion, namely, it is a perfect (amplitude and
volution arises comprehensively in various applications sughase) equalizer. However, the ZF equalizer may also signifi-
as digital communications, seismic signal processing, speegthtly amplify the noise power in the equalized signal, thereby
modeling and synthesis, ultrasonic nondestructive evaluatigading to high error rate in the following decision procedure
(NDE), and image restoration. for reconstruction of the desired information sequence. On
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Moreover, let cunxy, x2, ...,z  denote the joint cumulant Overall system g(n)
of random variables, zo, - - -, z,,. Chi and Wu [5], [6] find
the optimum inverse filtep(n) by maximizing non.é'ée'ssiani Ncgisgjeﬁglee | Signal
input ! LTI X (1) Inverse | component
|Cr{e(n)}" u(n) —3=| system ’ > filter e ei(n)
Jrmv(n)) = —— 5 P R vy |
) =G ety ®) : :
where r is even,m > r > 2, and C,,{e(n)} (C,{e(n)}) Measurements ¥ Decsoigxglved
denotes thenth-order ¢th-order) cumulant ok(n), i.e., x(n) > e
\
Cn{e(n)} =cum{z; = e(n),zo =e(n), -, zm =e(n)}. White Noise
6 Gaussian noise LTI Inverse component
Similar results about the inverse filter criterig. ., were n(n) >| system ——>| filter > w'(n)
. . . . T b(n) |Measurement | »(n)
also reported in [7]. This class of inverse filter critetia,, noise
includes, for example, Wiggins’ criterion [8] (associated with wn)

J2,4), Donoho’s criteria [9] (associated with ,,,), and Tug- Fig. 1. Block diagram for the interpretation of blind deconvolution using
nait's criteria Ja 3, Jo 4, and Jy ¢ [10] as special cases. Theinverse filters.
versions of.J, ,,, for complex signals have been proposed by

S_halvi and Weinstein [11], [12] for communication applica- wheren(n) is a real white Gaussian noise with vari-
tions. anceo?, andb(n) is a real stable LTI system with its
Chi and Wu [5], [6] proved that under some general stable inverse system, which is denotedn), being

assumptions (to be presented in Section Il), the inverse filter existent.

criteria J,.,,, given by (5) lead to perfect equalization either A4) The signalu(n) is statistically independent of the noise
whenr = 2 and SNR= oc or whenr > 4. In other words, n(n).

when SNR is finite, the inverse filtef») associated witly,. ,,, =

. ) : or ease of later use, let us further express the deconvolved
for r > 4 is exactly the same as the ZF equalizer, while th%gnale(n) given by (4) as (see the block diagram in Fig. 1)
associated with/, ,,, such as Wiggins, Donoho, and Tugnait’s ‘
inverse filter criteria mentioned above, is not clear for finitec(n) = [zs(n) +w(n)]*v(n) = es(n)+w'(n) [by (1) (8)
SNR. This, therefore, motivated the studies about the behavior
of the resultant inverse filtev(n) for J;,,, and the studies where
3\/?1(()3[:: tShlc\algoi;s?ir:ﬁngctlon performed by the inverse filter) W (n) = w(n) = v(n) = nin) = [b(n) + v(n)] by (7] (9)

The rest of the paper is organized as follows. Section dbrresponds to the noise component{n), and
presents the model assumptions and briefly reviews the MMSE
equalizer for ease of later use. Section Il analyzes the behav- ¢es(n) = zs(n) xv(n) = u(n)* g(n) [by (2)]  (10)
ior of the inverse filterv(n) associated with/, ., for finite
SNR. Section IV presents some analytic results about the S
improvement or degradation after deconvolution. In Section V, g(n) = h(n) + v(n) (11)
some simulation and calculation results are provided to support
the proposed analytic results. Finally, some conclusions asethe overall system after deconvolution. Next, let us briefly
drawn in Section VI. review the MMSE equalizer.

Let H(w), B(w),V(w), and G(w) denote the frequency
responses ofi(n),b(n),v(n), and g(n), respectively. The
(infinite-length) MMSE equalizer, which is denotegisg(n),
which minimizes the mean square error (MSE)[u(n) —
For the non-Gaussian measurements) modeled by (1) e(n)]?}, is a (noncausal) Wiener deconvolution filter with

,'@Rthe corresponding signal component in which

Il. MODEL ASSUMPTIONS AND
REVIEW OF THE MMSE EQUALIZER

and (2), let us make the following assumptions. frequency response given by [4]
Al) The LTI systemh(n), which can be either minimum o2 . H*(w)
phase or nonminimum phase, is real stable and its VMmse(w) = = (12)

2 . 2 2. 2
stable inverse system, which is denofegn), exists. oo [HW)[? + o5 - [Bw)]

A2) The desired signal(n) is a real, zero-mean, inde-where the superscript” represents complex conjugation. The

pendent identically distributed (i.i.d.), non-Gaussiagorresponding overall systefi(w) is therefore given by
random process with variane€, and mth-order cu-

mulanty,, (m > 3). Guse(w) = H(w) - Vuse(w)
A3) The measurement noise(n) is a real, zero-mean, B o2 |H(w)|? 13
(white or colored) Gaussian random process that can T o2 |HW)]2+ o2 [B(w)[> (13)

be modeled as
Note that when the measurement noisé:) is white, i.e.,

w(n) = n(n) = b(n) (7) b(n)is an allpass system [see (7Yusr(w), given by (12), is
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the same as the frequency response of Mendel's (steady-stieynth-order cumulant,,,{¢(n)} given by (5) can be shown
minimum-variance deconvolution (MVD) filter [27]-[29].  to be [20]-[25]
By A3), the overall systent#yisg(w) given by (13) can be

