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bank is independent of the filter length. These properties are particu-
larly useful for achieving fast parallel hardware realizations. The par-
allel module implementation applied to a cosine-modulated filter bank
shows that it is decomposed into a parallel set of cosine-modulated
module filter banks with fixed small size. The cosine-modulated block
filter bank renders a much less restrictive PR condition, and the restric-
tion is so relaxed that most lowpass filters, which have the desired pro-
totype frequency response, satisfy the PR condition. This gives better
stopband attenuation for a given design specification and makes the
filter design problem much simpler.
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Performance of Shalvi and Weinstein’s Deconvolution
Criteria for Channels with/without Zeros on the Unit Circle

Chih-Chun Feng and Chong-Yung Chi

Abstract—This correspondence shows that Shalvi and Weinstein’s blind
deconvolution criteria are applicable for finite SNR regardless of channels
having zeros on the unit circle or not. The associated deconvolution filter
is stable with a nonlinear relation to the nonblind MMSE equalizer and
capable of performing perfect phase equalization for finite SNR.

Index Terms—Blind deconvolution criteria, cumulant, equalization.

I. INTRODUCTION

Blind deconvolution (equalization) is a signal processing procedure
to restore a source signalu(n) from a given set of measurements

x(n) =u(n) � h(n) + w(n)

=

1

k=�1

h(k)u(n� k) + w(n) (1)
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whereh(n) is an unknown linear time-invariant (LTI) channel, and
w(n) is the measurement noise. The blind deconvolution problem oc-
curs in a variety of applications such as communications, seismic ex-
ploration, ultrasonic nondestructive evaluation, and speech modeling.

Let v(n) be a deconvolution filter ande(n) be the corresponding
deconvolved signal as

e(n) =x(n) � v(n)

=u(n) � g(n) + w(n) � v(n) (by (1)) (2)

where

g(n) = h(n) � v(n) (3)

is the overall system after deconvolution. Shalvi and Weinstein [1] find
the optimumv(n) by maximizing the following criteria:

Jp;q(v(n)) =
jCp;qfe(n)gj

[C1;1fe(n)g]
(p+q)=2

(4)

where bothp and q are non-negative integers,p + q � 3, and
Cp;qfe(n)g denotes the(p+ q)th-order cumulant ofe(n) as

Cp;qfe(n)g= cumfe(n); � � � ; e(n)

p terms

; e
�(n); � � � ; e�(n)

q terms

g (5)

in which the superscript “�” denotes complex conjugation. The blind
deconvolution criteriaJp;q include Wiggins’ criterion and Donoho’s
criteria as special cases [1].

It was proved in [1] that maximizingJp;q leads to the overall system
g(n) = ��(n � �), i.e., zero-forcing (ZF) equalization, where� is
a scale factor, and� is a time delay, provided that the signal-to-noise
ratio (SNR) equals infinity and the channelh(n) has no zeros on the
unit circle, i.e. its inverse system is stable. In practical applications,
however, the SNR is always finite, and the behavior of the associated
optimumv(n) is accordingly affected by the noisew(n):Moreover, the
channel’s zeros may be close to or exactly on the unit circle, presenting
rather difficult conditions for equalization [2], [3]. In other words, the
ZF equalization may no longer be attainable with these practical condi-
tions, and the performance ofJp;q thus needs to be further studied. For
the case of real signals, Feng and Chi [4] reported a performance anal-
ysis ofJp;q for finite SNR whenh(n) has no zeros on the unit circle.
In this correspondence, we extend their analysis to the case of complex
signals withh(n) allowed to have zeros on the unit circle. We show that
the optimumv(n) associated withJp;q is related to the nonblind min-
imum mean square error (MMSE) equalizer [5] in a nonlinear manner
along with some properties regarding the behavior ofv(n): The cor-
respondence is organized as follows. Section II presents some model
assumptions, and Section III presents the analytic results about the be-
havior ofv(n) that are then demonstrated through computer simulation
in Section IV. Finally, some conclusions are drawn in Section V.

II. M ODEL ASSUMPTIONS

For the measurementsx(n) given by (1), let us make the following
assumptions.

