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Fourier Series Based Nonminimum Phase
Model for Statistical Signal Processing

Chong-Yung Chi,Senior Member, IEEE

Abstract—In this paper, a parametric Fourier series based
model (FSBM) for or as an approximation to an arbitrary
nonminimum-phase linear time-invariant (LTI) system is pro-
posed for statistical signal processing applications where a model
for LTI systems is needed. Based on the FSBM, a (minimum-
phase) linear prediction error (LPE) filter for amplitude estima-
tion of the unknown LTI system together with the Cramér–Rao
(CR) bounds is presented. Then, an iterative algorithm for ob-
taining the optimum LPE filter with finite data is presented that
is also an approximate maximum-likelihood algorithm when data
are Gaussian. Then three iterative algorithms using higher order
statistics (HOS) with finite non-Gaussian data are presented to
estimate parameters of the FSBM followed by some simulation
results as well as some experimental results with real speech
data to support the efficacy of the proposed algorithms using
the FSBM. Finally, we draw some conclusions.

I. INTRODUCTION

I N MANY statistical signal processing areas such as signal
modeling, power spectral and polyspectral estimation, sys-

tem identification, deconvolution and equalization, a widely
known problem is the identification and estimation of an
unknown linear time-invariant (LTI) system (which can
be nonminimum-phase) driven by an unknown random signal

with only a given set of output measurements

(1)

The system in, for example, adaptive signal processing
is often assumed to be an LTI system over a time segment for
convenience even if it is time varying. A parametric model
for the LTI system is usually used in the design of
statistical signal processing algorithms because can be
easily characterized by its parameters, and thus, estimation
of becomes a parameter estimation problem that often
leads to mathematically tractable solutions with predictable
performance. The system function is often modeled as
a parametric rational function [1], [2], i.e.,

(2)
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where and are a th-order polynomial and ath-
order polynomial of , respectively. The model given
by (2) is referred to as an ARMA model, which includes
an AR model (when ) and an MA model (when

) as special cases. Therefore, finding a rational model
approximation to the system from measurements is a
parameter estimation problem. The performance of such as
AR parameter estimation algorithms [1], [2] can be predicted
from the power of linear prediction error (LPE) or from the
variance of AR parameter estimates as well as the associated
Cramér-Rao (CR) bounds.

Except for a scale factor, the ARMA model can also be
expressed as [3]

(3)

where

(4)

and

(5)

where , and are all less than unity. Note
that [the inverse -transform of ] is a causal stable
minimum phase system with , and [the inverse
-transform of ] is an anticausal stable maximum phase

system with . The expression given by (3) is called
minimum-phase (MN) maximum-phase (MX) decomposition
[3]. Note that system amplitude and phase are simultaneously
characterized by all parameters [coefficients of and

or and ] of the rational model, whereas
only the former (system amplitude) can be easily inferred
from poles ( and ) and zeros ( and ) of the
rational model. On the other hand, stability of the rational
model, which must be considered in the design of statistical
signal processing algorithms, requires determination of
and from the unknown and thus may lead to
considerable complexity, especially in the design of iterative
signal processing algorithms that repeat the determination of

and at each iteration.
Dianat and Raghuveer [4] proposed a parametric Fourier

series based model (FSBM) for both magnitude and phase
of non-Gaussian signals with the model parameters estimated
from bispectra of data. Recently, Chienet al. [5] proposed a
parametric cumulant-based method for estimating the phase
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of the unknown system through allpass filtering of
measurements when is non-Gaussian. Their method
is applicable for both one- and two-dimensional (1-D and 2-
D) systems. They used FSBM for an optimal allpass filter,
which leads to a consistent estimate for the system phase

by maximizing a single absolute higher
order cumulant of the allpass filter output. In this paper, an
FSBM, which is always stable with a finite Fourier series
model for log amplitude and a finite Fourier series model for
phase, as an approximation to an arbitrary nonminimum-phase
LTI system, is proposed for applications in the aforementioned
statistical signal processing areas.

Section II presents the nonminimum-phase FSBM. Then,
an LPE filter based on the proposed FSBM for amplitude
estimation of the system is presented in Section III. Section IV
presents estimation of FSBM (amplitude and phase) param-
eters, and then, some simulation results as well as some
experimental results with real speech data are presented in
Section V. Finally, we draw some conclusions.

