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Performance of Cumulant Based
Inverse Filters for Blind Deconvolution

Chih-Chun Feng,Student Member, IEEE,and Chong-Yung Chi,Senior Member, IEEE

Abstract—Chi and Wu proposed a class of inverse filter criteria
Jr;m using rth-order and mth-order cumulants (where r is
even andm > r � 2) for blind deconvolution (equalization)
of a (nonminimum phase) linear time-invariant (LTI) system
with only non-Gaussian measurements. The inverse filter criteria
Jr;m for r = 2 are frequently used such as Wiggins’ criterion,
Donoho’s criteria, and Tugnait’s inverse filter criteria for which
the identifiability of the LTI system is based on infinite signal-to-
noise ratio (SNR). In this paper, we analyze the performance
of the inverse filter criteria J2;m (r = 2) when the SNR is
finite. The analysis shows that the inverse filter associated with
J2;m is related to the minimum mean square error (MMSE)
equalizer in a nonlinear manner, with some common properties
such as perfect phase (but not perfect amplitude) equalization.
Furthermore, the former approaches the latter either for higher
SNR, cumulant-order m, or for wider system bandwidth. More-
over, as the MMSE equalizer does, the inverse filter associated
with J2;m also performs noise reduction besides equalization.
Some simulation results, as well as some calculation results, are
provided to support the proposed analytic results.

Index Terms—Blind deconvolution, equalization, higher order
statistics, inverse filter criteria.

I. INTRODUCTION

BLIND deconvolution (or blind equalization) is a signal
processing procedure that recovers a desired signal

from a given set of measurements

(1)

where

(2)

is the noise-free signal distorted by an unknown linear time-
invariant (LTI) system (channel) , and is the mea-
surement noise accounting for sensor noise as well as physical
effects not explained by The problem of blind decon-
volution arises comprehensively in various applications such
as digital communications, seismic signal processing, speech
modeling and synthesis, ultrasonic nondestructive evaluation
(NDE), and image restoration.
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The conventional linear prediction error (LPE) filter [1]–[4]
using second-order statistics (correlations or power spectra)
has been widely used in blind deconvolution in the past
three decades. The LPE filter, however, is minimum phase
with magnitude response proportional to that of the inverse
system of Therefore, when the unknown system
is not minimum phase, phase distortion will remain in the
predictive deconvolved signal, and meanwhile, the perfor-
mance of the LPE filter is sensitive to additive noise simply
because correlations of the measurements are the sum
of correlations of the noise-free signal and those of
the additive noise On the other hand, inverse filter
criteria [5]–[19] using higher order statistics (cumulants or
polyspectra [20]–[25]) have been reported in the past decade
for blind deconvolution of nonminimum-phase LTI systems
when is non-Gaussian, and is Gaussian for the
following reasons. Higher order cumulants of the non-
Gaussian measurements contain not only the amplitude
but also phase information of the unknown system ;
furthermore, they are insensitive to Gaussian noise since all
higher order cumulants of Gaussian random processes
are equal to zero.

In practical applications, the signal-to-noise ratio (SNR)
defined as

SNR see (1) (3)

may not be very high, and thus, the presence of the mea-
surement noise may lead to serious effects on the
deconvolved (equalized) signal as well as on the behavior
of the deconvolution filter (equalizer) for finite SNR. For
example, in digital communications, it is well known that
the infinite-length zero-forcing (ZF) equalizer [26] can ideally
eliminate the intersymbol interference (ISI) induced by the
channel distortion, namely, it is a perfect (amplitude and
phase) equalizer. However, the ZF equalizer may also signifi-
cantly amplify the noise power in the equalized signal, thereby
leading to high error rate in the following decision procedure
for reconstruction of the desired information sequence. On
the other hand, the minimum mean square error (MMSE)
equalizer [26] is known to perform the ISI and noise reduction
simultaneously when SNR is finite.