further written as Cr{e(n)} = Crfes(n)} = Y i g (n), m > 3.
s |H(w) ? e
Ou.‘B(w) o2 - |F(w))? On the other hand, by (8)—(104, {e(n)} by ( §1f7)
Guse(w) = = u n the other hand, by (8)-(10¥;,.{e(n)} given by (5) for
mse() o2 ‘ (w)|? g of - |[F(w)|? + o3 r = 2 is known to be [2]-[4]
1 Blw) -
gy  Cale(n)} = Bles(n)’} + E{w'(n)*}
where F(w) = H(w)/B(w) is the frequency response of the =0, Z 9*(n) + 05 Z [b(n) * v(n)]?
system n=—oco n=-—o00
f(n) = h(n) = bi(n). (15) =or Y Fm+ar Y [flm)xg(m)?
It can be seen that the overall systéfysg(w) given by (13) T S (18)

is equivalent to that of Mendel's MVD filter as given by (14)

when the effective systemi(w) = H(w) (i.e., B(w) = 1 and where in the third line, we have used the fact thét) =
the measurement noise(n) = n(n) is white). Thus, some hi(n) * g(n) [see (11)] and that the inverse system fih)
properties about Mendel's MVD filter reported in [30] ands given by

[31] are also shared by the MMSE equalizersg(n) that are

summarized as follows. filn) = b(n) * hi(n) [see (15). (19)

R1) The MMSE equalizerwyse(n) is a perfect phase

equalizer sinceGyse(w) is zero phase [see (13) OrBy (17) and (18)/2 ,,, given by (5) can be written as a function

(14)]. of g(n) as
R2) Whenf(n) is an allpass system, the MMSE equalizer ¥ |2
vmsr(n) is a perfect (amplitude and phase) equalizer J2m(9(n)) = 2] - Ra,m(g(n))
since Gysp(w) equals a constant [see (14)]. “ 1
R3) The larger SNR is or the wider the bandwidthfdf.) — (20)
is, the closergyse(n) [the inverse Fourier transform 9 Z [fr(n) * g(n)]?
of G]\qs]{;(w)] is to (5(71) 14+ ﬁ .
R4) gusr(n) is like an autocorrelation function since o Z g%(n)
QMSE(TL) = QMSE(_TL) and GMSE(UJ) Z 0, and thUS, n
amse(0) > |gmse(n)| [3], [4]. where
Furthermore, it can be shown that )
gMSE(O) > |9MSE(7'L)|7 for all n 75 0. (16) Z gm(n)
The proof of (16) needs the following theorem. Re m(g(n) = ————m- (21)
Theorem 1: Suppose that,(n) is the autocorrelation func- Z g2(n)
tion of a wide-sense stationary random proce$s), i.e., n
r.(n) = E{z(k)z(k +n)}. If r.(0) = |r.(no)| for some .
no, thenr. (n) is periodic with period equal to either, when A remark regardingR; ;.. (g(n)) follows.
r.(no) > 0 or 2ny whenr.(ng) < 0. O  R5) It was shown in [5] and [6] thal < R ,n(g(n)) =
The proof of Theorem 1 is given in Appendix A. Note that Ry m(ag(n—7)) < 1and Ry, (ad(n—7)) = 1 for all
Theorem 1 is an extension of the property of autocorrelation m > 2, wherea is a constant, and (—oc < 7 < o0)
functions in [4, p. 84], where only the caserfng) > 0 was is an integer. This result implies that the clogén)
considered. Because both the systéfm) and the MMSE is to 6(n) (except for a scale factor and a time delay),

equalizer vyigp(n) are stable, the overall systepisg(n) the closerRz,,,(g(n)) is to unity.

(= h(n) * vmgr(n)) is also stable (i.e.X, |gvse(n)| < o©) Next, let us present the analytic results about the behavior of
and, thus, is never a periodic sequence. This fact, together wittle inverse filterv(n) associated with/, ,,,.

R4) and Theorem 1, implies that (16) is true.

A. Properties About the Behavior of the Inverse Filter

lll. ANALYSIS OF THE BEHAVIOR OF THE Assume that the length of the inverse filtgin) is doubly
INVERSE FILTER ASSOCIATED WITH J2,1, infinite; thereby, the analysis of the behavior«f:) can be
When SNR is finite, the behavior of the inverse filidn) performed by investigating the behavior of the overall system
associated with the inverse filter criteria ,,, is analyzed in g(n) without the influence caused by finite-length truncation
this section. Because the measurement neise is Gaussian, of v(n) [12].
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Property 1: The overall systeng(n) associated with/, ,, Property 4: The overall systeng(n) associated with/s ,
is a linear-phase system, i.e., approachesyysg(n) (except for a scale factor and a time
A delay) as either SNR or the cumulant orderincreases or
P(w) = arg[G(w)] = —wl+nL,  —m<w<w (22) as the systenf(n) has wider bandwidth. O

) ) ) Appendix D provides an inference (but not rigorous proof)
where¢ is a constant, and is an integer. D of this property. The results of Property 4 can be further

_ See Appendix B for the proof of Property 1. This propert4,amined by considering the following three limiting cases:
implies that the associated inverse fili€n) completely can- ) SNR =

cels (equalizes) the system phase responge(«f (uniquely .

defined up to a linear phase term) and thus, like the MMSE!!? m o= e

equalizer [see R1)], it performs as a perfect phase equalize'r”) f(n) is an allpass system.

(except for an unknown time delay). When SNR= ¢, J2,m = [|vm|*/|o2]™] - Ra,m [by (20)] that,

According to Property 1, lep(n) be a zero-phase versiontogether with RS) and (13), leads to the optimyin) =
of g(n) as avske(n) = 8(n) (except for a scale factor and a time delay).