II. NONMINIMUM -PHASE FSBM

Assume that is a real nonminimum-phase LTI system
with the frequency response
defined as the magnitude (MG)-phase (PS) decomposition

(6)

where

(7)

and

(8)

include the amplitude and phase information of , respec-
tively, where and are integers, and and
are real. Four worthy remarks regarding the distinctions of the
proposed nonminimum-phase FSBM given by (6) and
the rational model (i.e., AR, MA and ARMA models) and the
advantages of the former over the latter are given as follows.

R1) System magnitude and phase are simultaneously char-
acterized by poles (for peaks in magnitude response)
and zeros (for notches in magnitude response) for the
ARMA model, whereas they are characterized by am-
plitude parameters and phase parameters ,
respectively, for the FSBM. Moreover, the magnitude
response given by (7) is also a cascade of

comb (peaking or notching) filters with amplitude
responses , where each
of the peak bandwidth and the notch bandwidth are
smaller (larger) as is larger (smaller). Therefore,
when the FSBM is used for approximation to a comb
filter with peaks and notches, a single nonzero
parameter may be sufficient. If the comb filter is
further required to be minimum phase, the FSBM must
take the form of (14) (see below) .

R2) The FSBM given by (6) is always a stable IIR
system no matter whether it is causal or noncausal
because it is a periodic continuous function of[3]
with period equal to . Therefore, when the system
to be designed is a noncausal stable system such as
the noncausal inverse filter [when is not
minimum phase] in blind deconvolution and channel
equalization, the proposed FSBM is more suitable than
the ARMA model for more efficient algorithm design
and simpler signal processing procedure because the
stability issue is never existent for the former.

R3) The complex cepstrum (inverse Fourier transform
of ), which has been used in speech processing
[6]–[8], biomedical signal processing [9], and seismic
signal processing [10], [11], associated with the ARMA
model given by (3) requires the compensation for the
time delay term (i.e., ) in advance and can be
shown to be [3]

(9)

Although we can use numerical polynomial rooting
algorithms to find all the poles and and zeros
and of , the obtained and
may not be very reliable when the system order is large.
On the other hand, the complex cepstrum associated
with the FSBM given by (6) can be easily shown
to be

otherwise
(10)

where for , and for . The
finite complex cepstrum of FSBM given by
(10) corresponds to a windowing approximation to that
of an arbitrary LTI system (i.e., the true system complex
cepstrum multiplied by a rectangular window).

R4) For any arbitrary stable LTI system whose am-
plitude and phase are continuous (without zeros on the
unit circle), the function of the FSBM given
by (6) with

(11)

(12)

converges uniformly to as and
(by the properties of Fourier series). However, when
the LTI system has a pair of zeros at (on the
unit circle), and
have a pair of discontinuities of magnitude equal to

at . In this case, the larger, the better
approximates to , and the larger

, the better approximates to .
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Minimum-phase (MP) allpass (AP) decomposition and MN-
MX decomposition given by (3) for the ARMA model have
been used in deconvolution [12]–[14], channel equalization
[15]–[19], and system identification [19]–[24]. These two
decompositions for the FSBM are as follows.

A) MP-AP decomposition:

(13)

where

(14)

(15)

where for , and for .
B) MN-MX decomposition:

(16)

where

(17)

(18)

where for , and for .

It has been shown in [3] that when the complex cepstrum
of a signal is causal (anticausal), the signal

is causal minimum phase (anticausal maximum phase) with
. Because [ for

by (14)] and [ for by (17) and
(10)] are causal with and

[counterpart of ] are causal minimum phase
with . Because [ for

by (18)] is anticausal with
[counterpart of ] is anticausal maximum phase with

. Moreover, based on the three decompositions

above, FSBM can be simplified for some special LTI
systems as summarized in the following remark:

R5) When for all , the FSBM is an allpass
system [see (7) and (8)]; when for all ,
the FSBM is a zero phase system [see (7) and (8)]; when

and for all , the FSBM is a
causal minimum-phase system [see (14) and (15)]; when

and for all , the FSBM is an
anticausal maximum-phase system [see (17) and (18)].

