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bank is independent of the filter length. These properties are partiouhere (n) is an unknown linear time-invariant (LTI) channel, and
larly useful for achieving fast parallel hardware realizations. The par(n) is the measurement noise. The blind deconvolution problem oc-
allel module implementation applied to a cosine-modulated filter barkirs in a variety of applications such as communications, seismic ex-
shows that it is decomposed into a parallel set of cosine-modulatgdration, ultrasonic nondestructive evaluation, and speech modeling.
module filter banks with fixed small size. The cosine-modulated block Let v(n) be a deconvolution filter and(n) be the corresponding
filter bank renders a much less restrictive PR condition, and the restrileconvolved signal as

tion is so relaxed that most lowpass filters, which have the desired pro-

totype frequency response, satisfy the PR condition. This gives better e(n) =z(n)*xv(n)
s_topbanc_i attenuation for a given design specification and makes the —u(n) % g(n) + win)xv(n) (by (L) @)
filter design problem much simpler.
where
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It was proved in [1] that maximizind, 4 leads to the overall system
g(n) = abd(n — 1), i.e., zero-forcing (ZF) equalization, wheteis
a scale factor, and is a time delay, provided that the signal-to-noise
ratio (SNR) equals infinity and the chanriglr) has no zeros on the
unit circle, i.e. its inverse system is stable. In practical applications,
however, the SNR is always finite, and the behavior of the associated
optimumu(n) is accordingly affected by the noisd ). Moreover, the
channel’s zeros may be close to or exactly on the unit circle, presenting
rather difficult conditions for equalization [2], [3]. In other words, the
Abstract—This correspondence shows that Shalvi and Weinstein’s blind ZF equalization may no longer be attainable with these practical condi-
deconvolution criteria are applicable for finite SNR regardless of channels tions, and the performance &f , thus needs to be further studied. For
_having zeros on the _unit circle or not. The asst_)ciated deconvolgtion filter the case of real signals, Feng and Chi [4] reported a performance anal-
is stable with a no_nllnear relation to the n_onb_llnd MMSE equalizer and ysis of J,, , for finite SNR wheni(n) has no zeros on the unit circle.
capable of performing perfect phase equalization for finite SNR. b . .
In this correspondence, we extend their analysis to the case of complex
Index Terms—Blind deconvolution criteria, cumulant, equalization. signals withi(n) allowed to have zeros on the unit circle. We show that
the optimumwv(n) associated withf, , is related to the nonblind min-
imum mean square error (MMSE) equalizer [5] in a nonlinear manner
along with some properties regarding the behavior(af). The cor-
Blind deconvolution (equalization) is a signal processing proceduf@spondence is organized as follows. Section Il presents some model
to restore a source signaln) from a given set of measurements  assumptions, and Section 1l presents the analytic results about the be-
havior ofv(n) that are then demonstrated through computer simulation
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x(n) =u(n) x h(n) + w(n) in Section IV. Finally, some conclusions are drawn in Section V.
= D hk)uln = k) +w(n) (1) Il. MODEL ASSUMPTIONS
k=—c0

For the measurementgn) given by (1), let us make the following
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variancec2 = Ci{u(n)} and (p + ¢)th-order cumulant wherek andr are positive integers, and > %. Obviously, bothw(n)
Yp.a = Cp.qlu(n)} forp+q > 3. andg(n) have finitel norm by B2). Therefore, by virtue of (9) and

A3) The noisew(n) is white Gaussian with variance? = B2), we can see that both the numerator and denominathy pfiven
C1,1{w(n)} > 0 (i.e. finite SNR) and statistically independentby (8) are finite; thereforesup{.J..»} < oo under B2). Next, let us
of u(n). present some properties regarding the behaviofof. Taking partial

Assumption Al) reveals that whei;, # () (an empty set), the derivative of.J2 » given by (8) with respect to* (k) and then setting

channel(n) has zeros on the unit circle and its inverse system e result to zero, we obtain

unstable becausk/H (w) = oo for w € Q. This implies that the

stable deconvolution filter achieving the ZF equalization does not exist g Z g (n)g* (n)h*(n — k)

when§2z # §. On the other hand, the (infinite-length) MMSE equal-

. . 2
izer given by [6] _ Z gnh (0 — k) + Jz;. (k) (10)
; Tu
i ol H"(w) !
Virse(w) = o2 [H@)? + 02 v elmm ) ©) where
is always stable regardless @f, = () or {2z # 0 [by (6) and A3)], ggz lg(n))? + aﬁ,z [o(n)?
and meanwhile : " n
8= (11)
a2 lg(m)lt
Vase(w) =0, forw € Qg [by (6) and Al)] @) n
Furthermore, it is a perfect phase equalizer simagVasse(w)] = isaree_ll positivc_a constant. Taking Fourier transform of (10) with respect
_ W to the indexk yields
arg[H (w)].
2
N , ., T U
[ll. ANALYTIC RESULTS G- D(w)H (w)=G(w)H (w)+ o -Vi(w)