Whenm = oo, [g(n)]™ ! = aé(n — &) [due to (23) and (24)],
gze(n) = e 7™ g(n +€) (23) where« is a constant, and thug(n) = SBa - guse(n — €)

[by (26)]. For the third case, the corresponding results are
(with the sign ambiguity and time delay ig(n) removed), suymmarized in the following fact (see Appendix E for the
andGzp(w) denote its Fourier transform. From (22) and (23)yroof).
we can see thatizp(w) = |G(w)| = 0. Accordingly, similar =4y \when f(n) is an allpass svste (n) = gusp(n) =
to guse(n) [see R4) and (16)], it can be easily shown that : 8(n) (éifcezpt for a spcale fgcto:@gnci a f(ijszée?ay). In

gzp(n) POSSESSES the following property. other words, like the MMSE equalizer [see R2)], the
Property 2: The zero-phase systeggp(n) given by (23) associated inverse filtexn) is also a perfect equalizer,

is like an autocorrelation function with regardless of the values of SNR and

gzr(0) > |gzp(n)|, foralln # 0. 24
zv(0) > lgzr(n)] * @4 B. Algorithm for Computing the Analytic Overall System
_ . d To efficiently verify the proposed analytic results, let us
This property exhibits the waveshapef>(n) [or, €quiV-  present the following FFT-based iterative algorithm for ob-
alently, g(n)]; specifically, gzp(n) has a unique maximum aining the overall systeng(n) associated with/s,,,, from

at origin (n = 0) and is symmetric about the origin. ThengMSE(w) given by (13) according to Property 3.
observations thus account for zero-phase patterns in the deAIgorithm 1:

convolved signal(n) whenu(n) is a non-Gaussian sparse

. . : o . S1) Seti = 0, and choose an initial gue for .
spike train as in seismic deconvolution because ) : initial guegs(n) 9()

S2) Set:¢ = ¢ + 1. Compute the N-point DFT of
es(n) =™ u(n — €+ gzr(n) [gi—1 ()] =", which is denoted G} V(wi =

2nk/N), using FFT.
[by (10) and (23) (25) S3) Compute
metizwvr\]/g?/’etlgeg;iizl)euOn oh(n)1s determined by the widh Gilwr) = G V(wn) - Guselwr)  [see (27) (29)
Next, a connection between the inverse filter and the MMSE and then compute th&-point inverse DFT of¥; (wz),
equalizer is established as follows. which is denotedj;(n), using FFT.
Property 3: The overall systeng(n) associated with/; ,, S4) Compute
is related togumsr(n) via

g(n) = B-[g(n)]" " * guse(n) (26) 9i(n) = % (30)
AW
or, in the frequency domain n !
G(w) = B- G D(w) - Guse(w) @7 s5) 1f 32 [g:(n) — gi_1(n)]® > ¢ (a preassigned toler-

ance for convergence), then go to S2); otherwise, the

where 3 7 0 is a constant, and analytic overall systeng(n) = g;(n) is obtained.

G(m_l)(w) a Glw) * G(w) * - x Gw) . (28) Some worthy remarks regarding Algorithm 1 are given as
~ Y T— follows.
(=) R6) If the initial conditionge(n) is chosen to be a stable
O linear phase system, then the analytic overall system
See Appendix C for the proof of this property. g(n) obtained by Algorithm 1 is guaranteed to possess
From Property 3, more observations about the relation Properties 1 and 2; see Appendix F for the proof.

between the inverse filter and the MMSE equalizer can beR7) Gradient-type optimization algorithms [32] can also
discovered as follows. be used to find a local maximum af,,, and the
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relevant solution fo(n). However, when the length We can easily observe, from (34), that the optimyim)
of g(n) is large, these algorithms become impracticalssociated with the maximum of;,, partly maximizes
because of extraordinary computational load. On th®&, ,,,(¢(n)) for the ISI reduction [see R5)] and partly
other hand, the FFT lengtlv of Algorithm 1 can maximizesps ., for noise reduction in the meantime. In other
be chosen sufficiently large such that aliasing effectgords, as the MMSE equalizer does, the inverse filtgr)
on the resultany(n) are negligible. In other words, associated with/; ,, also performs noise reduction besides
Algorithm 1 is never limited by the length af(n). the ISI reduction. Furthermore, as the former does [see F3)],
the latter also performs noise reduction better than the ZF
equalizer, as exhibited by the following property.

Property 5: The ratiops .., > pzr. O

See Appendix H for the proof of Property 5.

In this section, let us present the analytic results about theMoreover, according to Property 4, the following results
SNR improvement or degradation ratio after deconvolutiatan be easily inferred:

IV. ANALYSIS OF THE SNR IMPROVEMENT
OR DEGRADATION AFTER DECONVOLUTION

defined as Property 6: The ratiop, ,,, approachegysg as either SNR
or the cumulant ordem increases or as the systeftin) has
_ SNR (31) Wider bandwidth. O
P~ SNR This property also supports the above-mentioned facts about

the noise reduction performed by the inverse filter. In addition,
where SNRdenotes the SNR in the deconvolved sige@), a further inference aboup.,, with respect to SNR is as

ie., follows:
5 ) Property 7: The ratio p»,,, always increases as SNR
SNRzi{esl(n)Q} see (8). (32) decreases. , O
E{w'(n)?} See Appendix | for the inference of Property 7. In other

L . words, the lower SNR is, the more the inverse filign)
Note thaty > 1 indicates the SNR improvement after decon;qqqiateq with/, ., performs as a noise reduction filter.
volution, whereas < 1 indicates the SNR degradation after o

deconvolution.

