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Fourier Series Based Nonminimum Phase
Model for Statistical Signal Processing

Chong-Yung Chi,Senior Member, IEEE

Abstract—In this paper, a parametric Fourier series based where A(z) and B(z) are apth-order polynomial and ath-
model (FSBM) for or as an approximation to an arbitrary  order polynomial ofz~*, respectively. The mode¥ (z) given
nonminimum-phase linear time-invariant (LTI) system is pro- by (2) is referred to as an ARM&, g) model, which includes

posed for statistical signal processing applications where a model -
for LTI systems is needed. Based on the FSBM, a (minimum- 2" AR(p) model (when3(z) = 1) and an MAq) model (when

phase) linear prediction error (LPE) filter for amplitude estima-  A(2) = 1) as special cases. Therefore, finding a rational model
tion of the unknown LTI system together with the Cramér—Rao approximation to the systeri(n) from measurements is a
(CR) bounds is presented. Then, an iterative algorithm for ob- parameter estimation problem. The performance of such as
taining the optimum LPE filter with finite data is presented that AR parameter estimation algorithms [1], [2] can be predicted

is also an approximate maximume-likelihood algorithm when data . -
are Gaussian. Then three iterative algorithms using higher order from the power of linear prediction error (LPE) or from the

statistics (HOS) with finite non-Gaussian data are presented to Variance of AR parameter estimates as well as the associated
estimate parameters of the FSBM followed by some simulation Crangr-Rao (CR) bounds.

results as well as some experimental results with real speech Except for a scale factor, the ARMA model can also be
data to support the efficacy of the proposed algorithms using expressed as [3]

the FSBM. Finally, we draw some conclusions.

H(z)=2"-C(z) D(z) (3)
[. INTRODUCTION
where
N MANY statistical signal processing areas such as signal M, .
modeling, power spectral and polyspectral estimation, sys- O(z) = kfl(l — ") (4)
tem identification, deconvolution and equalization, a widely H£;1(1 — ez 1)
known problem is the identification and estimation of an d
unknown linear time-invariant (LTI) systera(n) (which can an
be non_minimum-p_hase) driven by an unknown random signal (2) = 24201(1 — by2) 5)
u(n) with only a given set of output measurements:) Hﬁil(l ~ dr)
_ hin) = Dl — k). 1) Where|ax|, |bx], |ck|, and |dx| are all less than unity. Note
#(n) = u(n) * hin) k:z_:oou( Jhin =) @) that c(n) [the inversez-transform ofC(z)] is a causal stable

minimum phase system witt{0) = 1, andd(n) [the inverse
The systemh(n) in, for example, adaptive signal processing-transform of D(z)] is an anticausal stable maximum phase
is often assumed to be an LTI system over a time segment fystem withd(0) = 1. The expression given by (3) is called
convenience even if it is time varying. A parametric modehinimum-phase (MN) maximum-phase (MX) decomposition
for the LTI systemh(n) is usually used in the design of[3]. Note that system amplitude and phase are simultaneously
statistical signal processing algorithms becafiée) can be characterized by all parameters [coefficients 4fz) and
easily characterized by its parameters, and thus, estimatiBfr) or ax, b, cx andd,] of the rational model, whereas
of h(n) becomes a parameter estimation problem that oftenly the former (system amplitude) can be easily inferred
leads to mathematically tractable solutions with predictableom poles ¢ and 1/d;) and zeros 4 and 1/b;) of the
performance. The system functidii(z) is often modeled as rational model. On the other hand, stability of the rational

a parametric rational function [1], [2], i.e., model, which must be considered in the design of statistical
signal processing algorithms, requires determinatio”6f)
H(z) = B(z) ) and D(z) from the unknownH(z) and thus may lead to
A(z) considerable complexity, especially in the design of iterative

signal processing algorithms that repeat the determination of
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of the unknown system:(n) through allpass filtering of R2) The FSBMp,q) given by (6) is always a stable IIR

measurements(n) whenz(n) is non-Gaussian. Their method
is applicable for both one- and two-dimensional (1-D and 2-
D) systems. They used FSBM for an optimal allpass filter,
which leads to a consistent estimate for the system phase
(arg{H(» = ¢*)}) by maximizing a single absolute higher
order cumulant of the allpass filter output. In this paper, an
FSBM, which is always stable with a finite Fourier series
model for log amplitude and a finite Fourier series model for
phase, as an approximation to an arbitrary nonminimum-phase
LTI system, is proposed for applications in the aforementioned
statistical signal processing areas.
Section Il presents the nonminimum-phase FSBM. Then,
an LPE filter based on the proposed FSBM for amplitude
estimation of the system is presented in Section Ill. Section 1V
presents estimation of FSBM (amplitude and phase) param-
eters, and then, some simulation results as well as some
experimental results with real speech data are presented in
Section V. Finally, we draw some conclusions.

[I. NONMINIMUM -PHASE FSBM
Assume that(n) is a real nonminimum-phase LTI system
with the frequency respondé(w) = H(» = ¢/*) = H*(—w)
defined as the magnitude (MG)-phase (PS) decomposition

H(w) = HMG(CU) . HPS(CU) (6)
where
Hyg(w) = |H(w)| = exp {Z o Cos(iw)} 7)
and

Hps(w) = exp {j Z B; Sin(iw)} (8)

i=1

include the amplitude and phase informationtbfw), respec-
tively, wherep > 1 andq¢ > 1 are integers, and; and j3;

are real. Four worthy remarks regarding the distinctions of the
proposed nonminimum-phase FSBMg) given by (6) and

the rational model (i.e., AR, MA and ARMA models) and the R4

advantages of the former over the latter are given as follows.

R1) System magnitude and phase are simultaneously char-
acterized by poles (for peaks in magnitude response)
and zeros (for notches in magnitude response) for the
ARMA model, whereas they are characterized by am-
plitude parametergc;) and phase parameters;),
respectively, for the FSBM. Moreover, the magnitude
responseHyc(w) given by (7) is also a cascade of
p comb (peaking or notching) filters with amplitude
responsesexp{«; cos(iw)}, ¢ = 1,2,...,p, where each
of the peak bandwidth and the notch bandwidth are
smaller (larger) adoy;| is larger (smaller). Therefore,
when the FSBM is used for approximation to a comb
filter with [ peaks andl notches, a single nonzero
parametera; may be sufficient. If the comb filter is
further required to be minimum phase, the FSBM must
take the form of (14) (see belowp; = —ay).

