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Abstract-The normalized standard deviation, Kp, of radar back-
scatter measurements using digital Doppler processors in spaceborne
scatterometers is derived. The Kp expression for analog Doppler filter
processors, such as that used in the Seasat scatterometer [7] is shown
to be a special case of the derived Kp expression. A connection to
Welch's power spectrum estimation results [6] is also made. Tradeoff
studies in digital filter design such as hardware complexity, computa-
tional speed, and system performance can be performed based on this
Kp expression. We briefly discuss a current application in the design of
the NASA scatterometer (NSCAT) to be flown in 1990. This derivation
should be useful for system design and analysis of other radar remote-
sensing instruments.

I. INTRODUCTION
ASCATTEROMETER is a radar system that measures

the normalized scattering coefficient ao of an illumi-
nated surface by measuring the return signal power of a
radar backscatter signal [1]. Scatterometers have been
flown on the spaceborne platforms Skylab and Seasat. The
Seasat scatterometer (SASS) demonstrated the ability to
infer wind speed and direction over the ocean from a0
measurements [2], [3]. Using the radar equation and the
measured return signal power Pr, o can be computed
using the well-known radar equation

(4_r)3R4P
= PtG2X2AL (1)

where

P, is the transmitted signal power;
G is the antenna gain;
X is the wavelength of the signal;
A is the Doppler cell area;
R is the slant range to the illuminated Doppler cell;

and
L is the system loss.

SASS used four dual-polarized (vertical and horizontal
polarizations) fan-beam antennas pointed at 450 and 135°
relative to the spacecraft flight direction to produce an X-
shaped illumination pattern on the Earth. In this way a
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Fig. 1. Signal processing system for a scatterometer using analog filters.

given surface location was first viewed by a forward-look-
ing antenna, and then viewed by an aft-looking antenna
some time later. A train of microwave pulses was trans-
mitted to the Earth's surface. The reflected signal for each
pulse was Doppler shifted due to relative motion of the
spaceborne scatterometer with respect to the Earth's sur-
face. Signals from different locations in the antenna illu-
mination pattern will have different Doppler shifts, and,
by separating the return signal in the Doppler spectral do-
main, the desired along-beam resolution can be achieved.
We will refer to each of the Doppler-shifted resolution
cells as a ''ao cell."
SASS utilized analog devices for signal power esti-

mates. These consisted of bandpass filters, square-law de-
tectors, and gated integrators (see Fig. 1). The fixed fre-
quency bands used in the bandpass filters caused radar
system performance degradation in several areas. The
Doppler shifts induced by the Earth's rotation caused the
locations of the a0 cells of the forward-looking antenna
beams to shift relative to those of the aft looking beams.
This led to a loss in swath coverage as well as misregis-
tration of the ao cells. The misregistration could produce
errors in the inferred wind vectors
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Substituting (39), (40), and (42) into (38) gives
(K1 Pr)

IK US TGBsJ
K, Ki

* E E>rij(w1 - 0'2)
i = I1j 1I

SNR

(44)

2/'BN\ 1 k, K2
Var [C2 (U= \TN K2 k--WqkK2

(K2) (1 kV) (47)

IN-1
UN = - E W N(n).N O

(48)

WN(q, w) is the Fourier transform of

wN (q, n) = WN (n) WN (n + qD2).

2

Co2)

for all WIV, W2 e ("'I, 0h)

(43)
where

SNR = r.
Bsb

Therefore, from (36) and (43) we see that

Var [C1] = E{( Z Js^(k) - E[Js,(k)]
=r kji

kh kh

= > > Cov {lJsy(kl), Jsl,(k2)}
k=ki k2= ki

p 2 kh kh Ki Ki

(UsKI) (TGBs)2 k =km k2=ki i=1 j=1

*rij(k - k2) + SNWs(i -j, k,SNR

2

k2)

(49)

WN(q, k) = WN(q, w = 27rk/N), TN = NT, k, = kh-k'
+ 1 = TNBN, and kl and kh, are the smallest and largest
integers in (filNT, fhNT).
C. Kp of an Unbiased Estimate of Pr
From (37) and (46) one can form an unbiased estimate

for Pr as

Pr = UT C1 - TB 2) (50)

Note that TG= MT and TN = NT denote the time interval
of one data segment for the top and the bottom signal path
in Fig. 2, respectively.