It can be seen, from (18), that SNRefined by (32) can
be further expressed as In this section, let us present three examples to demonstrate

the preceding analytic results as well as the proposed FFT-
9 9 based iterative algorithm (Algorithm 1) for obtaining the
auz g°(n) analytic overall systeng(n) associated with/s ,;,.
. . . (33)  Example 1: In this example, the desired signdln) was as-
%Z [/1(n) = g(n)] sumed to be a zero-mean, i.i.d., exponential random sequence
" with variances? = 1 and skewnesss = 2. The systemh(n)

) ) with transfer function
which reveals that SNRdepends omy(n) [or, equivalently,

C 1-272"1 +0.5272
v(n)], and so does the ratip [since (31)]. Therefore, for H(z) = — -
clarity, let pzr, pnse and ps ., denote the values of for the 1401z = 012272
ZF equalizer, the MMSE equalizer, and the inverse filter) (taken from [6, Example 1]) was used. The noisy dafa)
associated withJ, ,,,, respectively. Two facts regarding;r were generated using (1), (2), and (7), where two different
and pyse are described as follows: (see Appendix G for theystems forb(n) (i.e., B(z) = 1+ 0.827% and B(z) =
proof) 1 — 0.8271) were considered. The inverse filtefn) was
F2) If the measurement noise(n) is white, pzr < 1; approximated by a causal FIR filté(n) of order equal to
otherwise, pzr can be greater than unity. In otherl6. The criterionJ/; 3 (i.e., m = 3) was used with the two
words, the ZF equalizer always leads to the SNRumulantsCz{c(n)} and Cz{c(n)} [see (5)] replaced by the
degradation after deconvolution whar{n) is white. ~ associated sample cumulants [20]-[25]. The Fletcher—Powell
F3) The ratio pmse > pzr, implying that the MMSE optimization algorithm (an iterative gradient-type optimization

equalizer performs noise reduction better than the z#gorithm [32]) was used to find the (local) maximum.bfs

V. SIMULATION AND CALCULATION RESULTS

SNR =

equalizer. and the relevant estimat&(n) as well asg(n) = h(n) *
Let us rewriteJ, ,,, given by (20) as a function of 9(n), where i(n) = é(n — 8) was used to initialize the
g(n) and p2 ,,, as Fletcher—Powell optimization algorithm. Thirty independent

runs were performed with data length equal to 2048 and SNR
= 0 dB. On the other hand, the analytic overall systgm)

J m n bl m . . .
2m(9(n); p2m) was also calculated using Algorithm 1 with(n) = guse(n)

2
= Dol - Ra m(g(n)) - 1 [according to R6) and R1)], the FFT lengfii = 1024, and
|o2m 9 1 o L
Tu ‘1 —_ the convergence toleranee= 107°.
p2,m - SNR Fig. 2(a) shows the average (dashed lirepne standard

[by (33) and (31) (34) deviation (dotted lines) of the obtained 3(:)’s together with
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The average * one standard deviation of 30 overall system estimates Impulse response h(n)
1 T T T T T T T T T r T T T T .
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. )
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.51 !
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Fig. 2. Simulation and calculation results of Example 1. (a) Average (dashed

line) £+ one standard deviation (dotted lines) of the obtained 30 overall system

estimatesj(n)’s together with the analytic ov?rall systemin) (solid line) (b)

;)Obts;r:f(gagsggrg;(lg;)rihrlrlif(c))z(zi)l'— 1+0-8277. (b) Results corresponding Fig. 3. Systems used in Ex_ample_ 2. (a) Impulse resporiges’s. (b) '
Magnitude responsggf (w)|’s (in decibels) of the narrowband system (solid

lines) and the broadband system (dashed lines), respectively.

0 0.5 25 3

1 15 2
Radian frequency ()

the analyticg(n) (solid line) for B(z) = 1+0.82~! (a lowpass

system), where all the scale factors and time delays betweﬁn) = &(n) [i.e., w(n) is white] was used. Fig. 3(a) and

g(n) and the analyticg(n) have been artificially removed.(b) depict the impulse responségn)’'s and the magnitude

Fig. 2(b) shows the results corresponding to those shownrésponses$H (w)|'s (in decibels) (i.e.20log;, |H(w)|) of the

Fig. 2(a) for B(z) = 1 — 0.8z ! (a highpass system). Wenarrowband system (solid lines) and the broadband system

can see, from Fig. 2(a) and (b), that as predicted in Propert{@@shed lines), respectively. The analygig:) was obtained

1 and 2,3(n) is approximately zero-phase (symmetric) andsing Algorithm 1 with go(n) = gmse(n), the FFT length

3(0) > g(n)|,n # 0. Moreover, g(n) approximates the N = 1024, and the convergence tolerance- 102,

analytic g(n) well in spite of the low SNR (0 dB). These For the narrowband system, Fig. 4(a) displays the magni-

results also reveal that the analygi@:) obtained by Algorithm tude responsef7(w)|'s associated with/s 3, J2 4, Jo 5, and

1 can serve as a good prediction (). Ja ¢ (short-dash dot, long-dash dot, short-dash and long-dash
Example 2:In this example, let us only show the calcudines, respectively) together with the associa®gisg(w)

lation results associated with the analygig:). A minimum-  (solid line) for SNR = 30 dB, where scale factors were

phase narrowband ARMA(4,2) system taken from [30] andaatificially removed. The corresponding results for SNRIO

nonminimum-phase broadband ARMA(4,3) system taken frodB are displayed in Fig. 4(b). Note that in Fig. 4(b), the long-

[33]-[36] for the systenh(n) were considered, and the systendash line and the solid line almost overlap each other. From
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Fig. 4. Calculation results of Example 2 for the narrowband system. (Bjg. 5. Calculation results of Example 2 for the broadband system. (a)
Magnitude responsef(w)|'s associated with/z 3, J2.4,J2 5, and Jo s Magnitude responsef7(w)|’s associated with/z 3, J2 4, J2,5, and Ja6
(short-dash dot, long-dash dot, short-dash and long-dash lines, respectiv@iiprt-dash dot, long-dash dot, short-dash and long-dash lines, respectively)
together with the associate@yisi:;(w) (solid line) for SNR= 30 dB. (b) together with the associate@ysy:(w) (solid line) for SNR= 0 dB. (b)
Results corresponding to part (a) for SNR40 dB. Results corresponding to part (a) for SNR5 dB.