R3)

system no matter whether it is causal or noncausal
because it is a periodic continuous function f{3]

with period equal to27. Therefore, when the system
to be designed is a noncausal stable system such as
the noncausal inverse filtdr/ H (=) [when (n) is not
minimum phase] in blind deconvolution and channel
equalization, the proposed FSBM is more suitable than
the ARMA model for more efficient algorithm design
and simpler signal processing procedure because the
stability issue is never existent for the former.

The complex cepstrunb(n) (inverse Fourier transform

of In[H (w)]), which has been used in speech processing
[6]-[8], biomedical signal processing [9], and seismic
signal processing [10], [11], associated with the ARMA
model given by (3) requires the compensation for the
time delay termz” (i.e., » = 0) in advance and can be
shown to be [3]

07 n — 0
plt GZ/”‘*‘EQ;l cag/n, n>0,

M, ;— N,  —
ot O3/ =302 Ay, 0 <0

(9)

Although we can use numerical polynomial rooting
algorithms to find all the poles, and1/d; and zerosy
and1/b, of H(z), the obtained:, 1/by, ¢, and1/dy

may not be very reliable when the system order is large.
On the other hand, the complex cepstrum associated
with the FSBMyp, ¢) given by (6) can be easily shown
to be

. %(O‘n - ﬁn)v 1<n< max{p, q}
h(n) = %(a_n +8-n), —-max{p, ¢} <n<-1
0 otherwise

(10)

whereq; = 0 for < > p, and; = 0 for i > ¢. The
finite complex cepstrunk(n) of FSBM(p, ¢) given by
(10) corresponds to a windowing approximation to that
of an arbitrary LTI system (i.e., the true system complex
cepstrum multiplied by a rectangular window).
For any arbitrary stable LTI systef(w) whose am-
plitude and phase are continuous (without zeros on the
unit circle), thelog function of the FSBMp, ¢) given
by (6) with

o = %/ [ln |H(w)|] cos(iw) dw (11)

-7

B = %/ﬂ [arg{ H (w)}] sin(iw) dw (12)

converges uniformly tin[H (w)] asp — oo andg — oo

(by the properties of Fourier series). However, when
the LTI system has a pair of zeros &t’“° (on the
unit circle), In |H(+wo)| = —oo and jarg{H(w)}
have a pair of discontinuities of magnitude equal to
7 at w = Fwqy. In this case, the largep, the better
In[Hng(w)] approximates tdn |H (w)|, and the larger

g, the bettedn[Hps(w)] approximates tg arg{ H(w)}.
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Minimum-phase (MP) allpass (AP) decomposition and MNabove, FSBNp, ¢) can be simplified for some special LTI
MX decomposition given by (3) for the ARMA model havesystems as summarized in the following remark:
been used in deconvolution [12]-[14], channel equalizatioR5) Whena; = 0 for all 1 < i < p, the FSBM is an allpass
[15]-[19], and system identification [19]-[24]. These two system [see (7) and (8)]; wheh = O forall 1 <4 < g,

decompositions for the FSBM are as follows. the FSBM is a zero phase system [see (7) and (8)]; when
A) MP-AP decompositian p=qgandf; = —q; forall 1 <i < p, the FSBM is a
causal minimum-phase system [see (14) and (15)]; when
H(w) = Hyp(w) - Hap(w) (13) p=gandB = «; forall 1 < i < p, the FSBM is an

anticausal maximum-phase system [see (17) and (18)].
Next, let us present how to estimate the amplitude parameters

p p of FSBM(p, ¢) by linear prediction and phase parameters using
Hyp(w) = GXP{Z o cos(iw) — j > Sin(iw)} higher order statistics with only measurements).
i=1 i=1

where

p
= eXp{Zaie_j“i} (14) [ll. FSBM FOR LPE RLTERS

i Let us briefly review the conventional LPE filter for ease of
later need for the presentation of LPE filters using the FSBM.

max{p,q}
Hap(w) = exp{j Z (o + ) sin(iw)} (15)

=1 A. Conventional LPE Filters
wherea; = 0 for i > p, andf; = 0 for i > q. Assume thatz(n) is a real stationary random process
B) MN-MX decompositian modeled by (1), wheréi(n) is a stable LTI system driven
by a white noisex(n) with zero mean and varianee’. The
H(w) = Hyn(w) - Hyx(w) (16) conventionalpth-order LPE filter [1], [2]
p
where Apz) =1+ Z a2 (19)
max (p,q} 1 =1
Hy, = - 5 — 37 7 . ..
Mn(w) = exp ; 2(@, Bi) cos(iw) (a causal FIR filter) processagn) such that the prediction
B error
max{p,q} 1 »
- z; 5(067 - /37) Sln(lw) C(TL) = J;(n) *Q, = x(n) + Z akx(n — k) (20)
= k=1

max{p,q}
= exp Z l(ai — B;)e~#* % (17) has minimum variance or avergge'povxlé[re?(n)].' Note that
2 we have used the same notatiap in the LPE filter A,(2)
and inC(z) [see (3) and (4)] of the ARMA model without

i=1

max{p,q} : . e o
. 1 ‘ y confusion. The optimum LPE filted,(~) is minimum-phase
Hx(w) = eXp{ z_; 2(041 + i) cos(iw) and can be solved from the orthogonality principle [1], [2]
maxip,a} Ele(n)z(n — k)] =0, k=1,2,...,p (21)
+J Z —(a; + 3;) sin(iw) _ . o
= 2 which also forms a set of symmetric Toeplitz linear equa-
tions of a, = (a1,...,a,)T (which are also called normal
melnd i equations§ ’
— —_ . Nelwt :
P z_; 2(Oéz+ﬁz)C (18) A well-known fact in estimation theory is that for any