Next, let us present how to estimate the amplitude parameters
of FSBM by linear prediction and phase parameters using
higher order statistics with only measurements .

III. FSBM FOR LPE FILTERS

Let us briefly review the conventional LPE filter for ease of
later need for the presentation of LPE filters using the FSBM.

A. Conventional LPE Filters

Assume that is a real stationary random process
modeled by (1), where is a stable LTI system driven
by a white noise with zero mean and variance . The
conventional th-order LPE filter [1], [2]

(19)

(a causal FIR filter) processes such that the prediction
error

(20)

has minimum variance or average power . Note that
we have used the same notation in the LPE filter
and in [see (3) and (4)] of the ARMA model without
confusion. The optimum LPE filter is minimum-phase
and can be solved from the orthogonality principle [1], [2]

(21)

which also forms a set of symmetric Toeplitz linear equa-
tions of (which are also called normal
equations).

A well-known fact in estimation theory is that for any
unbiased estimates and with given finite data

, their covariance matrix is lower
bounded by the CR bounds. When is an AR Gaussian
process, the approximate probability density function

(22)

where is the periodogram

(23)
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was used in [1] to derive the CR bounds

(24)

where , in which
, and is a zero vector. Next,

let us present the LPE filter using FSBM.

B. LPE Filters Using FSBM

Let the th-order LPE filter be a causal minimum-
phase IIR filter with and

(25)

and thus, the prediction error is given by

(26)

Note that for notational simplicity, we have used the same
notations for parameters of both the proposed LPE filter

and the conventional LPE filter without con-
fusion. The optimum LPE filter is described in the
following theorem.

Theorem 1: Assume that is modeled as (1) where
is white with zero mean and variance , and is an
FSBM as given by (6). Let be the prediction error
given by (26). Then, for any , the optimum LPE filter

with min .
See Appendix A for the proof of Theorem 1.

Next, based on Theorem 1, let us present the orthogonality
principle for solving the optimum LPE filter that needs
the expression

[since (25)] (27)

for . Taking partial derivative of with
respect to gives rise to

[since (27)]

(28)

where is the autocorrelation function of . The
optimum prediction error must satisfy

that leads to the orthogonality principle

(29)

which, however, form a set of nonlinear equations rather than a
set of symmetric Toeplitz linear equations of, as formed by

(21). The distinctions between the proposed LPE filter
and the conventional LPE filter are summarized in the
following remark.

R6) Both , which is an IIR filter [see (26)], and ,
which is an FIR filter, are Wiener filters with minimum
phase. However, the optimum prediction error is
orthogonal to for the
former and orthogonal to

for the latter. Nevertheless, will be a white
process as is sufficiently large, which implies that

(identical whitening filter) for
as long as is a wide-sense stationary linear process.

Next, let us present the CR bounds associated with
and when is an FSBM Gaussian

process with given by (6). The approximate probability
density function given by (22) can also be used to obtain the
CR bounds as

(30)

where is a identity matrix. The proof for the CR
bounds given by (30) is given in Appendix B. Note that the
CR bounds associated with AR parameters [see (24)] depend
on correlations of , whereas those associated withare
uniform and independent of correlations of . The CR
bound associated with is the same for both FSBM and
AR model.

Based on Theorem 1, an iterative algorithm is used to
estimate or find an approximation to with finite data

as follows.
Algorithm 1—Estimation of :

S1) Search for the minimum of the objective function

(31)

and the associated optimum by a gradient-type
iterative optimization algorithm (such as the well-known
Fletcher–Powell algorithm [26]).

S2) Obtain the estimates and by

or (32)

(33)

Two remarks regarding Algorithm 1 are given as follows.

R7) As with other nonlinear optimization algorithms, only
a local minimum of can be found. The optimum
prediction error
corresponds to amplitude equalized data by (32). The
iterative Fletcher–Powell algorithm, which is summa-
rized in Appendix C, needs the gradient of with
respect to [see (C.2)], which, by (27) and (31), can
be easily seen to be

(34)

where is the sample correlation function of
as defined in (34).
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R8) It can be easily shown, from (22) and (23), that
when is Gaussian, maximizing for finding
an approximate maximum-likelihood (AML) estimate

is equivalent to minimizing

(by Parseval’s theorem) (35)

when is an FSBM as given by (6). An
AML estimate can be obtained by letting

that leads to

(36)

It can be easily seen, from (31), (32), (33), (35) and (36),
that both and are also AML estimates
when is Gaussian since for
large .