Fig. 4(a) and (b), we can see that as predicted in Propertyoh, the bandwidth of the systefi{n) and slightly on the value
|G(w)| can be viewed as a better approximationZgsg(w) of SNR for this case.
for either largerm or higher SNR. Table | lists the ratioss 3, p2.4, p2 5, P26, PMsE, and pzr

For the broadband system, the results corresponding aod the corresponding SNR (in decibels) for the narrowband
those in Fig. 4(a) and (b) are depicted in Fig. 5(a) and (Bystem. The corresponding results for the broadband system
respectively, for SNR= 0 dB and 5 dB instead. Again, are listed in Table Il. We can see, from Tables | and I, that
these results are consistent with Property 4. Moreover, frafre values ofps ,,,m = 3,4,5, and 6 are close to those of
Figs. 4(a) and 5(a), 4(b), and 5(b), we can see [f#&b)| can puse and better for higher SNR. Furthermore, the former
also be viewed as a better approximation&gsg(w) for the are closer to the latter for the broadband system than for
broadband system than for the narrowband system, in sgie narrowband system. These observations support Property
of much lower SNR (0 and 5 dB) for the broadband syster8. since f(n) = h(n) [see (15)] for the white noise case
These results exhibit that the closeness of the inverse filtarthis example. Moreover, as predicted by Property 7, the
associated with/, ,,, to the MMSE equalizer depends heavilwalues ofps ,,,,m = 3,4, 5, and6 increase as SNR decreases.
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TABLE |
CALCULATION RESULTS OF EXAMPLE 2 FOR THE NARROWBAND SYSTEM. THE RATIOS
02,3, 02,4, 02,5, P2,6- PMSE> AND pzr AND THE CORRESPONDINGSNR’S (N DECIBELS)

SNR

Criterion 40 dB 30 dB 20 dB 10 dB 0dB
P SNR' (dB) 12.8534 12.8054  12.6803  9.8840  3.9761
23 P2 0.0019 00191 01854 09736  2.4981
J SNR' (dB) 10.1072 10.9232 109453  9.1882  5.0111
2 P2 0.0010 00124 01243 08295  3.1704
J SNI (dB) 9.0116 9.9040 101114 87127  4.4307
25 P25 77965 x 107 0.0098 01026  0.7435  2.7737
; SNR' (dB) 8.6084 9.1813  9.6217 84203  4.5005
%5 P26 72583 x 107 0.0083  0.0917  0.6951  2.8187
MSE SNR’ (dB) 8.3439 76930  7.6688  7.0468  4.0761
PMSE 6.8205 x 107 0.0059  0.0585  0.3066  2.5563

- SNR' (dB) _12.8243  —22.8243 —32.8243 —42.8243 -—52.8243

i 5.2188 x 1076

TABLE I
CALCULATION RESULTS OF EXAMPLE 2 FOR THE BROADBAND SYSTEM. THE RATIOS
£2,3,02,4, 02,5, 02,6, PMSE, AND pzp AND THE CORRESPONDINGSNR'S (N DECIBELS)

SNR
Criterion 40 dB 30 dB 20 dB 10 dB 0dB
J SNR' (dB)  28.7695  21.1127 144796  6.1343 0.4967
e P 0.0753 0.1292 0.2805 0.4106 1.1212
J SNR' (dB)  28.7699 211229  14.5028  6.1498  —0.1751
2 P24 0.0753 0.1295 0.2820 0.4121 0.9605
. SNR' (dB) 287699 211228  14.5022  6.1472 - —0.4894
3 p2s 0.0753 0.1295 0.2820 0.4118 0.8934
J SNR/ (dB)  28.7699  21.1228 145023  6.1473  —0.5471
26 P2 0.0753 0.1295 0.2820 0.4118 0.8816
NISE SNR' (dB) 287699 211228 145023  6.1473  —0.5741
’ pusis 0.0753 0.1295 0.2820 04118 0.8762
SNR' (dB)  28.3147 183147 83147  —1.6853 —11.6853
ZF
PzF 0.0678

On the other hand, the values pfr in Tables | and Il are  Example 3—Seismic DeconvolutioAs mentioned in
not only much smaller than unity [as mentioned in F2)] buBection Ill, «(n) is a non-Gaussian sparse reflectivity
also smaller than those ¢fysg [as mentioned in F3)] and sequence in seismic deconvolution that can be modeled as
p2.m,m = 3,4,5, and 6 (as predicted by Property 5). Ina Bernoulli-Gaussian (B-G) sequence [33]-[36], as
addition, some values Qhysg and pa ., m = 3,4,5, and6 _ )
are larger than unity (see the last column of Table | and the last u(n) =q(n) - r(n)
column of Table Il forp, 3). These observations indicate thatvhereq(n) is a Bernoulli sequence with parameteri.e.,
the inverse filter associated with, ,,, as well as the MMSE