unbiased estimated, and o2 with given finite datax =
whereq; = 0 for i > p, and3; = 0 for i > q. (x(0),2(1),...,2(N —1))T, their covariance matrix is lower
It has been shown in [3] that when the complex cepstruRpunded by the CR bounds. Whe(n) is an ARp) Gaussian
§(n) of a signalg(n) is causal (anticausal), the signgln) Process, the approximate probability density function

is causal minimum phase (anticausal maximum phase) with( ) 1 N\ 1 [* Iw)

g(0) = exp{g(0)}. Becauselyp(n) [= «, for n > 0 nx) = WeXP{—<—2>—/ 2 }
by (14)] and hnn(n) [= h(n) for n > 0 by (17) and (2mo2)™/ 20%) 2m J |H()| -
(10)] are causal withiyp(0) = Ay (0) = 0, Hyp(w) and (22)
Hyn(w) [counterpart of C(z)] are causal minimum phasewhere](w) is the periodogram

with hMp(O) = hMN(O) =1. Because’mx(n) [I h(ﬂ) for

n < 0 by (18)] is anticausal withyx(0) = 0, Hyx(w) 1 L= 2
[counterpart of D(z)] is anticausal maximum phase with I(w) = N|X(w)|2 =N Z z(n) exp{—jwn} (23)
hvx(0) = 1. Moreover, based on the three decompositions n=0
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was used in [1] to derive the CR bounds (21). The distinctions between the proposed LPE fffp(rw
2TR-1 o and the conventional LPE filted »(z) are summarized in the
Coi'Z ¥ |:0T 202} (24) following remark.

R6) Bothf/p(w), which is an IIR filter [see (26)], anép(z),
where R.. = Efxy(n)x;(n)], in which x,(n) = which is an FIR filter, are Wiener filters with minimum
(z(n),...,z(n—p+1))", and0 is ap x 1 zero vector. Next, phase. However, the optimum prediction errgr.) is
let us present the LPE filter using FSBM. orthogonal tofe(n — 1), e(n—2),...,e(n— p)} for the

former and orthogonal téz(n—1),x (n 2),...,z(n—
B. LPE Filters Using FSBM p)} for the latter. Neverthelessg;(n) will be a white
Let the pth-order LPE filterv,(n) be a causal minimum- process ag is sufficiently large, which implies that
phase IIR filter withv,(0) = 1 and Vplw) = Ap(w) (|dept|cal wh|ten|ng f||ter).forp =
» » as long ag:(n) is a wide-sense stationary linear process.
w) = exp{z a; cos(iw) = Y _a; Sin(iw)} Next, let us present the CR bounds associated with=
; ; (a,...,0,)T ando? whenz(n) is an FSBMp, ¢) Gaussian
p process withH (w) given by (6). The approximate probability
= exp{z aieﬂ'“i} (25) density function given by (22) can also be used to obtain the
; CR bounds as
and thus, the prediction error is given by 11 0
Cdpzf;z = N {OT 204} (30)

e(n) = x(n) x vp(n) = x(n) + Z”P(k)x(” — k). (26) whereI is a p x p identity matrix. The proof for the CR
bounds given by (30) is given in Appendix B. Note that the
Note that for notational simplicity, we have used the san®R bounds associated with AR parameters [see (24)] depend
notationsa; for parameters of both the proposed LPE filteon correlations of:(n), whereas those associated withare
Vp(w) and the conventional LPE filter,(z) without con- uniform and independent of correlations ofn). The CR
fusion. The optimum LPE filted/,(w) is described in the bound associated witk? is the same for both FSBM and
following theorem. AR model.

Theorem 1: Assume that(n) is modeled as (1) wheng(n) Based on Theorem 1, an iterative algorithm is used to
is white with zero mean and variane€, and H(w) is an estimate or find an approximation fyp(w) with finite data
FSBM(p*, ¢) as given by (6). Let(n) be the prediction error z(0),z(1),...,z(N — 1) as follows.
given by (26). Then, for any > p* the opt|mum LPE filter  Algorithm 1—Estimation ofyp(w):

Vo(w) = 1/Hyp(w) with min{E[¢*(n)]} = E[u*(n)] = 0> s1) Search for the minimum of the objective function
See Appendix A for the proof of Theorem 1.

Next, based on Theorem 1, let us present the orthogonality J(a Z 31)

principle for solving the optimum LPE filte¥,(w) that needs r) N

the expression )
and the associated optimud, by a gradient-type

de(n) _ ﬂ{i /W Vo(w) - X(w) - edm dw} iterative optimization algorithm (such as the well-known
dap day, Fletcher—Powell algorithm [26]).
S2) Obtain the estlmateHMp( ) and o2 by

Hyp(w) = 1/Vp(w) (oré, =-a,)  (32)

= 8ak - X(w) - " dw

1 i )
- . . pdwn—k) ) A
=%/ Vp(w) - X(w) - ¢/ dw o2 = J(&,). (33)
=c(n —k) [since (25)] (27)  Two remarks regarding Algorithm 1 are given as follows.

for de(n)/ax. Taking partial derivative ofE[e?(n)] with R7) As with other nonlinear optimization algorithms, only
respect toay gives rise to a local minimum ofJ(a,) can be found. The optimum

prediction errore(n) = z(n) * 0,(n) ~ u(n) * hap(n)

ﬂE[(}(n)] = QE{C(TL) 8@(71)} =2r..(k) [since (27)] corresponds to amplitude equalized data by (32). The
dax day, iterative Fletcher—Powell algorithm, which is summa-
(28) rized in Appendix C, needs the gradient.bfa,) with

respect toa;, [see (C.2)], which, by (27) and (31), can

where r..(k) is the autocorrelation function of(n). The ;
be easily seen to be

optimum prediction erroe(n) must satisfydE[e?(n)]/dax, =
0 that leads to the orthogonality principle dJ(ay)