Next, let us present how to estimate the orderof the FSBM
for LPE filters. The well-known Akaike information criteria
(AIC) [1], [2], [25] given by

AIC (37)

can be used for the estimation of, assuming . The
optimum estimate, which is denoted, of is the one such
that AIC is minimum for . Let

for large [by R8)] (38)

denote the minimum prediction error power of the LPE filter
of order equal to [see (31) and (33)]. Substituting (35) and
(36) to (22) yields

for large (39)

where we have used the approximation of given by
(38) in the derivation of (39). Substituting (39) back to (37)
and, meanwhile, ignoring the constant terms, we obtain

AIC (40)

Remark that the same AIC given by (40) [1], [2], [25] can
be used for model-order estimation, regardless of whether the
model used for LPE filters is FIR model or FSBM. Therefore,
Algorithm 1 can be used for the design of the LPE filter
modeled as an FSBM as well as the model order estimation
using AIC given by (40).

IV. ESTIMATION OF FSBM PARAMETERS

In this section, further with the assumption that is non-
Gaussian with nonzero th-order cumulant [and thus

is also non-Gaussian], three iterative algorithms are to be
presented for the estimation of parameters of the FSBM
given by (6).

The first two algorithms estimate the system amplitude using
Algorithm 1 and system phase using the Chienet al. phase
estimation algorithm [5] that maximizes a single absoluteth-
order sample cumulant, which is denoted ,
of the phase equalized (allpass filtered) data

(41)

where is a th-order allpass FSBM

(42)

It has been shown in [5] that the optimum turns out to
be a phase equalizer except for an unknown time delay, i.e.,

(43)

or the overall system becomes a linear-phase
system with the same magnitude response as . Because

is a highly nonlinear function of , we can use
gradient-type iterative algorithms (such as the Fletcher–Powell
algorithm) for finding the optimum . For instance

(44)

(45)

Gradient-type iterative algorithms require the computation of
the gradient of with respect to . It has also
been proven in [5] that

(46)

which is needed to compute the gradient of with
respect to (see [5] for details). However, when the order
is unknown, must be estimated from measurements prior to
the estimation of . An approach for the estimation of is
based on the cumulant variation rate (CVR) defined as

CVR (47)

where is the maximum of associated with
the th-order allpass FSBM given by (42). The
optimum estimate, which is denoted, is the smallest integer
such that CVR is below a threshold for all . Next, let
us present the three algorithms for estimating the parameters
of the FSBM with known in advance.
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Algorithm 2—Separate Amplitude Estimation and Phase
Estimation Based on the MG-PS Decomposition:

S1) Estimate and using Algorithm 1 to obtain
. Thus, can be obtained from

.
S2) Find the optimum allpass FSBM given by

(42) using a gradient-type iterative algorithm such that
is maximum, where .

Then, obtain , and
since [see (8)].

Algorithm 3—Amplitude Estimation Prior to Phase Estima-
tion Based on the MP-AP Decomposition:

S1) Estimate and to obtain ,
and obtain the optimum prediction error

[see R7)] using Algorithm 1.
S2) Find the optimum allpass FSBM given by

(42) using a gradient-type iterative algorithm such that
is maximum, where ,

and the order of the allpass FSBM is equal
to . Then, obtain

, and since
[see (15)].

The last algorithm (Algorithm 4) estimates the system
amplitude and phase simultaneously using inverse filter criteria
[27]–[30]. Chi and Wu [27] proposed a family of inverse filter
criteria that includes Tugnait’s criteria [28], Wiggins’ criterion
[29], and Shalvi and Weinstein’s criterion [30] as special cases.
The inverse filter is estimated by maximizing

(48)

where is even and , and

(49)

It has been shown in [27] that when is
an arbitrary stable LTI system, whereis a scale factor, and

is an unknown time delay. Next, let us present Algorithm 4.
Algorithm 4—Simultaneous Amplitude and Phase Estima-

tion Based on the MG-PS Decomposition:

S1) Set integer (even) and integer . Let
, where is the FSBM

given by (6).
S2) Find the optimum (i.e., and ) using

a gradient-type iterative algorithm such that is
maximum. Then, is estimated as the sample variance
of the obtained optimum inverse filter output .