Let be an estimate for the inverse system of and
be the output of the inverse filter in response to the

measurements , i.e.,

(4)
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Moreover, let cum denote the joint cumulant
of random variables Chi and Wu [5], [6] find
the optimum inverse filter by maximizing

(5)

where is even, , and
denotes the th-order ( th-order) cumulant of , i.e.,

cum
(6)

Similar results about the inverse filter criteria were
also reported in [7]. This class of inverse filter criteria
includes, for example, Wiggins’ criterion [8] (associated with

), Donoho’s criteria [9] (associated with ), and Tug-
nait’s criteria and [10] as special cases. The
versions of for complex signals have been proposed by
Shalvi and Weinstein [11], [12] for communication applica-
tions.

Chi and Wu [5], [6] proved that under some general
assumptions (to be presented in Section II), the inverse filter
criteria given by (5) lead to perfect equalization either
when and SNR or when In other words,
when SNR is finite, the inverse filter associated with
for is exactly the same as the ZF equalizer, while that
associated with , such as Wiggins, Donoho, and Tugnait’s
inverse filter criteria mentioned above, is not clear for finite
SNR. This, therefore, motivated the studies about the behavior
of the resultant inverse filter for and the studies
about the noise reduction performed by the inverse filter
when SNR is finite.

The rest of the paper is organized as follows. Section II
presents the model assumptions and briefly reviews the MMSE
equalizer for ease of later use. Section III analyzes the behav-
ior of the inverse filter associated with for finite
SNR. Section IV presents some analytic results about the SNR
improvement or degradation after deconvolution. In Section V,
some simulation and calculation results are provided to support
the proposed analytic results. Finally, some conclusions are
drawn in Section VI.

II. M ODEL ASSUMPTIONS AND

REVIEW OF THE MMSE EQUALIZER

For the non-Gaussian measurements modeled by (1)
and (2), let us make the following assumptions.

A1) The LTI system , which can be either minimum
phase or nonminimum phase, is real stable and its
stable inverse system, which is denoted , exists.

A2) The desired signal is a real, zero-mean, inde-
pendent identically distributed (i.i.d.), non-Gaussian
random process with variance and th-order cu-
mulant

A3) The measurement noise is a real, zero-mean,
(white or colored) Gaussian random process that can
be modeled as

(7)

Fig. 1. Block diagram for the interpretation of blind deconvolution using
inverse filters.

where is a real white Gaussian noise with vari-
ance , and is a real stable LTI system with its
stable inverse system, which is denoted , being
existent.

A4) The signal is statistically independent of the noise

For ease of later use, let us further express the deconvolved
signal given by (4) as (see the block diagram in Fig. 1)

by (1) (8)

where

by (7) (9)

corresponds to the noise component in , and

by (2) (10)

is the corresponding signal component in which

(11)

is the overall system after deconvolution. Next, let us briefly
review the MMSE equalizer.

Let and denote the frequency
responses of and , respectively. The
(infinite-length) MMSE equalizer, which is denoted ,
which minimizes the mean square error (MSE)

, is a (noncausal) Wiener deconvolution filter with
frequency response given by [4]

(12)

where the superscript ‘’ represents complex conjugation. The
corresponding overall system is therefore given by

(13)

Note that when the measurement noise is white, i.e.,
is an allpass system [see (7)], , given by (12), is
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the same as the frequency response of Mendel’s (steady-state)
minimum-variance deconvolution (MVD) filter [27]–[29].

By A3), the overall system given by (13) can be
further written as

(14)

where is the frequency response of the
system

(15)

It can be seen that the overall system given by (13)
is equivalent to that of Mendel’s MVD filter as given by (14)
when the effective system (i.e., and
the measurement noise is white). Thus, some
properties about Mendel’s MVD filter reported in [30] and
[31] are also shared by the MMSE equalizer that are
summarized as follows.

R1) The MMSE equalizer is a perfect phase
equalizer since is zero phase [see (13) or
(14)].