Ele(n)e(n — k)] = ree(k) =0, k=1,2,....p (29) dar, Heell) = 7 Z —h e

n=0

which, however, form a set of nonlinear equations ratherthana  where#..(k) is the sample correlation function efn)
set of symmetric Toeplitz linear equationszgf, as formed by as defined in (34).
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R8) It can be easily shown, from (22) and (23), that IV. ESTIMATION OF FSBM PARAMETERS
when x(n) is Gaussian, maximizing(x) for finding | this section, further with the assumption thét) is non-

an approximate maximum-likelihood (AML) estimateg g ssian with nonzerd/th-order (>3) cumulant [and thus
@p,anmr1. IS equivalent to minimizing x(n) is also non-Gaussian], three iterative algorithms are to be

presented for the estimation of parameters of the FGBW)

S(ay,) = N [T ) ~ dw given by (6).
2m | [H(w)| The first two algorithms estimate the system amplitude using
1 /" 2 Algorithm 1 and system phase using the Chetral. phase
T or _ﬂ | X(@)Vp(w) | duw estimation algorithm [5] that maximizes a single absolutth-
N—1 order (>3) sample cumulant, which is denoté@;{y(n)}|,
~ Z le(n)|* (by Parseval’s theorem) (35) of the phase equalized (allpass filtered) data
n=0
y(n) = z(n) * gar(n) (41)

when H(w) is an FSBMp,¢) as given by (6). An
AML estimate o2, can be obtained by letting
dlnp(x)/do? = 0 that leads to

wheregap(n) is a gth-order allpass FSBM

q
N ) Gaplw) = exp{j Z ~; sin(iw) } (42)
o2 AMmL = I min{S(a)}. (36) =t

It has been shown in [5] that the optimL@kp(w) turns out to

It can be easily seen, from (31), (32), (33), (35) and (36he a phase equalizer except for an unknown time dejag.,

that both&,, = —a, and o2 are also AML estimates .
when z(n) is Gaussian sincd(a,) — S(a,,)/N for arg{Gap(w)} = —arg{H(w)} + wr (43)
large V.

Next, let us present how to estimate the ordef the FSBM  OF the overall systengap(n) * i(n) becomes a linear-phase
for LPE filters. The well-known Akaike information criteriaSyStem with the same magnitude responsgfes)|. Because
(AIC) [1], [2], [25] given by |Ca{y(n)}| is a highly nonlinear function of;, we can use

gradient-type iterative algorithms (such as the Fletcher—Powell

AIC(k) = _21np(x; dk,AkrTT,,;éAkrTT,) 4ok 37) algorithm) for finding the optimumy;. For instance

N-1
can be used for the estimation pf assumingV > p. The Cs{y(n)} = % Z y*(n) (44)
optimum estimate, which is denotédl of p is the one such =0
that AIC(k) is minimum fork = p. Let X | Nl = 2
~ Cuy(n)} = 5 D v'(n) - 3<N > yQ(ﬂ)) . (45)
n=0 n=0

e(k) = 02 — o2a\y, (for largeN) [by R8)]  (38)
Gradient-type iterative algorithms require the computation of
denote the minimum prediction error power of the LPE filtethe gradient of|Cy;{y(n)}| with respect tov,. It has also
of order equal td: [see (31) and (33)]. Substituting (35) andbeen proven in [5] that
(36) to (22) yields
dy(n)

_ N P S+ )~ y(n 1)) (46)

. N N
hlp(X; ak,AMLao—QAML) = —E In 27 — E IHE(I{}) - ?
(for large N) (39) which is needed to compute the gradieni©f; {y(n)}| with

respect toy; (see [5] for details). However, when the order

is unknown,g must be estimated from measurements prior to
he estimation ofy,. An approach for the estimation afis
ased on the cumulant variation rate (CVR) defined as

k) — n(k —
AIC(k) = Nlne(k) + 2k. (40) CVR(k) = Int |27(k77_( D] )5 100% (47)

where we have used the approximation/ot;’fAl\qL given by
(38) in the derivation of (39). Substituting (39) back to (37
and, meanwhile, ignoring the constant terms, we obtain

Remark that the same A[(&) given by (40) [1], [2], [25] can wheren(k) is the maximum of/Cy,{y(n)}| associated with

be used for model-order estimation, regardless of whether the kth-order allpass FSBMGsp(w) given by (42). The
model used for LPE filters is FIR model or FSBM. Thereforegptimum estimate, which is denotégdis the smallest integer
Algorithm 1 can be used for the design of the LPE filtesuch that CVRk) is below a threshold for alt > . Next, let
modeled as an FSBM as well as the model order estimatios present the three algorithms for estimating the parameters
using AIC(k) given by (40). of the FSBMp, ¢) with (p, ¢) known in advance.
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Algorithm 2—Separate Amplitude Estimation and Phase Next, let us discuss the computational complexity of the
Estimation Based on the MG-PS Decomposition: proposed three algorithms. The computation «6f) [see
S1) EstimateHyp(w) and o2 using Algorithm 1 to obtain (26)], y(n) [see (41)] andi(n) [see (49)] can be efficiently
&i,i=1,2,...,p. Thus,Hya(w) can be obtained from Performed using FFT because the FSBM model is a parametric
&;. model in the frequency domain. All the gradient-type iterative
S2) Find the optimum allpass FSBMF,p(w) given by Optimization algorithms used in the three algorithms have a
(42) using a gradient-type iterative a|go|’ithm such th&pmputatlona”y efficient parallel structure (FlR filter banks
|Ca{y(n)}| is maximum, where/(n) = z(n)*gap(n). with only two nonzero coefficients/2 or —1/2) in computing

Then, obtaing; = —4;, ¢ = 1,2,...,q, and Hps(w) the partial derivative of the allpass filter output with respect
since Gap(w) ~ 1/Hps(w) [see (8)]. to v; as given by (46) for Algorithms 2 and 3 and the partial
Algorithm 3—Amplitude Estimation Prior to Phase Estima derivative of the inverse filter output with respectdg and

tion Based on the MP-AP Decomposition: /3 as given by (50) and (51) for Algorithm 4. However, the
S1) Estimated do? 10 obtaind.. i — 1.2 gradient computation associated with Algorithm 1 [see (34)]
) Estimatellyp(w) ando” to obtaing;, i = 1,2,....p. joes not need any further processing to the prediction error
and obtain the optlm_um predlf:t|on errefn) = u(n) * e(n). Let us conclude this section with the following remark
hapr(n) [see R7)] using Algorithm 1.