. : L A, gln)=1
equalizer performs not only as an ISI reduction filter but also as Prig(n)] = { 1-a, gn)=0
a noise reduction filter, particularly when SNR is low, whereas N
the ZF equalizer performs as a perfect ISI removal filter desp#ed r(n) is a zero-mean white Gaussian random process
the tremendous SNR degradation in the deconvolved sigmath variances?. Note thato? = o2\ 3 = 0, and 4 =
for this case. 302X(1 — \) for the B-G sequence.
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. . . © Fig. 7. Simulation results of Example 3 for SNR 20 dB. (a) Segment
Fig. 6. Simulation results of Example 3 for SNR 0 dB. (a) Segment (, = ( ~ 255) of the synthetic seismic data(r). (b) Deconvolved signal
(n =0 ~ 255) of the synthetic seismic date(n). (b) Deconvolved signal ¢(y,) (bars). (c) Corresponding signal componegtn) (bars) together with
e(n) (bars). (c) Corresponding signal componentr) (bars) together with the true reflectivity sequence(r) (circles).
the true reflectivity sequence(n) (circles).

o

. . 2 and eg(n) given by (25) in Section lll,es(n) consists
The nmse-free synthetic de.ltﬁs(”) \:vere ngneratedr by of approximate zero-phase wavelgt&)'s with amplitudes
convolving a B-G sequence (with= 0.05 ando;, = 0.0225) proportional tou(n), whereg(n) = h(n) = ©(n). Note, from
with a third-order nonminimum-phase wavelk{n) (taken Fig. 6(b) and (c), that the two close spikesrat= 200 and
from [6, Example 2]) whose transfer function is given by n = 202 are no’t discernible because the spacing between

14012~ —3.2725272 1+ 1.411252~3 the two spikes is much narrower than the width gff:)

H(z) = 1—-1921+1.152522 — 0.16252-3. for this case (SNR= O.dB)'. Fig. 7(a)—(c) shows the results

) o ) ~corresponding to that in Fig. 6(a)—(c), respectively, for SNR
Then. the synthetic seismic datén) were obtained by adding — 20 gB. We can see that the deconvolved sige) in
a white Gaussian noise/(n) to the syntheticzs(n). The Fig 7(b) is a much better approximation 4¢n) than that in

Fletcher—Powell optimization algorithm was used to find theijg. 6(b) due to higher SNR. Moreover, from Fig. 7(b) and
(local) maximum of />4 (i.e., m = 4) and the relevant () e can observe that the two close spikes at 200 and
inverse filter estimatei(n), where o(n) was assumed t0,, — 9092 are now resolvable simply because the widt§6f)

be a 16th-order causal FIR filter, and the initial conditiops narrower than their spacing for this case (SNRO dB).
©#(n) = 6(n — 8) was used. A single run was performed for

data length equal to 4096 and SNRO and 20 dB.

Fig. 6(a) displays a segmefit = 0 ~ 255) of the synthetic
seismic dataz(n) for SNR = 0 dB. Fig. 6(b) and (c) display We have presented a performance analysis for the inverse fil-
the deconvolved signat(n) (bars) and the correspondingter criteriaJs .., given by (5), wheren > 2 when SNR is finite.
signal components(n) (bars), respectively, together withThe performance analysis was conducted by investigating the
the true sparse reflectivity sequeneén) (circles). We can behavior of the relevant overall systgyfv:) and the SNR im-
see, from Fig. 6(c), that as the discussion about Propepsovement or degradation rati® ,,, after deconvolution [see

VI. CONCLUSIONS
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(31)]. Seven properties fo¥, ,,, were presented in terms ofshown to satisfy the inequality [37]

SNR, the cumulant order., the bandwidth of the systelf(n), m—1

and the ratigs ,,,. It is almost formidable to find a closed-form  |Cp{e(n)}| < <—> Y]

solution for the overall system(n) from the highly nonlinear

function /> ,,, given by (20). The proposed FFT-based iterative { / / Glwr) |G (w1

algorithm (Algorithm 1) is a computationally efficient method — —x

for obtaining the analytic overall systegin) from Gysg(w)

given by (13), and the obtaineg(n) can then be used to Gt wm) dwl"'dwm_l}

verify the proposed analytic results. (B.2)

alsvgethvéogﬁlR“kﬁn;?osénrrﬁ)grisif cgzztrag(:t|gr?l¥az:)zhlcnsljll dbUt nd the equality of (B.2) holds if and only #(w) is linear
for —m < w <, ie.,

be considered as performance measures for deconvolutidh

algorithms. Although the inverse filter associated with,, O(w) = —wé + 5, —m<w< T (B.3)

(7’ > 4) is a perfect equalizer for finite SNR, the Signa:lNhereé’ and x are constants.

componentes(n) in the deconvolved signal may be invisible Becauseg(n) is real

due to low SNR [see (32)]. Propertles 5 through 7 suggest

that J; ., is preferable to/,. ,,, (r > 4) for deconvolution. As ‘P(_—w) : —®(w) +2nL, —r<w<Tw (B.4)
a final remark, the presented analytic results are also helpfftereL is an integer. By (B.3) and (B.4), we therefore have
in the interpretation of the deconvolved signals usihg,. % = mL. Thus, we have completed the proof thbfw) is
given by (22), regardless of wht(w)| is. QED
APPENDIX A
PROOF OF THEOREM 1 APPENDIX C
Let us use the cosine inequality [4, p. 67] as PROOF OF PROPERTY 3
. Taking partial derivative ofJ,,, given by (20) and (21)
. . 2 ,
[E{Z(k)[z(k;r n) = sign(r=(no)) Z§k+”+”°)]}] with respect to the overall system coefficients) (where
< E{z°(k)} - E{[2(k + n) — sign(r~(no)) k=---,-1,01,--) gives rise to
2(k+n+no)*} (A1)
oJ 2 m gm—l(k.)