R2) When is an allpass system, the MMSE equalizer
is a perfect (amplitude and phase) equalizer

since equals a constant [see (14)].
R3) The larger SNR is or the wider the bandwidth of

is, the closer [the inverse Fourier transform
of ] is to

R4) is like an autocorrelation function since
and , and thus,

[3], [4].

Furthermore, it can be shown that

for all (16)

The proof of (16) needs the following theorem.
Theorem 1: Suppose that is the autocorrelation func-

tion of a wide-sense stationary random process , i.e.,
If for some

, then is periodic with period equal to either when
or when

The proof of Theorem 1 is given in Appendix A. Note that
Theorem 1 is an extension of the property of autocorrelation
functions in [4, p. 84], where only the case of was
considered. Because both the system and the MMSE
equalizer are stable, the overall system

is also stable (i.e., )
and, thus, is never a periodic sequence. This fact, together with
R4) and Theorem 1, implies that (16) is true.

III. A NALYSIS OF THE BEHAVIOR OF THE

INVERSE FILTER ASSOCIATED WITH

When SNR is finite, the behavior of the inverse filter
associated with the inverse filter criteria is analyzed in
this section. Because the measurement noise is Gaussian,

the th-order cumulant given by (5) can be shown
to be [20]–[25]

(17)
On the other hand, by (8)–(10), given by (5) for

is known to be [2]–[4]

(18)

where in the third line, we have used the fact that
[see (11)] and that the inverse system of

is given by

see (15) (19)

By (17) and (18), given by (5) can be written as a function
of as

(20)

where

(21)

A remark regarding follows.

R5) It was shown in [5] and [6] that
and for all

, where is a constant, and
is an integer. This result implies that the closer
is to (except for a scale factor and a time delay),
the closer is to unity.

Next, let us present the analytic results about the behavior of
the inverse filter associated with

A. Properties About the Behavior of the Inverse Filter

Assume that the length of the inverse filter is doubly
infinite; thereby, the analysis of the behavior of can be
performed by investigating the behavior of the overall system

without the influence caused by finite-length truncation
of [12].
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Property 1: The overall system associated with
is a linear-phase system, i.e.,

(22)

where is a constant, and is an integer.
See Appendix B for the proof of Property 1. This property

implies that the associated inverse filter completely can-
cels (equalizes) the system phase response of (uniquely
defined up to a linear phase term) and thus, like the MMSE
equalizer [see R1)], it performs as a perfect phase equalizer
(except for an unknown time delay).

According to Property 1, let be a zero-phase version
of as

(23)

(with the sign ambiguity and time delay in removed),
and denote its Fourier transform. From (22) and (23),
we can see that Accordingly, similar
to [see R4) and (16)], it can be easily shown that

possesses the following property.
Property 2: The zero-phase system given by (23)

is like an autocorrelation function with

for all (24)

This property exhibits the waveshape of [or, equiv-
alently, ]; specifically, has a unique maximum
at origin and is symmetric about the origin. These
observations thus account for zero-phase patterns in the de-
convolved signal when is a non-Gaussian sparse
spike train as in seismic deconvolution because

by and (23) (25)

Meanwhile, the resolution of is determined by the width
of the wavelet

Next, a connection between the inverse filter and the MMSE
equalizer is established as follows.

Property 3: The overall system associated with
is related to via

(26)

or, in the frequency domain

(27)

where is a constant, and

terms

(28)

See Appendix C for the proof of this property.
From Property 3, more observations about the relation

between the inverse filter and the MMSE equalizer can be
discovered as follows.

Property 4: The overall system associated with
approaches (except for a scale factor and a time
delay) as either SNR or the cumulant order increases or
as the system has wider bandwidth.

Appendix D provides an inference (but not rigorous proof)
of this property. The results of Property 4 can be further
examined by considering the following three limiting cases:

i) SNR .
ii) .
iii) is an allpass system.