. . . di ing th f the th Igorith h [
S2) Find the optimum allpass FSBMFap(w) given by iscussing the use of the three algorithms when some prior

42 dient-t terafi loorith h th information about the FSBM is known ahead of time, but the
(42) using a gradient-type iterative algorithm suc trder .q) is not known.

|CM{y( )} is maximum, wherey(n) = e(n)*gap(n), .
and the order of the allpass FSBbhp(n) is equal R9) When the ordefp, ¢) of the FSBM is unknownp can

to max{p,q}. Then, obtainy; = —é; — f, i = be estimated using Al&) given by (40), andy can be

- , - N estimated using CVR:) given by (47). On the other
1’/2@(73%[22% q(]i,S)?.nd Har(w) since Gar(w) = hand, when some prior information is knovanpriori,

i . . the proposed three algorithms can be simplified. For
The last algorithm (Algorithm 4) estimates the system instance, when the unknown system is known to be
amplitude and phase simultaneously using inverse filter criteria minimum-phase, S2) in Algorithms 2 and 3 is redundant
[27]1-[30]. Chi and Wu [27] proposed a family of inverse filter sinced; = —a; andp = ¢ for this case [see R5)] and
criteria that includes Tugnait’s criteria [28], Wiggins’ criterion the FSBMH(@) used by Algorithm 4 can be reduced
[29], and Shalvi and Weinstein’s criterion [30] as special cases.

| ) ) : L to Hyp(w). When the unknown system is an allpass
The inverse filterinv(n) is estimated by maximizing system, the S1) in the former is redundant and the FSBM

|G {i(n) " H(w) used by the latter can be reducedHps(w) since
Trm = A (48) o; = 0 for all 4.
|Cr{a(n)}™
wherer is even andm > r, and V. SIMULATION RESULTS AND EXPERIMENTAL RESULTS
W(n) = z(n) * hinv(n). (49) In this section, let us show some simulation results (Example

1) for the CR bounds as well as the order estimation of the
It has been shown in [27] tha{(n) = bu(n —7) whenh(n) i FSBM and performance evaluation of the proposed algorithms
an arbitrary stable LTI system, whebeis a scale factor, and followed by some simulation results (Example 2) for seismic
7 is an unknown time delay. Next, let us present Algorithm 4econvolution using the proposed algorithms. Then, some
Algorithm 4—Simultaneous Amplitude and Phase Estimagperimental results for speech deconvolution with real speech
tion Based on the MG-PS Decomposition: data (Example 3) are presented to support the efficacy of the
S1) Set integerr > 2 (even) and integern > r. Let proposed algorithms. Next, let us turn to Example 1.
Hiny(w) = 1/H(w), where H(w) is the FSBMp, ¢) Example 1: This example includes two parts. Part 1
given by (6). presents some simulation results for the CR bounds associated
S2) Find the optimumHnv(w) (i.e., «; and 3;) using with amplitude parametersy;,, i = 1,2,...,p of the
a gradient-type iterative algorithm such thdt,, is FSBM(p,q), the estimation ofp, and the performance
maximum. Theng? is estimated as the sample variancevaluation of Algorithm 1. Part 2 presents some simulation

of the obtained optimum inverse filter outpiutn). results for the estimation of as well as the performance
Following the same procedure as when we proveeyaluation of Algorithms 2—4. Next, let us present Parts 1
de(n) /das, given by (27), it can be easily shown that and 2, respectively.
. In the simulation of Part 1, the driving input(n) was
Au(n) 1. N ) i . .
= ——{a(n+14) +a(n—1i)} (50) assumed to be a zero-mean white Gaussian random sequence

Ao 2 and a nonminimum-phase FSER|4) given by
Au(n) . N s .

g, — plUnti)—iln =} (51) Hya(w) = exp{1.1535 cos(w) — 0.4054 cos(2w)

—0.3138 cos(3w)} (52)

which are needed for computing the gradient.Bf,, with . _ _
respect toey; and j3;, respectively, required by the iterative ~ Hps(w) = exp{;j[-0.9112sin(w) + 0.5234 sin(2w)
gradient type algorithm in S2). + 0.5290sin(3w) + 0.2348sin(4w)]}  (53)
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TABLE | TABLE 1l
SIMULATION REsuLTS OF PART 1 oF ExampLE 1. AIC(k), SIMULATION RESULTS OF PART 2 oF ExampLE 1. CVR(k)
k=1~ 6AND N = 512, 1024, 2048 AND 4096 (%), k =1~ 8 AND N = 512, 1024, 2048 AND 4096
P 1 2 3 4 S 6 q 1 2 3 4 5 6 7 8
N N
512 [120.0040] 49.5771 | 3.8451 | 4.7642 | 5.8875 | 6.5956 512 [17.40|77.13|37.08 | 3.01 | 049 | 047 | 039 | 0.28
1024 [255.9041(107.3531| 4.6679 | 5.5394 | 6.1014 | 7.1759 1024 1 13.06 | 81.07 | 36.91 | 3.16 | 0.29 | 0.18 | 0.20 | 0.31
2048 [507.7294|211.0764| 9.6831 | 10.2516 | 11.0237 | 12.0000 2048 | 14.21 | 83.61 | 34.03 | 2.88 | 0.19 | 0.13 | 0.01 | 0.22
4096 [961.2921|365.2427|-24.4231|-23.2485|-22.0741|-20.4869| 4006 | 9.74 | 89.79 | 3341 | 2.82 | 0.01 | 0.15 | 0.02 | 0.06
TABLE 1 TABLE IV
SIMULATION RESuULTS OF PART 1 OF ExaMPLE 1. AVERAGES SIMULATION RESULTS OF PART 2 OoF ExampPLE 1. RMS ERRORS OF30
AND RMS ERRORS OFTHIRTY INDEPENDENT AMPLITUDE INDEPENDENT AMPLITUDE PARAMETER ESTIMATES &, ¢ = 1 ~ 3 AND
PARAMETER ESTIMATES ¢v;, ¢ = 1 ~ 3 USING ALGORITHM 1 PHASE PARAMETER ESTIMATES 3;, # = 1 ~ 4 USING ALGORITHMS 2
N N AND 3 WITH M = 3, AND ALGORITHM 4 WITH r = 2 AND m = 3
o, o (A .
(1.1535) | (~0.4054) | (~0.3138)| VN Algorit] N | ¢y, @ | @ B, 2 s 4
512 0.0451 0.0414 | 0.0363 | 00442 (1.1535) |(~0.4054)|(-0.3138)[(-0.9112)| (0.5234) | (0.5290) | (0.2348)
RMS 1024 00284 | 00322 | 00326 | 00312 512 0.0403 | 0.0391 | 0.0423 | 0.1660 | 0.1044 | 0.0892 [ 0.1030
error 2048 0.0251 0.0209 0.0201 0.0221 2 1024| 0.0228 | 0.0263 | 0.0351 | 0.1290 | 0.0751 | 0.0772 | 0.0464
2006 00140 | 00152 | 00163 | 0.0156 2048| 0.0172 | 0.0197 | 0.0235 | 0.1199 | 0.0650 | 0.0499 | 0.0482
ST 7z o [oai et [
Average| 1024 1.1487 —0.4071 | -0.3238 3 1024 0.0228 | 0.0263 | 0.0351 | 0.0441 | 0.0503 | 0.0492 | 0.0288
2048 1.1500 | —0.4083 | —0.3185 2048| 0.0172 | 0.0197 | 0.0235 | 0.0263 | 0.0269 | 0.0327 | 0.0311
4096 1.1504 | —0.4076 | —0.3130 4096] 0.0112 | 0.0146 | 0.0194 | 0.0211 | 0.0211 | 00217 | 0.0239
512 [ 0.0679 | 0.0749 | 0.0617 | 0.0657 [ 0.0771 | 0.0696 | 0.0559
4 [1024] 0.0396 | 0.0423 | 0.0411 | 0.0431 | 0.0503 | 0.0485 | 0.0285
. 2048| 0.0283 | 0.0256 | 0.0308 | 0.0257 | 0.0266 | 0.0320 | 0.0314
was used to generate the synthetic data) (SNR = o). 2096| 0.0185 | 00186 | 0.0213 | 00210 | 0.0211 | 0.0216 | 0.0230