Finally, we have

Var UT( 2
Var [Pr] = W Var (C2)I.

(51)

Combining (45), (47), and (51), and substituting into (12)
leads to the expression for Kp as follows:

P2 .ks Km Ki

(U5K1)2 TGBS k -k, i11 j= 1

* rj(k) + SNR Ws(i-j ) 1-Il

(45)

where Pj0(k) = F1(C = 2-xk/M) and Ws(i, k) = Ws(i, co =

2irk/M).

B. Mean and Variance of C2

For the bottom path of Fig. 2, only noise is present.
The mean and variance of C2 can be directly obtained from
(37), (44), and (45) by letting Pr -+ 0, and setting K1 =

K2, Ws(q, k) = WN(q, k), M = N and B, = BN, i.e.

E[C2] = k (b)T N( _7) (b) = TNBN ( )

/FA ( lUs )I(fKKI1 - ks Ki

K,,=
TGB I k-

Ki

j=l

1 2 k
* rij(k) + S Ws(i -j, k) 1 _

SNR kii

I (TGBs) (MU 2 1 k K2

+ - I-- 2K2 STNBN) ~NUN) SNR -k=-k, q = -K2

( k)( K2)l3
(52)

The resulting KP equation appears to be complicated.
However, we will consider two particular examples in the
next section. One of these examples shows that this
expression reduces to the well-known analog KP equation.
The other example shows that this expression reduces to
the normalized standard deviation of Welch's power spec-
trum estimate when ks = 1 and SNR = oo.

COV {Jsp(&Ii), Jsv(CO2)} =

Var 2

Var (C1) + (GB\TNBN/-
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IV. EXAMPLES OF EVALUATING THE DIGITAL KP
EQUATION

The first example is for K1 = K2 = 1, (TG/TS) << kS
< M12, w3(n), and WN(n) are rectangular windows. This
case should correspond to the analog filter processor. For
this example, Us = UN = 1, U* = TS/TG, WS(0, 0) = M,
WN(O, 0) = N, PII(0) = MTs/TG, and

M- I Fr11(k)12- M1 2Y~(n)-
E = E _yI I _T

k=O 2 n=O M TG

The Kp is then

K = IWs(O 0)v MUJ~K

(55)=U Ez W,(n)) = -
MU, -%K n= S J A/K

which was also shown by Welch [6].
Second, let us consider the 50-percent overlapping case

(D = M12). In this case, W3(q, k) = 0 for q > 1. Equation
(54) can be expressed as

Kp = W(0, 0)12 + 2
MU3 Vk4,M-1

ITr'(kII'(__-__2 5( ) )I{k='0~ SNR2I0,)2

2
+ R r11(0) Ws(O, 0)
SNR

+ TGBs (M2 1 1/2
\T

2 ( O, 0)12

TBI TG {M2 () + M2

2 T
+ M2 TS + 1 M2 TGBSX
SNR TG SNR2 TN)

2 1 (T

SNR SNR2

1 I2
I-)= iT§(, 0)12.
K)

(56)

Following an example in Welch's paper, we examine the
case with the following window function:

W5(n) = 1 -( M 1)2

0 C n < M- 1.

TGBs 1/2

TNBNI)

(53)
Equation (53) is exactly the analog filter expression de-
rived in [7] (also see [3]). This example provides a con-

nection of the KP equations for analog and digital signal
processors.

As a second example, we examine the K, equation for
TG = TS = TN, D1 = D2, BS = BN, K1 = K2 = K. Thus,
M = Nand Us = UN= U5* anddr1(k) = Ws(i -j, k) =

WN(i - j, k). Equation (52) then reduces to

I 1 22
Kp = I +

P As MUs >/,K SN
2 1/2

SNR2)

ks K

Ws(q, k) l

1/2

( kS) K)3
We will discuss two special cases for this example.