A1) The channelh(n) is stable, i.e., n jh(n)j < 1, with fre-
quency responseH(!) = 0 for ! 2 
Z � [��; �), i.e.,
Z =
f!jH(!) = 0; �� � ! < �g:

A2) The source signalu(n) is a zero-mean, independent identi-
cally distributed (i.i.d.), non-Gaussian random process with
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variance�2u = C1;1fu(n)g and (p + q)th-order cumulant
p;q = Cp;qfu(n)g for p + q � 3:

A3) The noisew(n) is white Gaussian with variance�2w =
C1;1fw(n)g > 0 (i.e. finite SNR) and statistically independent
of u(n):

Assumption A1) reveals that when
Z 6= ; (an empty set), the
channelh(n) has zeros on the unit circle and its inverse system is
unstable because1=H(!) = 1 for ! 2 
Z: This implies that the
stable deconvolution filter achieving the ZF equalization does not exist
when
Z 6= ;: On the other hand, the (infinite-length) MMSE equal-
izer given by [6]

VMSE(!) =
�2u �H

�(!)

�2u � jH(!)j2 + �2w
; 8! 2 [��; �) (6)

is always stable regardless of
Z = ; or 
Z 6= ; [by (6) and A3)],
and meanwhile

VMSE(!) = 0; for ! 2 
Z [by (6) and A1)]: (7)

Furthermore, it is a perfect phase equalizer sincearg[VMSE(!)] =
� arg[H(!)]:

III. A NALYTIC RESULTS

This section analyzes the behavior of the deconvolution filterv(n)
associated withJp;q according to A1)–A3). The analytic results for
different orders(p andq) of Jp;q are quite similar; therefore, only those
for J2;2 (p = q = 2) are presented for brevity. Note that for the
source signalu(n) with symmetric distribution(p+ q) must be even;
otherwise,Jp;q = 0 [7].

A. Behavior of the Deconvolution Filter

By (2), A2), and A3),J2;2 given by (4) can be expressed as [6], [7]

J2;2(v(n)) =

j2;2j �
n

jg(n)j4

�2u
n

jg(n)j2 + �2w
n

jv(n)j2
2

(8)

which implies the following remark.
R1) J2;2(v(n)) = J2;2(�v(n � �)) for arbitrary nonzero constant

α and arbitrary integerτ.
Then, with regard to the behavior analysis of the deconvolution filter

v(n) associated withJ2;2, let us make the following assumptions for
v(n).

B1) The length ofv(n) is doubly infinite, implying that finite-length
truncation effect ofv(n) is not taken into account in the anal-
ysis.

B2) n jv(n)j2 < 1, implying that n jg(n)j2 < 1 [by
(3) and A1)]

Assumption B2) also implies the existence of the Fourier transforms
V (!) andG(!), i.e.,jV (!)j < 1 andjG(!)j < 1. Furthermore,
it indicates thatC1;1fe(n)g = Efje(n)j2g < 1 and the denomi-
nator ofJ2;2 given by (8) is accordingly well defined.

On the other hand, it was reported [8] that any nonzero sequence
a(n) with finite lk normf n ja(n)jkg1=k satisfies the following in-
equality:

n

ja(n)jr
1=r

�
n

ja(n)jk
1=k

(9)

wherek andr are positive integers, andr > k: Obviously, bothv(n)
andg(n) have finitel2 norm by B2). Therefore, by virtue of (9) and
B2), we can see that both the numerator and denominator ofJ2;2 given
by (8) are finite; therefore,supfJ2;2g < 1 under B2). Next, let us
present some properties regarding the behavior ofv(n): Taking partial
derivative ofJ2;2 given by (8) with respect tov�(k) and then setting
the result to zero, we obtain

� �
n

g2(n)g�(n)h�(n� k)

=
n

g(n)h�(n� k) +
�2w
�2u

� v(k) (10)

where

� =

�2u
n

jg(n)j2 + �2w
n

jv(n)j2

�2u
n

jg(n)j4
(11)

is a real positive constant. Taking Fourier transform of (10) with respect
to the indexk yields

� �D(!)H�(!) =G(!)H�(!) +
�2w
�2u

� V (!)