Then, Algorithm 1 was employed to estimatg. Simulation
results obtained from 30 independent runs are shown in
Tables | and Il. Table | shows simulation results for AL, 2 and 3 are the same because Step S1) is the same for these
k=1~ 6and N = 512, 1024, 2048, and 4096, where two algorithms. RMS errors ofy; and 3; decrease withV
each AIQk) was obtained by substituting the average of thier all the three algorithms. The RMS errors &f associated
obtained 30e(%) into (40). We can see, from Table I, thawith Algorithms 2 and 3 are smaller than those associated
AIC(k) is minimum fork = p = 3, indicating the true order with Algorithm 4. The RMS errors of3; associated with
p = 3. These simulation results support that A can be Algorithm 3 are close to those associated with Algorithm 4
used for the estimation gf. On the other hand, assuming thaaind, meanwhile, smaller than those associated with Algorithm
the truep = 3 was known, the averages of the obtained thirt®. Nevertheless, these simulation results support the efficacy
estimatesy;, ¢ = 1 ~ p = 3, and the associated root meanef the proposed Algorithms 2—4 and indicate that Algorithm
square (RMS) errors are shown in Table I, together with tige is preferable to the other two algorithms for this case
square root of the CR bounds/v/N [by (30)]. From these (SNR = o).
two tables, we can see that all the estimdigsi = 1 ~ 3 are Example 2: The simulation results, that is for seismic
unbiased with RMS errors close to the square root of the Gfeconvolution, were obtained with(n) assumed to be a
boundsl/v/N. These simulation results justify that AlgorithmBernoulli-Gaussian sequence (taken from [12]), a sparse spike
1 is an AML estimator when data(n) are Gaussian. train for modeling reflectivity sequences of the Earth, and the
In the simulation of Part 2, the procedure for generatirgystem (source wavelet)(n) to be a nonminimum-phase
the synthetic datar(n) is the same as in Part 1, exceptausal ARMAZ3,3) system (taken from [12])
that the driving inputu(n) was assumed to be a zero-mean
exponentially distributed random sequence. Thirty independent 1 I S
estimates3; were obtained using the Chieet al. phase H(z) = 1401z — 3'27?‘)f 72+ L4l 2;)2;3
equalization algorithm [Step S2) of Algorithm 2] withl = 1=1.927" 4 1.15257= — 0.1625%
3. Table lll shows the simulation results for CYR(%),
k=1~ 8andN = 512, 1024, 2048, and 4096, where instead of an FSBM. Fig. 1(a) shows the synthetic ddta)
each CVRk) was obtained by substituting the average of tHer N = 512 and SNR= 20 dB (white Gaussian noise).
obtained 30n(k) into (47). We can see, from Table lil, thatAlgorithms 2, 3 (withA/ = 4) and 4 (withr = 2 andm = 4)
CVR(k) < 1% for k > 4, indicating the true ordey = 4, were employed to process the synthetic deta), including
although CVRE) does not decrease monotonically with the order estimation. The estimated ordgtg) = (12,8)
On the other hand, assuming that the tpue- 3 andg = 4 was obtained for this case using A and CVRk). The
were known, we also obtained 30 estimafesand 3; using simulation results associated with Algorithm 3 are shown in
Algorithms 2, 3 (withAZ = 3) and 4 (withr = 2 andm = 3). Fig. 1(b)—(e). Fig. 1(b) and (c) show the magnitude response
RMS errors of the obtained 30 estimaigs i = 1 ~ p = 3, and phase response of the estimated FEBRR) (dash line)
and3;, i = 1 ~ ¢ = 4 are shown in Table IV. Note from and those of the true ARM@, 3) system (solid line), re-
Table IV that the RMS errors @f; associated with Algorithms spectively. Fig. 1(d) and (e) show the (noncausal) estimate