Following the same procedure as when we proved
given by (27), it can be easily shown that

(50)

(51)

which are needed for computing the gradient of with
respect to and , respectively, required by the iterative
gradient type algorithm in S2).

Next, let us discuss the computational complexity of the
proposed three algorithms. The computation of [see
(26)], [see (41)] and [see (49)] can be efficiently
performed using FFT because the FSBM model is a parametric
model in the frequency domain. All the gradient-type iterative
optimization algorithms used in the three algorithms have a
computationally efficient parallel structure (FIR filter banks
with only two nonzero coefficients or ) in computing
the partial derivative of the allpass filter output with respect
to as given by (46) for Algorithms 2 and 3 and the partial
derivative of the inverse filter output with respect to and

as given by (50) and (51) for Algorithm 4. However, the
gradient computation associated with Algorithm 1 [see (34)]
does not need any further processing to the prediction error

. Let us conclude this section with the following remark
discussing the use of the three algorithms when some prior
information about the FSBM is known ahead of time, but the
order is not known.

R9) When the order of the FSBM is unknown, can
be estimated using AIC given by (40), and can be
estimated using CVR given by (47). On the other
hand, when some prior information is knowna priori,
the proposed three algorithms can be simplified. For
instance, when the unknown system is known to be
minimum-phase, S2) in Algorithms 2 and 3 is redundant
since and for this case [see R5)] and
the FSBM used by Algorithm 4 can be reduced
to . When the unknown system is an allpass
system, the S1) in the former is redundant and the FSBM

used by the latter can be reduced to since
for all .

V. SIMULATION RESULTS AND EXPERIMENTAL RESULTS

In this section, let us show some simulation results (Example
1) for the CR bounds as well as the order estimation of the
FSBM and performance evaluation of the proposed algorithms
followed by some simulation results (Example 2) for seismic
deconvolution using the proposed algorithms. Then, some
experimental results for speech deconvolution with real speech
data (Example 3) are presented to support the efficacy of the
proposed algorithms. Next, let us turn to Example 1.

Example 1: This example includes two parts. Part 1
presents some simulation results for the CR bounds associated
with amplitude parameters of the
FSBM , the estimation of , and the performance
evaluation of Algorithm 1. Part 2 presents some simulation
results for the estimation of as well as the performance
evaluation of Algorithms 2–4. Next, let us present Parts 1
and 2, respectively.

In the simulation of Part 1, the driving input was
assumed to be a zero-mean white Gaussian random sequence
and a nonminimum-phase FSBM given by

(52)

(53)
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TABLE I
SIMULATION RESULTS OF PART 1 OF EXAMPLE 1. AIC(k);
k = 1 � 6 AND N = 512; 1024; 2048 AND 4096

TABLE II
SIMULATION RESULTS OFPART 1 OF EXAMPLE 1. AVERAGES

AND RMS ERRORS OFTHIRTY INDEPENDENT AMPLITUDE

PARAMETER ESTIMATES �̂i; i = 1 � 3 USING ALGORITHM 1

was used to generate the synthetic data SNR .
Then, Algorithm 1 was employed to estimate. Simulation
results obtained from 30 independent runs are shown in
Tables I and II. Table I shows simulation results for AIC

and and , where
each AIC was obtained by substituting the average of the
obtained 30 into (40). We can see, from Table I, that
AIC is minimum for , indicating the true order

. These simulation results support that AIC can be
used for the estimation of. On the other hand, assuming that
the true was known, the averages of the obtained thirty
estimates , and the associated root mean-
square (RMS) errors are shown in Table II, together with the
square root of the CR bounds [by (30)]. From these
two tables, we can see that all the estimates are
unbiased with RMS errors close to the square root of the CR
bounds . These simulation results justify that Algorithm
1 is an AML estimator when data are Gaussian.