Case I. Assume that kI = 1 and SNR = oo. The re-

sulting Kp should correspond to the normalized standard
deviation of Welch's power spectrum estimate. First, let
us consider the nonoverlapping case where W3(q, k) = 0

for q 0. The KP equation (54) can be further reduced
to

(57)

For this case

WSl(l, o)12 1 Ws(O, 0)12.

Therefore

MU3 JIK(9 K1 1(1l _ 2 )I14&(0,0°)I

-MU3 (11)1/2 1W( 0)2 = (1)1/2 (58)

which is the same as the results shown in [6]. As previ-
ously stated, Welch's power spectrum estimation results
are special cases of the derived Kp equation.

Case II. Assume that ws(n) is a generalized Hamming
window given by

ws(n) =a-(1 -(x) cos (

0 < n < M- 1. (59)

Note that it is a rectangular window (i.e., no weight) for
(54) ac = 1, and a Hamming window for a = 0.5. Ws(O, k)

can be easily shown to be

(a2 +±( _-)2)M, k = 0

-a(l - a)M, k = 1, M- 1 (60)
WS(O, k) =

1(1 -a)2M, k = 2, M-2

0, otherwise

K 1 TG

PTABa MTs
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Fig. 3. Kp(ca)/Kp(I) for a generalized Hamming window for one data seg-
ment.

and Us = O, O)M= a2 + 2(1 - 2 First, let us
consider the case K = 1 and 2 << ks < M/2. For this
special case, (54) can be reduced to

K1 1 (1 22)1 1/2

{koMWU(0 Nk)121

1 (Ca4 + 3a2(1 - a)2 + 3(1 - Y)4)12=~~~~~~~~~~~~

+ SNR + SNR2) (61)

The ratio of Kp(a) to Kp(1) versus ca is plotted in Fig.
3. This verifies that, indeed, as mentioned in the intro-
duction, the use of windows increases Kp and therefore
degrades system performance.

Next, we consider the overlapping case with SNR = 1,
M = 256, and L = 1024. We directly compute K, using
(54) for K = 4 with nonoverlapping, K = 5 with 25-per-
cent overlapping, K = 7 with 50-percent overlapping, K
= 13 with 75-percent overlapping data segment, and K
= 25 with 87.5-percent overlapping data segment. The
resulting Kp's (as function of a) are shown in Fig. 4(a)-
(d) for k5 = 1, 2, 4, and 64, respectively. Note that the
a0 cells associated with k5 = 1, 2, and 4 are much smaller
than the ao0 cell associated with k5 = 64 because Bs = ksfsl
M. From Fig. 4(a) we see that Kp does not depend on the
window for the nonoverlapping case when ks = 1. Data
segment overlapping improves Kp. The amount of im-
provement depends on the window chosen. Notice that
when ks = 1 the correlation between frequency bins due
to windowing and data segment overlapping does not ap-
pear in the Kp equation. When ks > 1, the correlation
between frequency bins due to windowing and data seg-

ment overlapping may actually degrade Kp (see Fig. 4(b)-
(d).

Finally, we consider Kp versus the percentage in data
segment overlap for SNR = 1, M = 256, L = 8192, ks

4, and oa = 0.5 (Hamming window). The result is shown
in Fig. 5. From this figure we see that Kp decreases as the
amount of overlap increases and approaches an asymptote
for overlap greater than 50 percent. In other words, little
improvement in Kp is obtained when the amount of over-

lapping is more than 50 percent.
We note that a generalized Hamming window is very

narrow in the frequency domain because only three values
are nonzero for 0 c k c M - 1. The hardware required
to implement the generalized Hamming window can be
quite simple because it only involves three frequency bins
for convolution in the frequency domain.