When SNR [by (20)] that,
together with R5) and (13), leads to the optimum

(except for a scale factor and a time delay).
When [due to (23) and (24)],
where is a constant, and thus,
[by (26)]. For the third case, the corresponding results are
summarized in the following fact (see Appendix E for the
proof).

F1) When is an allpass system,
(except for a scale factor and a time delay). In

other words, like the MMSE equalizer [see R2)], the
associated inverse filter is also a perfect equalizer,
regardless of the values of SNR and

B. Algorithm for Computing the Analytic Overall System

To efficiently verify the proposed analytic results, let us
present the following FFT-based iterative algorithm for ob-
taining the overall system associated with from

given by (13) according to Property 3.
Algorithm 1:

S1) Set , and choose an initial guess for
S2) Set Compute the -point DFT of

, which is denoted
, using FFT.

S3) Compute

MSE see (27) (29)

and then compute the -point inverse DFT of ,
which is denoted , using FFT.

S4) Compute

(30)

S5) If (a preassigned toler-
ance for convergence), then go to S2); otherwise, the
analytic overall system is obtained.

Some worthy remarks regarding Algorithm 1 are given as
follows.

R6) If the initial condition is chosen to be a stable
linear phase system, then the analytic overall system

obtained by Algorithm 1 is guaranteed to possess
Properties 1 and 2; see Appendix F for the proof.

R7) Gradient-type optimization algorithms [32] can also
be used to find a local maximum of and the
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relevant solution for However, when the length
of is large, these algorithms become impractical
because of extraordinary computational load. On the
other hand, the FFT length of Algorithm 1 can
be chosen sufficiently large such that aliasing effects
on the resultant are negligible. In other words,
Algorithm 1 is never limited by the length of

IV. A NALYSIS OF THE SNR IMPROVEMENT

OR DEGRADATION AFTER DECONVOLUTION

In this section, let us present the analytic results about the
SNR improvement or degradation ratio after deconvolution
defined as

SNR
SNR

(31)

where SNRdenotes the SNR in the deconvolved signal ,
i.e.,

SNR see (8) (32)

Note that indicates the SNR improvement after decon-
volution, whereas indicates the SNR degradation after
deconvolution.

It can be seen, from (18), that SNRdefined by (32) can
be further expressed as

SNR (33)

which reveals that SNRdepends on [or, equivalently,
], and so does the ratio [since (31)]. Therefore, for

clarity, let and denote the values of for the
ZF equalizer, the MMSE equalizer, and the inverse filter
associated with , respectively. Two facts regarding
and are described as follows: (see Appendix G for the
proof)

F2) If the measurement noise is white, ;
otherwise, can be greater than unity. In other
words, the ZF equalizer always leads to the SNR
degradation after deconvolution when is white.

F3) The ratio , implying that the MMSE
equalizer performs noise reduction better than the ZF
equalizer.

Let us rewrite given by (20) as a function of
and as

SNR
by (33) and (31) (34)

We can easily observe, from (34), that the optimum
associated with the maximum of partly maximizes

for the ISI reduction [see R5)] and partly
maximizes for noise reduction in the meantime. In other
words, as the MMSE equalizer does, the inverse filter
associated with also performs noise reduction besides
the ISI reduction. Furthermore, as the former does [see F3)],
the latter also performs noise reduction better than the ZF
equalizer, as exhibited by the following property.

Property 5: The ratio
See Appendix H for the proof of Property 5.
Moreover, according to Property 4, the following results

can be easily inferred:
Property 6: The ratio approaches as either SNR

or the cumulant order increases or as the system has
wider bandwidth.

This property also supports the above-mentioned facts about
the noise reduction performed by the inverse filter. In addition,
a further inference about with respect to SNR is as
follows:

Property 7: The ratio always increases as SNR
decreases.

See Appendix I for the inference of Property 7. In other
words, the lower SNR is, the more the inverse filter
associated with performs as a noise reduction filter.