=V (!) � jH(!)j2 +
�2w
�2u

(12)

whereD(!) is the Fourier transform of the sequence

d(n) = g2(n)g�(n): (13)

Then, the following property ofv(n) follows directly from (6), (12),
and A3).

Property 1: The deconvolution filter associated withJ2;2 is related
to the MMSE equalizer via

V (!) = � �D(!)VMSE(!); 8! 2 [��; �): (14)

Property 1 further leads to the following stability property.
Property 2: Under B1) and B2), both the deconvolution filterv(n)

and the overall systemg(n) associated withJ2;2 are always stable,
regardless of
Z = ; or 
Z 6= ;, and meanwhile

V (!) = G(!) = 0; for ! 2 
Z: (15)

See Appendix A for the proof. According to (15), a property about the
phase response ofV (!) is as follows.

Property 3: The optimum phase responsearg[V (!)] associated
with J2;2 is given by

arg[V (!)] =� arg[H(!)]� !� + �;

for ! 2 [��; �); ! =2 
Z (16)

whereτ andκ are constants.
See Appendix B for the proof. This property states that the decon-

volution filter V (!) completely cancels (or equalizes) the channel-in-
duced phase distortion (up to a time delayτ and a constant phase shift
κ) for ! =2 
Z, and thus, like the MMSE equalizer, it performs as a
perfect phase equalizer.
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In addition, Property 3 indicates thatGZP(!) = G(!)�expfj(!��
�)g is a zero-phase system andGZP(!) � 0, thereby leading to the
following remark [4], [6].

R2) The impulse responsegZP(n) of GZP(!) is like an autocorre-
lation function withgZP(n) = g�ZP(�n) andgZP(0) > jgZP(n)j;
8n 6= 0:

This remark reveals thatjg(n)j has a unique maximum at the index
n = � and, meanwhile, is symmetric with respect ton = �: This
result is of particular use to seismic exploration since it accounts for the
zero-phase patterns of deconvolved signals in seismic deconvolution
[4].

B. Algorithm for Computing the Theoretical Deconvolution Filter

To verify the proposed analytic results, let us present the following
FFT-based iterative algorithm for obtaining the theoreticalv(n) asso-
ciated withJ2;2 from VMSE(!) given by (6), according to Property 1.

Algorithm 1:

S1) Seti = 0: Choose an initial guessv[0](n) for v(n):
S2) Seti = i + 1: Compute theL-point DFT V [i�1](!k =

2�k=L); of v[i�1](n): ComputeG[i�1](!k) = H(!k) �
V [i�1](!k), and then, compute itsL-point inverse DFT
g[i�1](n):

S3) Computed(n) using (13) withg(n) = g[i�1](n), and then,
compute itsL-point DFTD(!k):

S4) ComputeV (!k) = D(!k) � VMSE(!k) [see (14)], and then,
compute itsL-point inverse DFT~v(n): Computev[i](n) =
~v(n)=

n
j~v(n)j2 [due to R1)].

S5) If
n
jv[i](n)�v[i�1](n)j2 > � (a preassigned tolerance for

convergence), then go to S2); otherwise, the theoreticalv(n) =
v[i](n) is obtained.

Note that Algorithm 1 is not an algorithm to design the deconvolution
filter v(n) from the datax(n): It requires exact knowledge about the
channel responseH(!) and the ratio�2u=�

2
w [see S2), S4) and (6)] but

is never limited by the length ofv(n) as long as the DFT lengthL is
chosen sufficiently large so that aliasing effects on the resultantv(n)
are negligible. Next, let us show some simulation results to verify the
preceding analytic results.