where sigiia) = 1if « > 0 and—1if a < 0. The inequality 5z =2m - Jom - -
(A.1) can be further shown to be Z gm(n

[r(n) = sign(r= (n0)) - 7= (n + no)]” +022 [fi(n)  g(n)] - fi(n = k)
< 2:72(0) - [r2(0) = |r=(no)ll (A2) 229 +sz

for all n. We can see, from (A.2), thatif,(0) = |r.(no)|, then

(C.1)
r2(n) = sign(r.(no)) - 7-(n + no) (A.3) Setting (C.1) to zero yields
vyh(ijch impllifs thtatrz(n) ;;5 a )periodic fl(J)nCtiO;l Withh pe- iy ' "‘%Z [fi(n) % g(n)] - fr(n — k)
ey g, e e ne) > 0 Or e B Y 229 +022 it
’ (C.2)
APPENDIX B

and then taking the Fourier transform of (C.2) with respect to

PROOF OF PROPERTY 1 the indexk leads to

By (18) and Parseval’'s relation, the denominator.Jef,, y , Gw)
given by (5) can be shown to be GmD(w) 7y Glw)+oy |F(w)|?
(C.3)
|Cafe(n)}™ > gm(n) 022 7 +o—2§j [i(n) * g(n)]?
1 (" G(w)[? " "
=|— / o2 |G(W)*+ o2 - Glw)l dw whereG(" =1 (w) is defmed as (28). From (C.3) and (14), we
2 J_. 7| F(w)|? . ; :
(B.1) can easily obtain the result given by (27) where
QZ g°(n) +o QZ [fi(n
We can see, from (B.1), thaC>{e(n)}I™ is dependent on 8= £0 (C.4)
the magnitude respongé&/(w)| but independent of the phase 022 at(n

responseb(w) of the overall systeng(n). On the other hand,
|Cin{e(n)}| in the numerator of/, ,,, given by (5) has been is a constant. Q.ED.
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APPENDIX D By (20) and (E.1), we have
INFERENCE OFPROPERTY 4

2
It can be inferred, from (23) and (26), that as SNR or the /2.m(9(1)) = o2 [m “Bam(9(n)) -
bandwidth of f(n) is increased ¢

3 m=1 D.1
gzp(n) = - [gzr(n)] (®-D which, together with R5) and R2), therefore implies the

sincegvse(n) — 6(n) by R3), where@ = B-exp[yr L(m—2)] statement of F1). Q.ED.
is a constant. Equation (D.1) indicates that

1
= (E.2)
072] 1
1+ 0_—3 ]

5 APPENDIX F
[gzp ()] 2 — {(1)’//3, :]1: zggzg i 8 (D.2) " PRO_OF FOR THESTATEMENT OF R6) )
et &;(w) = arg[Gi(w)] [see (29)] and ®;(w) =

which together with the fact thatp(n) is stable zero-phase @8[Gi(w)l, where Gi(w) is the Fourier transform of;(n)
[see (23)] implies that given by (30). Suppose that

. Q1 (w) = arg[G,—1(w)] = wa + wl, —m<w< 7w
gzr(n) — )+ n — ki) + 6(n + k;)] (F.1)
/31/("’ 2) { Z whereq is a constant, andis an integer. Then, what we need
(D.3) to prove is thatd;(w) has the same form ab; ;(w) given
by (F.1).
wherek; and K are non-negative integers. Furthermore, from Note that G(m 1)( ) [see S2) of Algorithm 1] can be
(D.3) and (24), we can infer that expressed as
]_ (rn—l) tel’mS
gZP(TL) — m . 6(71) (D4) (rn 1)
p GiTL (W) = G (W) x G (W) - x Gi(w)
ie., K = 0 in (D.3)] as SNR or the bandwidth of(n) is (1N / /
increased. It then follows, from (D.4) and (26), that S \2r _ﬁ _ﬁ G
N 1 ~
gzr(n) = B [gzr(n)]™ ™ * gusr(n) — W ~gmsr(n). | Gimt (o) - |G (w — Z 9781
(D.5) =t
As a result, we conclude thatn) — guse(n) (except for . ile. et B (Q
a scale factor and a time delay) as SNR or the bandwidth of exp 4 J | Rima () oo+ Rimy ()
f(n) is increased m—9
On the other hand, as the cumulant ordeiis increased + D, <w — Z Qk> } dQy - dQ,,, .
m— m— k=1
[gzr(n)] t— [9zr(0)] b 6(n) (D.6) (F.2)

due to (24). From (D.6) and (26), we can infer that as tgy (F.1) and (F.2)G:(w) given by (29) can be shown to be
cumulant orderm is increased

20() = - lgze (W™ % gs(n) Gilw) = {(%)m 2 / [ (Gt

—>/3 [g70(0)]™ " - gusm(n).  (D.7) Gt (Q2)
. m— 2
In other words, we have inferred the statement of Property 4. i <w _ Z Qk) a0 ___deQ}
k=1
APPENDIX E -Guse(w) - exp{jlwa + wl(m — 1)]} (F.3)
PROOF OF F1) S
. . which implies that
When f(n) is an allpass system}'(w)| = ¢ (a positive
constant), then P;(w) = arg[Gi(w)] = wa + wl(m — 1), —r< w7
. (F.4)
5™ i) + o) _ 1 |G(w)|? dw since Gusp(w) > 0 [see (13)]. From (30), it follows that
- 2r o [F()? ®,(w) = ©,;(w). This, together with (F.1) and (F.4), indicates
1 1 /= ) that if g;—1(n) is linear phase, them;(n) is also linear phase.
=2 9 |G(w)[*dw As a consequencei(n) obtained by Algorithm 1 is linear
1 o phase as long ag(n) is linear phase. Meanwhile, Property
== 292(71). (E.1) 2 can also be applied to the obtaingth) because it was
<= deduced from (22). Q.E.D.
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APPENDIX G B. Proof of F3)