V. SIMULATION AND CALCULATION RESULTS

In this section, let us present three examples to demonstrate
the preceding analytic results as well as the proposed FFT-
based iterative algorithm (Algorithm 1) for obtaining the
analytic overall system associated with

Example 1: In this example, the desired signal was as-
sumed to be a zero-mean, i.i.d., exponential random sequence
with variance and skewness The system
with transfer function

(taken from [6, Example 1]) was used. The noisy data
were generated using (1), (2), and (7), where two different
systems for (i.e., and

were considered. The inverse filter was
approximated by a causal FIR filter of order equal to
16. The criterion (i.e., ) was used with the two
cumulants and [see (5)] replaced by the
associated sample cumulants [20]–[25]. The Fletcher–Powell
optimization algorithm (an iterative gradient-type optimization
algorithm [32]) was used to find the (local) maximum of
and the relevant estimate as well as

, where was used to initialize the
Fletcher–Powell optimization algorithm. Thirty independent
runs were performed with data length equal to 2048 and SNR

0 dB. On the other hand, the analytic overall system
was also calculated using Algorithm 1 with
[according to R6) and R1)], the FFT length , and
the convergence tolerance

Fig. 2(a) shows the average (dashed line)one standard
deviation (dotted lines) of the obtained 30 ’s together with
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(a)

(b)

Fig. 2. Simulation and calculation results of Example 1. (a) Average (dashed
line)� one standard deviation (dotted lines) of the obtained 30 overall system
estimateŝg(n)’s together with the analytic overall systemg(n) (solid line)
obtained using Algorithm 1 forB(z) = 1+0:8z�1. (b) Results corresponding
to part (a) forB(z) = 1 � 0:8z�1:

the analytic (solid line) for (a lowpass
system), where all the scale factors and time delays between

and the analytic have been artificially removed.
Fig. 2(b) shows the results corresponding to those shown in
Fig. 2(a) for (a highpass system). We
can see, from Fig. 2(a) and (b), that as predicted in Properties
1 and 2, is approximately zero-phase (symmetric) and

Moreover, approximates the
analytic well in spite of the low SNR (0 dB). These
results also reveal that the analytic obtained by Algorithm
1 can serve as a good prediction for

Example 2: In this example, let us only show the calcu-
lation results associated with the analytic A minimum-
phase narrowband ARMA(4,2) system taken from [30] and a
nonminimum-phase broadband ARMA(4,3) system taken from
[33]–[36] for the system were considered, and the system

(a)

(b)

Fig. 3. Systems used in Example 2. (a) Impulse responsesh(n)’s. (b)
Magnitude responsesjH(!)j’s (in decibels) of the narrowband system (solid
lines) and the broadband system (dashed lines), respectively.

[i.e., is white] was used. Fig. 3(a) and
(b) depict the impulse responses ’s and the magnitude
responses ’s (in decibels) (i.e., ) of the
narrowband system (solid lines) and the broadband system
(dashed lines), respectively. The analytic was obtained
using Algorithm 1 with , the FFT length

, and the convergence tolerance
For the narrowband system, Fig. 4(a) displays the magni-

tude responses ’s associated with and
(short-dash dot, long-dash dot, short-dash and long-dash

lines, respectively) together with the associated
(solid line) for SNR 30 dB, where scale factors were
artificially removed. The corresponding results for SNR40
dB are displayed in Fig. 4(b). Note that in Fig. 4(b), the long-
dash line and the solid line almost overlap each other. From
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(a)

(b)

Fig. 4. Calculation results of Example 2 for the narrowband system. (a)
Magnitude responsesjG(!)j’s associated withJ2;3; J2;4; J2;5; and J2;6
(short-dash dot, long-dash dot, short-dash and long-dash lines, respectively)
together with the associatedGMSE(!) (solid line) for SNR= 30 dB. (b)
Results corresponding to part (a) for SNR= 40 dB.