In the simulation of Part 2, the procedure for generating
the synthetic data is the same as in Part 1, except
that the driving input was assumed to be a zero-mean
exponentially distributed random sequence. Thirty independent
estimates were obtained using the Chienet al. phase
equalization algorithm [Step S2) of Algorithm 2] with
. Table III shows the simulation results for CVR(%),

and and where
each CVR was obtained by substituting the average of the
obtained 30 into (47). We can see, from Table III, that
CVR for , indicating the true order ,
although CVR does not decrease monotonically with.
On the other hand, assuming that the true and
were known, we also obtained 30 estimatesand using
Algorithms 2, 3 (with ) and 4 (with and ).
RMS errors of the obtained 30 estimates ,
and are shown in Table IV. Note from
Table IV that the RMS errors of associated with Algorithms

TABLE III
SIMULATION RESULTS OF PART 2 OF EXAMPLE 1. CVR(k)
(%), k = 1 � 8 AND N = 512; 1024; 2048 AND 4096

TABLE IV
SIMULATION RESULTS OFPART 2 OF EXAMPLE 1. RMS ERRORS OF30
INDEPENDENT AMPLITUDE PARAMETER ESTIMATES �̂i; i = 1 � 3 AND

PHASE PARAMETER ESTIMATES �̂i; i = 1 � 4 USING ALGORITHMS 2
AND 3 WITH M = 3, AND ALGORITHM 4 WITH r = 2 AND m = 3

2 and 3 are the same because Step S1) is the same for these
two algorithms. RMS errors of and decrease with
for all the three algorithms. The RMS errors of associated
with Algorithms 2 and 3 are smaller than those associated
with Algorithm 4. The RMS errors of associated with
Algorithm 3 are close to those associated with Algorithm 4
and, meanwhile, smaller than those associated with Algorithm
2. Nevertheless, these simulation results support the efficacy
of the proposed Algorithms 2–4 and indicate that Algorithm
3 is preferable to the other two algorithms for this case
SNR .

Example 2: The simulation results, that is for seismic
deconvolution, were obtained with assumed to be a
Bernoulli–Gaussian sequence (taken from [12]), a sparse spike
train for modeling reflectivity sequences of the Earth, and the
system (source wavelet) to be a nonminimum-phase
causal ARMA system (taken from [12])

(54)

instead of an FSBM. Fig. 1(a) shows the synthetic data
for and SNR dB (white Gaussian noise).
Algorithms 2, 3 (with ) and 4 (with and )
were employed to process the synthetic data , including
the order estimation. The estimated order
was obtained for this case using AIC and CVR . The
simulation results associated with Algorithm 3 are shown in
Fig. 1(b)–(e). Fig. 1(b) and (c) show the magnitude response
and phase response of the estimated FSBM (dash line)
and those of the true ARMA system (solid line), re-
spectively. Fig. 1(d) and (e) show the (noncausal) estimate
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(a)

(b)

(c) (d)

(e)

Fig. 1. Simulation results of Example 2 for Algorithm 3 withM = 4. (a) Synthetic seismic datax(n) for N = 512 and SNR= 20 dB. (b) Magnitude
response and (c) phase response of the estimated FSBM(12; 8) (dash line) and those of the true ARMA(3; 3) system (solid line). (d) Source waveleth(n)
(solid line) and estimatêh(n) (dash line). (e) Inputu(n) (circles) and deconvolved signal̂u(n) (bars).

(dash line) and the deconvolved signal (bars) [i.e.,
the optimum allpass filter output signal obtained in Step
S2) of Algorithm 3], respectively, where the scale factor and
the time delay between and (solid line) and those
between and (circles) were artificially removed. We
can see that and are good approximations of

and , respectively. Both amplitude and phase response
of are also good approximations of those of . The
results obtained using Algorithms 2 and 4 are also similar to
those shown in Fig. 1 and therefore are omitted.

We also performed the same simulation except that the true
system was a nonminimum-phase causal ARMA system
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(a)

(b)

(c) (d)

(e)

Fig. 2. Simulation results of Example 2 for Algorithm 3 withM = 4. (a) Synthetic seismic datax(n) for N = 512 and SNR= 20 dB. (b) Magnitude
response and (c) phase response of the estimated FSBM(8; 8) (dash line) and those of the true ARMA(3; 4) system (solid line). (d) Source waveleth(n)
(solid line) and estimatêh(n) (dash line). (e) Inputu(n) (circles) and deconvolved signal̂u(n) (bars).