(54)
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Fig. 1. Simulation results of Example 2 for Algorithm 3 wiftf = 4. (a) Synthetic seismic data(») for N = 512 and SNR= 20 dB. (b) Magnitude
response and (c) phaseAresponse of the estimated FEBBB) (dash line) and those of the true ARNIA 3) system (solid line). (d) Source wavelefr)
(solid line) and estimaté () (dash line). (e) Input:(n) (circles) and deconvolved signal(n) (bars).

fz(n) (dash line) and the deconvolved sigridh) (bars) [i.e., and w(n), respectively. Both amplitude and phase response
the optimum allpass filter output sign@in) obtained in Step of h(n) are also good approximations of those/df). The

S2) of Algorithm 3], re§pectively, where the scale factor an@sults obtained using Algorithms 2 and 4 are also similar to
the time delay betweeh(n) and i(n) (solid line) and those those shown in Fig. 1 and therefore are omitted.
betweeni(n) andu(n) (circles) were artificially removed. We We also performed the same simulation except that the true

~

can see that(n) andii(n) are good approximations éf(n) system was a nonminimum-phase causal ARBIA) system
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Fig. 2. Simulation results of Example 2 for Algorithm 3 wiftf = 4. (a) Synthetic seismic data(») for N = 512 and SNR= 20 dB. (b) Magnitude
response and (c) phaseA response of the estimated ESBM(dash line) and those of the true ARNI® 4) system (solid line). (d) Source waveletr)
(solid line) and estimaté () (dash line). (e) Input:(n) (circles) and deconvolved signal(n) (bars).

(taken from [5]) circle. The estimated ordd, §) = (8,8) was obtained for
1-34:1 448122 — 3.6042—% + 117~ this case. The results corresponding to Fig. 1(a)—(e) are shown
H(z)=———1g.1 + T 15952 — 01695, 3 in Fig. 2(a)—(e), respectively, for the case using Algorithm 3.

(55) Again, h(n) and(n) are good approximations df(n) and

u(n), respectively, and both amplitude response and phase
which has a pair of zero®.64;0.8) (= ¢+109237) on the unit response ofi(n) are also good approximations of those of
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Fig. 3. Experimental results of Example 3. Speech deconvolution with the vocal tract filter modeled as afl&3BYusing Algorithm 2 withA = 3.
(a) Windowed speech data (by Hamming window) of soynd / uttered by a man (sampling rate equal to 8 kHz). (b) Predictive deconvolved speech signal
e(n). (c) Deconvolved signafi(n) obtained by the inverse filtek/ H(w). (d) Impulse response of the estimated vocal tract filfgro).

h(n). These simulation results support that Algorithm 3 alsihe inverse filterl/H(w) (FSBM(16,16)). It can be seen,
works well for this case that the system magnitude resporfsem these figures, that(n) approximates a pseudo-periodic
has a broad dynamic range and the system phase response lrapalse train better tham(n) with the pitch period of 70
pair of discontinuities of magnitude equalt@tw = +0.9237 samples (i.e., 8.75 ms) because both amplitude and phase
rad due to the pair of zeros on the unit circle. As mentioned af the vocal tract filter were equalized by the inverse filter
R4), the approximation of FSB#, ¢) to the true ARMA3,4) 1/H(w). The corresponding results fa¥/ = 4 and those
system is never perfect for this case, even when ¢ = co. obtained using Algorithms 3 and 4 are quite similar to those
This also implies that the FSBY, ¢) is merely a stable shown in Fig. 3 and, therefore, are omitted.
approximation to any arbitrary LTI systems, regardless of poleOnly a single frame of speech data was involved in the
and zero locations. The results obtained using Algorithmsp2eceding experimental results. Next, let us present some
and 4 are also similar to those shown in Fig. 2 and, therefoexperimental results with a set of real speech data (with
are omitted. sampling frequency 11025 Hz) shown in Fig. 4(a) (taken
Example 3: This example presents some experimental récom [31]) that contains a speech segment 0.3 s long, of a
sults for speech deconvolution with real voiced speech dd&mnale saying “why.” The speech data were divided into 20
(taken from [5]), which were obtained from a soupid : / frames of 160 samples each (corresponding to 14.5 ms). Then,
uttered by a man through a 16-bit A/D converter with &lgorithms 2, 3 (withAZ = 3), and 4 (withr = 2 andm = 3)
sampling rate of 8 kHz. It is well known [3] that a voicedwere employed to process the speech data frame by frame
speech signal can be modeled as (1), wheve) is a pseudo- with the vocal tract filter modeled as an FSBM, 16) for
periodic impulse train (also called excitation signal), &td) each frame. The obtained deconvolved sigridts) associated
is the vocal tract filter (with possibly nonminimum phase)with Algorithms 2—4 are shown in Fig. 4(b)—(d), respectively.
The speech data multiplied by a Hamming window, which ak/e can see, from these figures, that all the deconvolved signals
shown in Fig. 3(a), were processed using Algorithm 2 withpproximate a pseudo-periodic impulse train. Over the 20
the cumulant ordef/ = 3 and the vocal tract filter modeledframes, the pitch period smoothly decreases from 67 samples
as an FSBN16,16). Fig. 3(b) shows the LPE filter outputto 43 samples, and variations of impulse magnitudes(af)
e(n) [obtained by Algorithm 1 in Step (S1) of Algorithmfrom frame to frame can be clearly observed. We would
2] that, as predicted, approximates a pseudo-periodic impulé® to mention that the total energy of each frame of the
train, except for some phase distortion because the vocal trdetonvolved signal shown in Fig. 4(d) was normalized by the
filter is not minimum phase for this case. Fig. 3(d) shows tteame energy of each frame of the deconvolved signal shown in
impulse response of the estimated nonminimum-phase voE&. 4(c) because the unknown scale factor in the deconvolved
tract filter A (w) (FSBM(16, 16)), which shows considerable signal associated with Algorithm 4 can be very different over
resemblance to the windowed speech data of one pitch perdifferent frames. As a final remark, the FSBM model used
[see Fig. 3(a)], and Fig. 3(c) shows the deconvolved speefon speech signal processing may lead to simple efficient
signal @(n) by processing the windowed speech data witboding and compression schemes when the deconvolved signal
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Fig. 4. Experimental results of Example 3. Speech deconvolution with the vocal tract filter modeled as a(1&SB) using Algorithms 2, 3 (with
M = 3) and 4 (withr = 2 andm = 3). (a) Speech data “why” uttered by a woman (taken from [31]) (sampling rate equal to 11025 Hz). (b)—(d)
Deconvolved signalsi(r) associated with Algorithms 2, 3 and 4, respectively.