Fig. 4(a) and (b), we can see that as predicted in Property 4,
can be viewed as a better approximation to

for either larger or higher SNR.
For the broadband system, the results corresponding to

those in Fig. 4(a) and (b) are depicted in Fig. 5(a) and (b),
respectively, for SNR 0 dB and 5 dB instead. Again,
these results are consistent with Property 4. Moreover, from
Figs. 4(a) and 5(a), 4(b), and 5(b), we can see that can
also be viewed as a better approximation to for the
broadband system than for the narrowband system, in spite
of much lower SNR (0 and 5 dB) for the broadband system.
These results exhibit that the closeness of the inverse filter
associated with to the MMSE equalizer depends heavily

(a)

(b)

Fig. 5. Calculation results of Example 2 for the broadband system. (a)
Magnitude responsesjG(!)j’s associated withJ2;3; J2;4; J2;5; and J2;6
(short-dash dot, long-dash dot, short-dash and long-dash lines, respectively)
together with the associatedGMSE(!) (solid line) for SNR= 0 dB. (b)
Results corresponding to part (a) for SNR= 5 dB.

on the bandwidth of the system and slightly on the value
of SNR for this case.

Table I lists the ratios and
and the corresponding SNR’s (in decibels) for the narrowband
system. The corresponding results for the broadband system
are listed in Table II. We can see, from Tables I and II, that
the values of and are close to those of

and better for higher SNR. Furthermore, the former
are closer to the latter for the broadband system than for
the narrowband system. These observations support Property
6 since [see (15)] for the white noise case
in this example. Moreover, as predicted by Property 7, the
values of and increase as SNR decreases.
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TABLE I
CALCULATION RESULTS OF EXAMPLE 2 FOR THE NARROWBAND SYSTEM. THE RATIOS

�2;3; �2;4; �2;5; �2;6; �MSE; AND �ZF AND THE CORRESPONDINGSNR’s (IN DECIBELS)

TABLE II
CALCULATION RESULTS OF EXAMPLE 2 FOR THE BROADBAND SYSTEM. THE RATIOS

�2;3; �2;4; �2;5; �2;6; �MSE; AND �ZF AND THE CORRESPONDINGSNR’s (IN DECIBELS)

On the other hand, the values of in Tables I and II are
not only much smaller than unity [as mentioned in F2)] but
also smaller than those of [as mentioned in F3)] and

and (as predicted by Property 5). In
addition, some values of and and
are larger than unity (see the last column of Table I and the last
column of Table II for These observations indicate that
the inverse filter associated with as well as the MMSE
equalizer performs not only as an ISI reduction filter but also as
a noise reduction filter, particularly when SNR is low, whereas
the ZF equalizer performs as a perfect ISI removal filter despite
the tremendous SNR degradation in the deconvolved signal
for this case.

Example 3—Seismic Deconvolution:As mentioned in
Section III, is a non-Gaussian sparse reflectivity
sequence in seismic deconvolution that can be modeled as
a Bernoulli–Gaussian (B-G) sequence [33]–[36], as

where is a Bernoulli sequence with parameteri.e.,

Pr

and is a zero-mean white Gaussian random process
with variance Note that and

for the B-G sequence.
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(a)

(b)

(c)

Fig. 6. Simulation results of Example 3 for SNR= 0 dB. (a) Segment
(n = 0 � 255) of the synthetic seismic datax(n): (b) Deconvolved signal
e(n) (bars). (c) Corresponding signal componenteS(n) (bars) together with
the true reflectivity sequenceu(n) (circles).

The noise-free synthetic data were generated by
convolving a B-G sequence (with and )
with a third-order nonminimum-phase wavelet (taken
from [6, Example 2]) whose transfer function is given by

Then. the synthetic seismic data were obtained by adding
a white Gaussian noise to the synthetic The
Fletcher–Powell optimization algorithm was used to find the
(local) maximum of (i.e., ) and the relevant
inverse filter estimate , where was assumed to
be a 16th-order causal FIR filter, and the initial condition

was used. A single run was performed for
data length equal to 4096 and SNR0 and 20 dB.