This section analyzes the behavior of the deconvolution filter) g2
associated with/, , according to A1)-A3). The analytic results for =V(w)- {U[I(’JJH2 + a—ﬂ (12)
different ordergp andy) of .7, 4 are quite similar; therefore, only those “
for Joo (p = ¢ = 2) are presented for brevity. Note that for th%hereD(u
source signal(n) with symmetric distributior{p + ¢) must be even;
otherwise,J, ; = 0 [7].

) is the Fourier transform of the sequence

d(n) = g*(n)g"(n). (13)

A. Behavior of the D lution Fil
ehavior of the Deconvolution Hilter Then, the following property of(») follows directly from (6), (12),
By (2), A2), and A3),J2 > given by (4) can be expressed as [6], [7]and A3).

Property 1: The deconvolution filter associated wifh  is related

[v2,2] - Z lg(n)|* to the MMSE equalizer via
Fraleln) = - © V(w) = 8- Dl)Vass(w), Yo €l-mm).  (14)
w)= 13- W WVasr(w). w € [—m, ).
033 lo(n)2 + 033 fo(m) ST e e
" " Property 1 further leads to the following stability property.
which implies the following remark. Property 2: Under B1) and B2), both the deconvolution filtefm)
R1) Jo.2(v(n)) = Ja2(aw(n — 7)) for arbitrary nonzero constant and the overall system(rn) associated with/> » are always stable,

o and arbitrary integer. regardless of)z = 0 or 27, # (), and meanwhile

Then, with regard to the behavior analysis of the deconvolution filter
v(n) associated with/;, >, let us make the following assumptions for
v(n).

B1) Thelengthofi(n) is doubly infinite, implying that finite-length . .

truncation effect of:(n) is not taken into account in the anal-See Appendix A for the proof. According to (15), a property about the

V(w)=G(w)=0, forwe Qy. (15)

ysis. phase response dof(w) is as follows.
B2) 3., |v(n)]* < oc,implying thaty" |g(n)]> < oo [by Property 3: The optimum phase responseg[V (w)] associated
(3) and Al)] with .Jz 2 is given by

Assumption B2) also implies the existence of the Fourier transforms
V(w)andG(w),i.e.,|V(w)| < ooand|G(w)| < oc.Furthermore,
it indicates thaCy  {e(n)} = E{|e(n)|*} < oo and the denomi- forw € [~m, 7), w ¢ {2z (16)
nator of.J, » given by (8) is accordingly well defined.

On the other hand, it was reported [8] that any nonzero sequenggeret andk are constants.
a(n) with finite 7 norm{3>", |a(n)|*}'/* satisfies the following in-

arg[V(w)] = — arg[H (w)] — wr + &,

| See Appendix B for the proof. This property states that the decon-
equality: volution filter V(w) completely cancels (or equalizes) the channel-in-
duced phase distortion (up to a time detagnd a constant phase shift

1/ 1/k
Z la(n)|" < Z la(n)|* ) K) for w ¢ Qz, and thus, like the MMSE equalizer, it performs as a
o B s perfect phase equalizer.
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In addition, Property 3 indicates thatp (w) = G(w)-exp{j(wr— MAGNITUDE RESPONSE OF THE CHANNEL
)} is a zero-phase system a6r(w) > 0, thereby leading to the 2sf ' ' ) ' ' ]
following remark [4], [6].

R2) The impulse respongep (n) of Gzp(w) is like an autocorre-
lation function withgzp (n) = g7p(—n) andgzr(0) > |gzr(n)],
Yn # 0.

This remark reveals thag(rn)| has a unigue maximum at the index
n = 7 and, meanwhile, is symmetric with respectrto= 7. This
result is of particular use to seismic exploration since it accounts for t "°[ ]
zero-phase patterns of deconvolved signals in seismic deconvolut

(4].

2k ]

B. Algorithm for Computing the Theoretical Deconvolution Filter

To verify the proposed analytic results, let us present the followir
FFT-based iterative algorithm for obtaining the theoretical) asso-
ciated with.J> o from Varse(w) given by (6), according to Property 1.