PROOF OF F2) AND F3) Let Juse(g(n)) denote the mean square error as

A. Proof of F2)

Sinceg(n) = 8(n) for the ZF equalizerpzr given by (31)
can be easily shown to be

Tuselg(n) = E{fu(n) — e(n)]}. (G.5)

Using the principle of orthogonality [3], [4], we can easily

Z b2(n) show that the minimum value Qfyise(g(n)) is given by
PZF = - —g?.{1—
Z h2(n Z fE(n Juse(g(n) = guse(n)) = oy, - {1 — guse(0)}
2
:gi.{l_gl\'LE(O)} (G.6)
= / | B(w)[2dw guse(0)
= — 2 since gusk(0) # 0 [see (16)]. From (14), we have
2m ) & 2n — |H(W)? 2 2 2
by (19 G.1 1 = Gusp(w) 7w [P+,
[by (19). G.1) = IMSEW) T T S T w2
. . . 2
If w(n) is white, |B(w)| = ¢ (a positive constant) due to (7), _ o Gusew) 1
and then =Cusel) + 5 T ey G0
por = = 1 T . (G.2) Taking the inverse Fourier transform of (G.7) yields
i 2
2 | MHOE A on | TR @ o2
6(k) = guse(k t— Z n)+ guse(n)] - filn—k) (G.8)
By the Cauchy—Schwartz inequality Tu "y
ﬁ ) ﬁ 1 which further leads to
J o e [
—T —T w
x 1 2 gusr(0) = Z (k) gusr(k)
> H = (27)? : K
2| [ | =@ @) e S
= g — fi(n) * guse(n)]”.
which, together with (G.2), therefore leadsdgr < 1. se(® ox - ' MSE

On the other hand, f(n) is not an allpass system [i.eu(n) (G.9)
is colored], it is possible thatzr > 1. To show this, let us
consider the following case. Suppose ti&tw) = 1 + ¢/  Thus, by (G.6) and (G.9), we obtain (G.10), shown at the
and B(w) = |Hw)]? = 2(1 + cosw) > 0. Note that pottom of the page.
B(w) = |B(w)| and thatb(0) = 2 and b(1) = b(-1) = 1. On the other hand, by (8) and A4¥usk(g(n)) given by
Then, by (G.1), we have (G.5) can be further expressed as

3 | Bwd XU uselo(n) = B{(n)} + B{es(n)?} + B (n)?)
prr == 2= gy > L — 2. E{u(n)e (n)}
1 b*(0)
B —ieot Y ek ¥l
(G.4)
This therefore completes the proof of F2). —202. g(O) [by (18)] (G.11)

gMSE(O)

ZQI%ISE o2 Z [fi(n) * gmse(n)]?
%

Juse(guse(n)) = o2 - <1 —

_o2 dq o Suse®) ! [by (33) and (31) (G.10)

Z guse(k) 1 + L
2

pusk - SNR
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6(n)

2 - 1
Ty 2 1+ ——
1+a—32f1(”) +pZF'SNR

[by (33) and (31)]

&(n)

(G.12)

(associated with the ZF equalizer) into (G.11) yields

6(n
JMSE 3 ()
L+—5 > fim)
1
2
= Ou M 1 - 0_2
1+ > fRn)
1
1 -
[ o SR
> Iuvse(gvsr(n))
— 52 1_ Jhse(0) . 1
u 2 1
gMSE(k) 1+ ——
\ zk: pmsk - SNR

(G.13)

Since g31s(0) < Tk g3sp(k), (G.13) implies thatovsk >
PZF- QED

APPENDIX H
PROOF OF PROPERTY 5

By (34), the optimumg(n) associated with the maximum
of J;,, satisfies

J. _ |’7m|2 R 1
2,m(9(ﬂ)7p2,m) = | Sy 27771(9(71)) . : -
u 1 o
‘ * p?,rn M SNR
2 J2,m(g(n) = 6(n), p2,m = pzr)
Y |? 1
= ) H.1
o2 [, 1 |7 (H.1)
pzr - SNR

where R ,,,(g(n) = é(n)) = 1 [see R5)] has been used in the

derivation of (H.1). By (H.1) and the fact th& ,,,(g(n)) < 1
[see R5)], the result that ,,, > pzr can be obtaine@.E.D.

APPENDIX |
INFERENCE OFPROPERTY 7

Let SNRy and SNR be two different values of SNR
and SNR; > SNR;.. Additionally, let (gn(n),p(H)) and

2.m

(gL(n),pg?,Zl) be the optimum solutions to the maximum of'4

Jo.m given by (34) for SNR= SNR; and SNR= SNRy,
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respectively. From (34), it follows that when SNRSNR;, 4

L)

T (gL(n), P50
:ﬁgﬁﬁm@m»
L > D (on(n), o)
1+m
= b o e (1)
1+w

From (D.4) in Appendix D, we can infer thagu(n) is
closer toé(n) (except for a scale factor and a time delay)
than is g1.(n) since SNR; > SNR_. and further infer that
Ry m(gu(n)) > Ram(gr(n)) by R5). Therefore, from (I.1)
and the result oR; ,,,(gu(n)) > Rz m(g1.(n)), we can obtain

()

L
p2,rn — e

2.m-

(1.2)

In other words, the ratiops ,,, always increases as SNR
decreases.
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