V. DIsCUSSION
A digitial Doppler processor is planned for on-board

digital signal processing for NSCAT. In this paper, we
have derived an expression for the normalized standard
deviation of backscatter power measurements Kp for such
a digital signal processor. The effects of two digital signal
processing techniques, namely windowing and data seg-
ment overlap processing, are treated. Windowing must be
invoked in cases where spectral leakage is to be mini-
mized in order to avoid inter-u0 cell interference. When
windowing is used, overlap processing may then be con-
sidered to minimize the system performance degradation
due to the windowing. Although the resulting expression
for Kp is quite complex, we have demonstrated that it re-
duces to the well-known Kp expression for analog signal
processors and that Welch's power spectrum estimation
results [6] are special cases of the derived Kp expression.

In the NSCAT baseline design, a Hamming window and
50-percent overlap processing will be used. The Hanning
window, applied through convolution in frequency do-
main, was chosen because it minimizes spectral leakage
and is simple to implement. In fact, since the window
weights are I and 4, only bit shifting, addition and sub-
traction are required without any multiplication. This
lessens the computation load in a spaceborne processor.
Based on Kp values versus computational load, a 50-per-
cent overlap was chosen for the baseline design (see Fig.
5). There are on-going efforts to refine this baseline de-
sign using the Kp expression.

In addition to utilizing a digital signal processor to im-
prove system performance, NSCAT also plans to use six
antennas in contrast to the four antennas on SASS. Each
side of the subsatellite track will be illuminated by three
antennas. They will provide three different azimuthal ob-
servations of a0 from the ocean for wind vector estima-
tion. This will simplify data interpretation by reducing the
number of ambiguities in the estimated wind direction (see
[3] and [9]).

Details of the NSCAT design, as well as further trade-
offs in the digital Doppler processors will be reported in
future papers.
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Fig. 4. K,(cr) for a generalized Hamming window and overlapping and

nonoverlapping segments for (a) k, = 1, (b) k, = 2, (c) k, = 4, and (d)
k, = 64, respectively.

APPENDIX I
PROOF OF EQUATION (11)

From (4) we have

E{jJj(wj) J,42)}

CLU) (Au)
E + Z S xi(k) xi(l) x,(m) Xr(n)

k I m n

* ty(k) tyi(l) ty,(m) -y,(n)

exp (j[4ol(k - 1) + w2(m- n)]) (Al)
For a zero-mean stationary Gaussian process x(n), it is
well known that

E [XA() Xi (l ) X,(M) Xr(n)]

= E[xi(k) x,(l)] E[xr(m) Xr(n)]

+ E[xi(k) xr(m)] E[xi(l) Xr(n)]

+ E[xi(k) Xr(n)] E[x(l) Xr(m)j

= x(l - k) Ox(n - m)

+ &x(k - m + qD) Ox(l -n + qD)
+ OA(k-n + qD) x(l-m + qD) (A2)

where 4x(k) is the correlation function of x(n), and

q=i-r. (A3)

E{lJi(c1) Jr(C2)} = QI + Q2 + Q3 (A4)
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Q2 E4 E% EE\Mi MU k I m n

* {x(k - m + qD)

* x(l- n + qD) -yi(k) 'Yi(l) 'Yr(M) -Yr(n)

* exp (j[wl(k - 1) + W2(M- n)])} (A6)

and

Q3(ui) M k I m n

* {x(k - n + qD) Ox(l - m + qD)
* yi(k) Yi(l) 2(r(M) 'Yr(n)
* exp (j[wl(k - 1) + C02(M- n)])} (A7)

We now derive Q1, Q2, and Q3. Because the power den-
sity spectrum Px(A) of x(n) is the Fourier transform of
&x(n), Q1 can be expressed in frequency domain

Qi
( ui (>r k I m n

{t()2-T .| Px(01) exp [ijO(l - k)] dO1

PX(02) exp [U02(n - m)]
_T

Cov {Ji(wi), Jr(A2)} = Q2 + Q3. (A9)
From (A6) we have

Q2 = (Ai) ( (1)
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exp [j(0l + 02) qD] dOl d02}

= (MUitjJ) (i>,i~~r) ()2{1 Px(0i) Px(02)
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* rr(02 + w2) - exp [j(Ol + 02) qD] dOl d02}

(iwlu;) (i>Ur) (2-r)2 {D' Px(oo) r*(ol + WI)

* rr(Ol - w2) exp [jO1qD] doll
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