05F e

Algorithm 1:
S1) Seti = 0. Choose an initial guess® (n) for v(n). s = - 5 . L L
S2) Seti = i + 1. Compute theL-point DFT VI—(w; = RADIAN FREQUENCY ()

2rk/L), of v['"(n). Compute G~ (w,) = H(w) -
VE["’_;](wk), and then, compute itd.-point inverse DFT
g ).

S3) Computel(n) using (13) withg(n) = ¢~ (n), and then,
compute itsL-point DFT D (wy,).

S4) Computd/(wi) = D(wi) - Vuse(wsr) [see (14)], and then,
compute itsL-point inverse DFTo(n). Computev™ (n) =

@

PHASE RESPONSE OF THE CHANNEL

v(n)/\/>, |v(n)]? [due to R1)]. 2F i
S5) IfY,, vl (n) — ol =) > > ¢ (apreassigned tolerance for
convergence), then go to S2); otherwise, the theoretiegl =
ol (n) is obtained. 1 1
%)

Note that Algorithm 1 is not an algorithm to design the deconvoluticé
filter v(n) from the datar(n). It requires exact knowledge about the2
channel responsH (w) and the ratiar? /o2 [see S2), S4) and (6)] but &
is never limited by the length af(») as long as the DFT length is -1t ]
chosen sufficiently large so that aliasing effects on the resultant
are negligible. Next, let us show some simulation results to verify tt
preceding analytic results.

-3 -2 -1 0 1 2 3
RADIAN FREQUENCY ()
(b)

In the simulation, the source signa(n) was assumed to be arjg 1 (a) Magnitude responsdH(w)| and (b) principal value
four-QAM signal, and the channel(n), which was plotted in Fig. ARG[H (w)] of the phase responserg[H (w)] of the channelh(n)
1, was taken from [2] a#l (=) = Hi(z) - H2(z), whereH;(z) and for w € [—m, =], where a linear phase term in (b) was removed for clarity.
H,(z) were causal FIR filters with coefficien{d, 0, —1} and{0.04,
—-0.05, 0.07, —0.21, —0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07}, respec-
tively. Fig. 1(a) and (b) exhibitthdH (w = 0)| = |H(w = £7)| =0, 2(a) exhibits thatv(rn) may be approximated well by a long-length
and ARGH (w)] has a discontinuity of atw = 0 and a discontinuity FIR filter #(n) of order equal to about 80 and that the theoretical
of —m atw = =£x due to the two zeros aff;(z) on the unit circle v(n) obtained by Algorithm 1 can serve as a prediction fon).
(z = =1). The deconvolution filterv(r) was approximated by Additionally, we can see from Fig. 2(bl5ig. 2(c) and Fig. 1(b) that
a 30th-order causal FIR filtef(n), and an iterative gradient-type |V (w = 0)| = |V(w = £7)| = 0 and ARGV (w)] = —ARG[H (w)]
optimization algorithm with initial conditiori(n) = &(n — 15) was and that bothVave(w)| and ARGV.(w)] are close tdV (w)| and
used to find the maximum of;» as well as the relevant estimateARG[V (w)], respectively, except for those arourd= 0 and £x.
©(n). Then, the averagé...(n) of 30 ¢(n)’s from 30 independent The large magnitude and phase errors araund 0 and=£= in Fig.
runs was obtained with data length equal to 8000 and the SNR eqR@) and (c) result from the low magnitude &f(w) around these
to 20 dB (complex white Gaussian noise). On the other hand, tfrequencies [see Fig. 1(a)] or, equivalently, the low signal power of
theoreticalv(n) was obtained using Algorithm 1 with the initial these frequency components in the data). As a consequence, the
guess'u[o](n,) = &(n), DFT lengthL = 1024, and convergence results in Fig. 2(a)—(c) confirm Properties 1 through 3.
tolerancec = 10°. The simulation results are displayed in Fig. 2, Fig. 2(d) exhibits thatjzp (»)]| is quite close tdgzp (n)| and ap-
where scale factors and time delays were artificially removed. FigroachesS(n) implying that(n) performs intersymbol interference

IV. COMPUTER SIMULATION
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Fig. 2. (a) Real parts, (b) magnitude responses, and (c) phase responses (principal values) of the obtainedl esfimptelashed lines) and the theoretical

v(n) (solid lines), while their imaginary parts are not displayed since they are almost zero. (d) Corresponding absolute zero-phase overall sgem estim
|§zp ()| (dashed line) and theoretical zero-phase overall sy$tem(n)| (solid line).