(taken from [5])

(55)

which has a pair of zeros on the unit

circle. The estimated order was obtained for

this case. The results corresponding to Fig. 1(a)–(e) are shown

in Fig. 2(a)–(e), respectively, for the case using Algorithm 3.
Again, and are good approximations of and

, respectively, and both amplitude response and phase
response of are also good approximations of those of
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(a) (b)

(c) (d)

Fig. 3. Experimental results of Example 3. Speech deconvolution with the vocal tract filter modeled as an FSBM(16; 16) using Algorithm 2 withM = 3.
(a) Windowed speech data (by Hamming window) of sound=a : = uttered by a man (sampling rate equal to 8 kHz). (b) Predictive deconvolved speech signal
e(n). (c) Deconvolved signal̂u(n) obtained by the inverse filter1=Ĥ(!). (d) Impulse response of the estimated vocal tract filterĤ(!).

. These simulation results support that Algorithm 3 also
works well for this case that the system magnitude response
has a broad dynamic range and the system phase response has a
pair of discontinuities of magnitude equal toat
rad due to the pair of zeros on the unit circle. As mentioned in
R4), the approximation of FSBM to the true ARMA
system is never perfect for this case, even when .
This also implies that the FSBM is merely a stable
approximation to any arbitrary LTI systems, regardless of pole
and zero locations. The results obtained using Algorithms 2
and 4 are also similar to those shown in Fig. 2 and, therefore,
are omitted.

Example 3: This example presents some experimental re-
sults for speech deconvolution with real voiced speech data
(taken from [5]), which were obtained from a sound
uttered by a man through a 16-bit A/D converter with a
sampling rate of 8 kHz. It is well known [3] that a voiced
speech signal can be modeled as (1), where is a pseudo-
periodic impulse train (also called excitation signal), and
is the vocal tract filter (with possibly nonminimum phase).
The speech data multiplied by a Hamming window, which are
shown in Fig. 3(a), were processed using Algorithm 2 with
the cumulant order and the vocal tract filter modeled
as an FSBM . Fig. 3(b) shows the LPE filter output

[obtained by Algorithm 1 in Step (S1) of Algorithm
2] that, as predicted, approximates a pseudo-periodic impulse
train, except for some phase distortion because the vocal tract
filter is not minimum phase for this case. Fig. 3(d) shows the
impulse response of the estimated nonminimum-phase vocal
tract filter FSBM , which shows considerable
resemblance to the windowed speech data of one pitch period
[see Fig. 3(a)], and Fig. 3(c) shows the deconvolved speech
signal by processing the windowed speech data with

the inverse filter FSBM . It can be seen,
from these figures, that approximates a pseudo-periodic
impulse train better than with the pitch period of 70
samples (i.e., 8.75 ms) because both amplitude and phase
of the vocal tract filter were equalized by the inverse filter

. The corresponding results for and those
obtained using Algorithms 3 and 4 are quite similar to those
shown in Fig. 3 and, therefore, are omitted.

Only a single frame of speech data was involved in the
preceding experimental results. Next, let us present some
experimental results with a set of real speech data (with
sampling frequency 11 025 Hz) shown in Fig. 4(a) (taken
from [31]) that contains a speech segment 0.3 s long, of a
female saying “why.” The speech data were divided into 20
frames of 160 samples each (corresponding to 14.5 ms). Then,
Algorithms 2, 3 (with ), and 4 (with and )
were employed to process the speech data frame by frame
with the vocal tract filter modeled as an FSBM for
each frame. The obtained deconvolved signals associated
with Algorithms 2–4 are shown in Fig. 4(b)–(d), respectively.
We can see, from these figures, that all the deconvolved signals
approximate a pseudo-periodic impulse train. Over the 20
frames, the pitch period smoothly decreases from 67 samples
to 43 samples, and variations of impulse magnitudes of
from frame to frame can be clearly observed. We would
like to mention that the total energy of each frame of the
deconvolved signal shown in Fig. 4(d) was normalized by the
same energy of each frame of the deconvolved signal shown in
Fig. 4(c) because the unknown scale factor in the deconvolved
signal associated with Algorithm 4 can be very different over
different frames. As a final remark, the FSBM model used
for speech signal processing may lead to simple efficient
coding and compression schemes when the deconvolved signal
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(a) (b)