Fig. 6(a) displays a segment of the synthetic
seismic data for SNR 0 dB. Fig. 6(b) and (c) display
the deconvolved signal (bars) and the corresponding
signal component (bars), respectively, together with
the true sparse reflectivity sequence (circles). We can
see, from Fig. 6(c), that as the discussion about Property

(a)

(b)

(c)

Fig. 7. Simulation results of Example 3 for SNR= 20 dB. (a) Segment
(n = 0 � 255) of the synthetic seismic datax(n): (b) Deconvolved signal
e(n) (bars). (c) Corresponding signal componenteS(n) (bars) together with
the true reflectivity sequenceu(n) (circles).

2 and given by (25) in Section III, consists
of approximate zero-phase wavelets ’s with amplitudes
proportional to , where Note, from
Fig. 6(b) and (c), that the two close spikes at and

are not discernible because the spacing between
the two spikes is much narrower than the width of
for this case (SNR dB). Fig. 7(a)–(c) shows the results
corresponding to that in Fig. 6(a)–(c), respectively, for SNR

20 dB. We can see that the deconvolved signal in
Fig. 7(b) is a much better approximation to than that in
Fig. 6(b) due to higher SNR. Moreover, from Fig. 7(b) and
(c), we can observe that the two close spikes at and

are now resolvable simply because the width of
is narrower than their spacing for this case (SNR dB).

VI. CONCLUSIONS

We have presented a performance analysis for the inverse fil-
ter criteria given by (5), where when SNR is finite.
The performance analysis was conducted by investigating the
behavior of the relevant overall system and the SNR im-
provement or degradation ratio after deconvolution [see
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(31)]. Seven properties for were presented in terms of
SNR, the cumulant order , the bandwidth of the system ,
and the ratio It is almost formidable to find a closed-form
solution for the overall system from the highly nonlinear
function given by (20). The proposed FFT-based iterative
algorithm (Algorithm 1) is a computationally efficient method
for obtaining the analytic overall system from
given by (13), and the obtained can then be used to
verify the proposed analytic results.

We would like to emphasize that not only the ISI but
also the SNR improvement or degradation ratioshould
be considered as performance measures for deconvolution
algorithms. Although the inverse filter associated with

is a perfect equalizer for finite SNR, the signal
component in the deconvolved signal may be invisible
due to low SNR [see (32)]. Properties 5 through 7 suggest
that is preferable to for deconvolution. As
a final remark, the presented analytic results are also helpful
in the interpretation of the deconvolved signals using

APPENDIX A
PROOF OF THEOREM 1

Let us use the cosine inequality [4, p. 67] as

sign

sign

(A.1)

where sign if and if The inequality
(A.1) can be further shown to be

sign

(A.2)

for all We can see, from (A.2), that if , then

sign (A.3)

which implies that is a periodic function with pe-
riod equal to either when or when

APPENDIX B
PROOF OF PROPERTY 1

By (18) and Parseval’s relation, the denominator of
given by (5) can be shown to be

(B.1)

We can see, from (B.1), that is dependent on
the magnitude response but independent of the phase
response of the overall system On the other hand,

in the numerator of given by (5) has been

shown to satisfy the inequality [37]

(B.2)

and the equality of (B.2) holds if and only if is linear
for i.e.,

(B.3)

where and are constants.
Because is real

(B.4)

where is an integer. By (B.3) and (B.4), we therefore have
Thus, we have completed the proof that is

given by (22), regardless of what is.