(IS1) reduction well for this case. Moreovéj.p (n)| is approximately summarized in Properties 1 through 3. These analytic results are helpful
symmetric with|gzr (0)| > |gzp(n)|. n # 0,, which is consistent to realizing the behavior af(n) associated with/,, ;.
with R2).

APPENDIX A
PROOF OFPROPERTY 2
V. CONCLUSIONS
From (9), (11) and B2), we can easily show thiat < oo. By
The proposed analytic results about the performance of the blind ¢&4) and3 < oc, we can infer that iti(n) is stable, ther(n) is

convolution criteriaJ, , given by (4) include the connection of the as-stable sincensrk(n) is stable. Invoking (9), (13), and B2), we obtain
sociated deconvolution filter(n) with the nonblind MMSE equalizer, 3~ |d(n)] < {3°, |g(n,)|2}3/2 < oo. This, therefore, completes
guaranteed stability af( ) regardless of the locations of the channel'she proof thaw () is stable, and so ig(n) by Al). Then, (15) follows
zeros and capability of perfect phase equalization for finite SNR, dgectly from (3), (7), and (14).
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APPENDIX B Blind Source Separation Using Clustering-Based
PROOF OFPROPERTY 3 Multivariate Density Estimation Algorithm
Let ®(w 2 arg[G(w)] = arg[H (w)] + arg[V (w)]. The denom- Zhenya He, Luxi Yang, Ju Liu, Ziyi Lu, Chen He, and Yuhui Shi
inator of.J> » given by(8) can be easily shown to be independent of

arg[V (w)], whereas the numerator 8§ » can be shown to be [7
arg[V(w)] b2 7] Abstract—A learning algorithm is developed for blind separation of

the independent source signals from their linear mixtures. The algorithm

|Coa{e(n)}] is based on minimizing a contrast function defined in terms of the
2.2{e(n)} i ) i Kullback-Leibler distance. We use a clustering-based multivariate density
. 1 B B B R estimation approach to reduce the number of the parameters to be
- (27)? 12,2 updated. Simulations illustrate the validity of the algorithm.
—7 —7 —7
3
NG(=wi + wa ws)| - ] 1G] . INTRODUCTION
=1

- exp {j [®(—wi + wa + ws) dent component analysis (ICA), has received much attention recently

Blind source separation (BSS), which is also known as the indepen-

in the signal processing field [1]-[5], [9]-[16] and has found many im-

—|— ‘:D(LLM) bl @(wg) bl @(wz)]} di,m (]wz (]w‘z

[vool ™ [ [T primary sources from their linear mixtures, without knowing the char-
< 122 |G(—w1 + w2 + ws)| i e .
S CY U B N WL w2 s acteristics of the transmission channels. In the simplest case, we see
3 N sequences(y(t), X2(t), ---, Xn(t) recorded fromV different
. H |G (wi)|dwy dws dws. (B.1) sensors, each observatidn(¢) being a linear combination af/ in-
iy dependent sources; (¢), Sa(t), ---, Sar(t). Thus, X (¢) = AS(¢),
where X (¢) and S(¢) denote the vectord’ (¢), Xo(t), - -+, Xn(¥)
andSi(t), Sz2(t), ---, Sa(t), respectivelyd isaN x M matrix. The

Due to (15), the equality of (B.1) requires thé{ —w; + w2 + ws) +
®(wy) — B(wz) — (ws3)] be equal to a constant ferw; + w2 +
wy & Qz andw; € Qz, i = 1,2,3. This implies that the optimum

BSS problem is to find a4 x N matrix W only from the observa-
tions X (¢) such that the output (¢) = W X (¢) is as close as possible
to the source signalS(t).

®(w) associated with the maximum gt - is linear forw € [—m, 7) .
. . : . Currently, there exist several types of approaches to solve such
andw ¢ Qy., and thus, the optimurarg[V'(w)] is as given by (16), . . .
regardiess of whdb’ ()| for w € [—, 7) andw ¢ Qy is a problem. The seminal work is by Jutten and Herault [1]. Their
‘ ’ ' heuristic algorithm, which is inspired by a neuromimetic approach,
is attractive because it is simple and can be realized locally, but it
fails in separating more than two independent sources. Karhunen [4],
ACKNOWLEDGMENT [9] found that nonlinear Hebbian learning in a self-organizing neural

portant applications. Generally speaking, the problem of BSS can be
formulated as the problem of separating or estimating waveforms of
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