IV. COMPUTERSIMULATION

In the simulation, the source signalu(n) was assumed to be a
four-QAM signal, and the channelh(n), which was plotted in Fig.
1, was taken from [2] asH(z) = H1(z) � H2(z), whereH1(z) and
H2(z) were causal FIR filters with coefficientsf1; 0; �1g andf0:04;
�0:05; 0:07; �0:21; �0:5; 0:72; 0:36; 0; 0:21; 0:03; 0:07g; respec-
tively. Fig. 1(a) and (b) exhibit thatjH(! = 0)j = jH(! = ��)j = 0,
and ARG[H(!)] has a discontinuity of� at! = 0 and a discontinuity
of �� at ! = �� due to the two zeros ofH1(z) on the unit circle
(z = �1). The deconvolution filterv(n) was approximated by
a 30th-order causal FIR filterv(n), and an iterative gradient-type
optimization algorithm with initial condition̂v(n) = �(n � 15) was
used to find the maximum ofJ2;2 as well as the relevant estimate
v̂(n): Then, the averagêvave(n) of 30 v̂(n)’s from 30 independent
runs was obtained with data length equal to 8000 and the SNR equal
to 20 dB (complex white Gaussian noise). On the other hand, the
theoreticalv(n) was obtained using Algorithm 1 with the initial
guessv[0](n) = �(n), DFT lengthL = 1024, and convergence
tolerance� = 10�5: The simulation results are displayed in Fig. 2,
where scale factors and time delays were artificially removed. Fig.

(a)

(b)

Fig. 1. (a) Magnitude response ( ) and (b) principal value
ARG[ ( )] of the phase responsearg[ ( )] of the channel ( )
for [ ], where a linear phase term in (b) was removed for clarity.

2(a) exhibits thatv(n) may be approximated well by a long-length
FIR filter v̂(n) of order equal to about 80 and that the theoretical
v(n) obtained by Algorithm 1 can serve as a prediction forv̂(n):
Additionally, we can see from Fig. 2(b),Fig. 2(c), and Fig. 1(b) that
jV (! = 0)j = jV (! = ��)j = 0 and ARG[V (!)] = �ARG[H(!)]
and that bothjV̂ave(!)j and ARG[V̂ave(!)] are close tojV (!)j and
ARG[V (!)], respectively, except for those around! = 0 and��:
The large magnitude and phase errors around! = 0 and�� in Fig.
2(b) and (c) result from the low magnitude ofH(!) around these
frequencies [see Fig. 1(a)] or, equivalently, the low signal power of
these frequency components in the datax(n): As a consequence, the
results in Fig. 2(a)–(c) confirm Properties 1 through 3.

Fig. 2(d) exhibits thatjĝZP(n)j is quite close tojgZP(n)j and ap-
proaches�(n) implying that v̂(n) performs intersymbol interference
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(a) (b)

(c) (d)

Fig. 2. (a) Real parts, (b) magnitude responses, and (c) phase responses (principal values) of the obtained estimate^ ( ) (dashed lines) and the theoretical
( ) (solid lines), while their imaginary parts are not displayed since they are almost zero. (d) Corresponding absolute zero-phase overall system estimate
^ ( ) (dashed line) and theoretical zero-phase overall system( ) (solid line).

(ISI) reduction well for this case. Moreover,jĝZP(n)j is approximately
symmetric withjĝZP(0)j > jĝZP(n)j; n 6= 0;, which is consistent
with R2).

V. CONCLUSIONS

The proposed analytic results about the performance of the blind de-
convolution criteriaJp;q given by (4) include the connection of the as-
sociated deconvolution filterv(n) with the nonblind MMSE equalizer,
guaranteed stability ofv(n) regardless of the locations of the channel’s
zeros and capability of perfect phase equalization for finite SNR, as

summarized in Properties 1 through 3. These analytic results are helpful
to realizing the behavior ofv(n) associated withJp;q:

APPENDIX A
PROOF OFPROPERTY2

From (9), (11) and B2), we can easily show that� < 1: By
(14) and� < 1, we can infer that ifd(n) is stable, thenv(n) is
stable sincevMSE(n) is stable. Invoking (9), (13), and B2), we obtain

n jd(n)j � n jg(n)j
2 3=2

< 1: This, therefore, completes
the proof thatv(n) is stable, and so isg(n) by A1). Then, (15) follows
directly from (3), (7), and (14).
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APPENDIX B
PROOF OFPROPERTY3