(the excitation signal) approximates to a neat pseudo-periodic APPENDIX A
impulse train. PROOF OF THEOREM 1
VI. CONCLUSION The power spectrum of(n) can be easily seen to be
We have presented an FSBMg) for (or as) an approx- Pee(w) = Pru(w)[Vp(w)|? = o?[H(w)V,(w)|? = 0?|G(w)[?
imation to an arbitrary nonminimum-phase LTI system for (A1)

applications in the statistical signal processing areas mentiorvéaere

in the introduction. Based on the FSBM, an LPE filter for am- G(w) = Hyp(w)V,(w) (since|H(w)| = |Hup(w)])

plitude estimation together with the CR bounds, an algorithm (A.2)
(Algorithm 1) for obtaining the optimum LPE filter, and threds also a causal minimum-phase system with leading
algorithms (Algorithms 2—4) for estimating FSBM parametergpefficient g(0) = 1 since both Hyp(w) and V,(w) are
including the estimation of the ordép, ), were presented. causal minimum-phase filters with the same leading coefficient
Two simulation examples (Examples 1 and 2) and sonigp(0) = v,(0) = 1. Therefore

experimental results with real speech data (Example 3) were 0

presented to support the efficacy of the proposed algorithms ~ Ele*(n)] = % > [g(n)* = o*|g(0)* = &7 (A.3)
using the proposed FSBM. However, Algorithm 3 is preferable n=0

to Algorithms 2 and 4 because for the amplitude paramethich holds only wheng(n) = &(n). Thus, the optimum
estimation, Algorithms 2 and 3 are the same and slightfpinimum-phase LPE f|IteV( )— 1/H1\V1P(w) whenp > p*

superior to Algorithm 4, whereas for the phase paramel® (A.2)] and min{E[¢*(n)]} = o7 O
egtlmanon, Algorithms 3 gnd 4 have similar performance and APPENDIX B
slightly outperform Algorithm 2. _ L PROOF OF THECR BOUNDS GIVEN BY (30)

The ARMA model has been widely used in statistical signal Let O — ( 2)T It is well known that the CR bounds
processing, and most signal processing algorithms using the cqual toI whereL is the Fisher information matrix
ARMA model are suitable for the time domain mplementa‘uo(i fmeqd as [19] ' 0
(recursive equations). On the other hand, signal processing

algorithms using the proposed FSBM are suitable for the Ty = _E{32 IHP(X)}. (B.1)
frequency domain implementation. The proposed FSBM may 262

be a more suitable choice than the ARMA model for soniehe log function ofp(x) given by (22) with| H (w)| substituted
signal processing applications such as deconvolution and chbp-(7) yields

nel equalization, system identification, speech coding and N ) N (1 [~
compression, time delay estimation, and signal detection and Inp(x) = —Eln(sz ) - 272{%/ I(w)
classification. The results presented in this paper are merely »

an introduction to the FSBM, and its usefulness needs to be « eXp{—2ZOéi COS(,M)} dw}. (B.2)
studied further.
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Taking partial derivative ol p(x) given by (B.2) with respect iteration, é(i + 1) is updated by

to «y Yyields
dlnp(x) N (1 [T
gupxE) _ g2 [ o I
B, 202{27r /_7T cos(kw)I(w)

X exp{—Z zp: o Cos(iw)} dw}. (B.3)
i=1

Similarly, it can be shown that

dlnp(x) N N { 1
X exp{—Zzp:ai Cos(iw)} dw}. (B.4)
i=1

T 202 20t | 21
The second-order partial derivatives are

do? ()

9% In p(x) N (1 [T
Benday = —@{% /_W4cos(kw) cos(lw)I(w)
P
X exp{—22ai Cos(iw)} dw} (B.5)
=1
9? lnp(x) N (1 [T
A S I
Qo002 204{27r /_7T cos(kw)l(w)
P
X exp{—ZZai Cos(iw)} dw} (B.6)
i=1
92 Inp(x) N N1 [T
Fo?907 201 E{%/_ﬁ“w)

X exp{—2§p:oc7¢ Cos(iw)} dw}. (B.7)
i=1

verges to the true power spectrum for laye i.e.,

E[I(w)] = c?|H(Ww)|> = o2 exp{Q > a Cos(iw)}. (B.8)
=1

Then, from (B.5)—(B.8), we get

9 Inp(x) 1 /"
E{W} =N { 2 [  2cos(hw) cos(lw) dw}
=Nk 1) (B.9)
92 In p(x) N (1 [~
E{W} = _T‘Q{%/WZCOS(/%J) dw} =0
(B.10)
92 Inp(x) N N(1 [~ N
oG} i oila [ ) o
(B.11)
Substituting (B.9)—(B.11) into (B.1) yields
1 0
I = N[OT L} (B.12)
204

wherel is ap x p identity matrix, andd is ap x 1 zero vector.

2239
6(i +1) = 0(i) — \R;d; (C.1)
where A is a step-size parameter, and
4= 2709 (C.2)
26 0=0(:)
and
1 sTR;s;
Rigg=R;+—— {1+ 2 bryrd
+1 + r;Si H + r;fsi }r r;
— I‘Z‘SZTRZ‘ — RZSZI‘?:| (C3)
where
r; = 0(i+1) — 6(i) (C.4)
and
si = dij+1 — d;. (C.5)

The initial matrix Rg can be any positive definite matrix

(e.g

., an identity matrix), which always leads to a positive

definite R; for ¢ > 0, provided that) is chosen such that

J(0(i+ 1)) < J(8(4)). At each iterationA can be chosen as

)\:

(1/2)F for k = 0,1,2,... until J(O(i + 1)) < J(O()).

The iterative algorithm ends up with the optimum estimate

é:

6(i) as the objective functiod ((:)) converges.
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