APPENDIX C
PROOF OF PROPERTY 3

Taking partial derivative of given by (20) and (21)
with respect to the overall system coefficient (where

) gives rise to

(C.1)

Setting (C.1) to zero yields

(C.2)

and then taking the Fourier transform of (C.2) with respect to
the index leads to

(C.3)

where is defined as (28). From (C.3) and (14), we
can easily obtain the result given by (27), where

(C.4)

is a constant.
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APPENDIX D
INFERENCE OFPROPERTY 4

It can be inferred, from (23) and (26), that as SNR or the
bandwidth of is increased

(D.1)

since by R3), where
is a constant. Equation (D.1) indicates that

if
if

(D.2)

which together with the fact that is stable zero-phase
[see (23)] implies that

(D.3)

where and are non-negative integers. Furthermore, from
(D.3) and (24), we can infer that

(D.4)

[i.e., in (D.3)] as SNR or the bandwidth of is
increased. It then follows, from (D.4) and (26), that

(D.5)
As a result, we conclude that (except for
a scale factor and a time delay) as SNR or the bandwidth of

is increased.
On the other hand, as the cumulant orderis increased

(D.6)

due to (24). From (D.6) and (26), we can infer that as the
cumulant order is increased

(D.7)

In other words, we have inferred the statement of Property 4.

APPENDIX E
PROOF OF F1)

When is an allpass system, (a positive
constant), then

(E.1)

By (20) and (E.1), we have

(E.2)

which, together with R5) and R2), therefore implies the
statement of F1).

APPENDIX F
PROOF FOR THESTATEMENT OF R6)

Let [see (29)] and
, where is the Fourier transform of

given by (30). Suppose that

(F.1)
where is a constant, andis an integer. Then, what we need
to prove is that has the same form as given
by (F.1).

Note that [see S2) of Algorithm 1] can be
expressed as

terms

(F.2)

By (F.1) and (F.2), given by (29) can be shown to be

(F.3)

which implies that

(F.4)
since [see (13)]. From (30), it follows that

This, together with (F.1) and (F.4), indicates
that if is linear phase, then is also linear phase.
As a consequence, obtained by Algorithm 1 is linear
phase as long as is linear phase. Meanwhile, Property
2 can also be applied to the obtained because it was
deduced from (22).
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APPENDIX G
PROOF OF F2) AND F3)

A. Proof of F2)

Since for the ZF equalizer, given by (31)
can be easily shown to be

by (19) (G.1)

If is white, (a positive constant) due to (7),
and then

(G.2)

By the Cauchy–Schwartz inequality

(G.3)

which, together with (G.2), therefore leads to
On the other hand, if is not an allpass system [i.e.,

is colored], it is possible that To show this, let us
consider the following case. Suppose that
and Note that

and that and
Then, by (G.1), we have

(G.4)
This therefore completes the proof of F2).

B. Proof of F3)

Let denote the mean square error as

(G.5)

Using the principle of orthogonality [3], [4], we can easily
show that the minimum value of is given by

(G.6)

since [see (16)]. From (14), we have

(G.7)

Taking the inverse Fourier transform of (G.7) yields

(G.8)

which further leads to

(G.9)

Thus, by (G.6) and (G.9), we obtain (G.10), shown at the
bottom of the page.

On the other hand, by (8) and A4), given by
(G.5) can be further expressed as

by (18)] (G.11)

SNR

by (33) and (31) (G.10)
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SNR

[by (33) and (31)] (G.12)

(associated with the ZF equalizer) into (G.11) yields

SNR

SNR
(G.13)

Since , (G.13) implies that

APPENDIX H
PROOF OF PROPERTY 5

By (34), the optimum associated with the maximum
of satisfies

SNR

SNR

(H.1)

where [see R5)] has been used in the
derivation of (H.1). By (H.1) and the fact that
[see R5)], the result that can be obtained.

APPENDIX I
INFERENCE OFPROPERTY 7

Let SNR and SNR be two different values of SNR
and SNR SNR Additionally, let and

be the optimum solutions to the maximum of
given by (34) for SNR SNR and SNR SNR ,

respectively. From (34), it follows that when SNRSNR 4

SNR

SNR

(I.1)

From (D.4) in Appendix D, we can infer that is
closer to (except for a scale factor and a time delay)
than is since SNR SNR and further infer that

by R5). Therefore, from (I.1)
and the result of , we can obtain

(I.2)

In other words, the ratio always increases as SNR
decreases.
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