Let �(!)
�
= arg[G(!)] = arg[H(!)] + arg[V (!)]: The denom-

inator ofJ2;2 given by(8) can be easily shown to be independent of
arg[V (!)], whereas the numerator ofJ2;2 can be shown to be [7]

jC2;2fe(n)gj

=
1

(2�)3

�

��

�

��

�

��

2;2

� jG(�!1 + !2 + !3)j �

3

i=1

jG(!i)j

� exp j [�(�!1 + !2 + !3)

+ �(!1)� �(!2)� �(!3)] d!1 d!2 d!3

�
j2;2j

(2�)3

�

��

�

��

�

��

jG(�!1 + !2 + !3)j

�

3

i=1

jG(!i)jd!1 d!2 d!3: (B.1)

Due to (15), the equality of (B.1) requires that[�(�!1 + !2 + !3) +
�(!1) � �(!2) � �(!3)] be equal to a constant for�!1 + !2 +
!3 =2 
Z and!i =2 
Z; i = 1; 2; 3: This implies that the optimum
�(!) associated with the maximum ofJ2;2 is linear for! 2 [��; �)
and! =2 
Z;, and thus, the optimumarg[V (!)] is as given by (16),
regardless of whatjV (!)j for ! 2 [��; �) and! =2 
Z is.
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Blind Source Separation Using Clustering-Based
Multivariate Density Estimation Algorithm

Zhenya He, Luxi Yang, Ju Liu, Ziyi Lu, Chen He, and Yuhui Shi

Abstract—A learning algorithm is developed for blind separation of
the independent source signals from their linear mixtures. The algorithm
is based on minimizing a contrast function defined in terms of the
Kullback–Leibler distance. We use a clustering-based multivariate density
estimation approach to reduce the number of the parameters to be
updated. Simulations illustrate the validity of the algorithm.

I. INTRODUCTION

Blind source separation (BSS), which is also known as the indepen-
dent component analysis (ICA), has received much attention recently
in the signal processing field [1]–[5], [9]–[16] and has found many im-
portant applications. Generally speaking, the problem of BSS can be
formulated as the problem of separating or estimating waveforms of
primary sources from their linear mixtures, without knowing the char-
acteristics of the transmission channels. In the simplest case, we see
N sequencesX1(t); X2(t); � � � ; XN (t) recorded fromN different
sensors, each observationXi(t) being a linear combination ofM in-
dependent sourcesS1(t); S2(t); � � � ; SM(t). Thus,X(t) = AS(t),
whereX(t) andS(t) denote the vectorsX1(t); X2(t); � � � ; XN(t)
andS1(t); S2(t); � � � ; SM(t), respectively.A is aN�M matrix. The
BSS problem is to find anM � N matrixW only from the observa-
tionsX(t) such that the outputY (t) =WX(t) is as close as possible
to the source signalsS(t).

Currently, there exist several types of approaches to solve such
a problem. The seminal work is by Jutten and Herault [1]. Their
heuristic algorithm, which is inspired by a neuromimetic approach,
is attractive because it is simple and can be realized locally, but it
fails in separating more than two independent sources. Karhunen [4],
[9] found that nonlinear Hebbian learning in a self-organizing neural
network can perform independent component analysis and can thus
solve the source separation problem. The most critical factor of this
approach is how to select a proper contrast function [2], [3], [12]. A
few new neural separating algorithms have been derived from several
contrast functions based on information theoretic concepts. Pham
[11] and Amari [3] proposed separating algorithms based on the
Kullback–Leibler distance. Pham [11] gave the choice of a marginal
density function, which is important for the separating algorithms
to perform well. He estimated the density through a kernel method
with implicit data prewhitening. He also computed the Hessian and
implemented a Gauss–Newton type algorithm that has faster conver-
gence. Bell and Sejnowski [5] derived a separating algorithm that
maximizes the information transferred in a network of nonlinear units.
Bell’s algorithm actually is also based on Kullback–Leibler distance.
Obradovic and Deco[19] pointed out that the separating algorithms
based on Kullback–Leibler distance and Bell’s Infomax algorithm lead
to the same solution if the parameterization of the output nonlinear
functions in the latter method is sufficiently rich. Comon [2] proposed
a cumulant-based approach. Deco and Obradovic [18] extended
the approach by defining a parameterization by rotation matrices.
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