(c) (d)

Fig. 4. Experimental results of Example 3. Speech deconvolution with the vocal tract filter modeled as an FSBM(16; 16) using Algorithms 2, 3 (with
M = 3) and 4 (with r = 2 andm = 3). (a) Speech data “why” uttered by a woman (taken from [31]) (sampling rate equal to 11 025 Hz). (b)–(d)
Deconvolved signalŝu(n) associated with Algorithms 2, 3 and 4, respectively.

(the excitation signal) approximates to a neat pseudo-periodic
impulse train.

VI. CONCLUSION

We have presented an FSBM for (or as) an approx-
imation to an arbitrary nonminimum-phase LTI system for
applications in the statistical signal processing areas mentioned
in the introduction. Based on the FSBM, an LPE filter for am-
plitude estimation together with the CR bounds, an algorithm
(Algorithm 1) for obtaining the optimum LPE filter, and three
algorithms (Algorithms 2–4) for estimating FSBM parameters,
including the estimation of the order , were presented.
Two simulation examples (Examples 1 and 2) and some
experimental results with real speech data (Example 3) were
presented to support the efficacy of the proposed algorithms
using the proposed FSBM. However, Algorithm 3 is preferable
to Algorithms 2 and 4 because for the amplitude parameter
estimation, Algorithms 2 and 3 are the same and slightly
superior to Algorithm 4, whereas for the phase parameter
estimation, Algorithms 3 and 4 have similar performance and
slightly outperform Algorithm 2.

The ARMA model has been widely used in statistical signal
processing, and most signal processing algorithms using the
ARMA model are suitable for the time domain implementation
(recursive equations). On the other hand, signal processing
algorithms using the proposed FSBM are suitable for the
frequency domain implementation. The proposed FSBM may
be a more suitable choice than the ARMA model for some
signal processing applications such as deconvolution and chan-
nel equalization, system identification, speech coding and
compression, time delay estimation, and signal detection and
classification. The results presented in this paper are merely
an introduction to the FSBM, and its usefulness needs to be
studied further.

APPENDIX A
PROOF OF THEOREM 1

The power spectrum of can be easily seen to be

(A.1)
where

since
(A.2)

is also a causal minimum-phase system with leading
coefficient since both and are
causal minimum-phase filters with the same leading coefficient

. Therefore

(A.3)

which holds only when . Thus, the optimum
minimum-phase LPE filter when
[by (A.2)] and min .

APPENDIX B
PROOF OF THECR BOUNDS GIVEN BY (30)

Let . It is well known that the CR bounds
are equal to , where is the Fisher information matrix
defined as [1]

(B.1)

The log function of given by (22) with substituted
by (7) yields

(B.2)
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Taking partial derivative of given by (B.2) with respect
to yields

(B.3)

Similarly, it can be shown that

(B.4)

The second-order partial derivatives are

(B.5)

(B.6)

(B.7)

It has been shown in [1] that the average periodogram con-
verges to the true power spectrum for large, i.e.,

(B.8)

Then, from (B.5)–(B.8), we get

(B.9)

(B.10)

(B.11)

Substituting (B.9)–(B.11) into (B.1) yields

(B.12)

where is a identity matrix, and is a zero vector.
Therefore, the CR bounds are equal to the right-hand side
of (30).

APPENDIX C
FLETCHER–POWELL ALGORITHM

Assume that is the objective function to be minimized
and that it is a function of parameter vector. At the th

iteration, is updated by

(C.1)

where is a step-size parameter, and

(C.2)

and

(C.3)

where

(C.4)

and

(C.5)

The initial matrix can be any positive definite matrix
(e.g., an identity matrix), which always leads to a positive
definite for , provided that is chosen such that

. At each iteration, can be chosen as
for until .

The iterative algorithm ends up with the optimum estimate
as the objective function converges.
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