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P, Ly
Cov {[,(w), I(w)} = B, b ToU.K,

Ki K

2 2 ATyor = @) WIG =, o = )

+ Ti(w — w) Wi —j, @ — @)}, (42)
Substituting (39), (40), and (42) into (38) gives
Cov {‘]sv(wl)a Jsv(wZ)} = <_Pr—‘>2
Kl Us TGBS
Ki K
,Zl jz [jlw; — w)
1 2
+ gN—R Wi — j, oy — w),

for all w,, w, € (w;, wy)
43)
where

P,
B,b’

Therefore, from (36) and (43) we see that

kn 2
E{@k k) — E[Js,(kn) }

kn kn

Z Z Cov {Jsu(kl) Jsv(kZ)}

ki=ki ka=ki

SNR =

(44)

Var [C|]

kn kn K K

P2
(UsKl)2 (TGBS)2 ki=ki k2=k i=1j=1

2

1 ..
Ttk — k) + SNR Wi —j, ki — k)

ks Ki K

p?
-3 33
(U,K)? TgB, k=—ks i=1 =1

y(k) + W(l_.]’k)

(&
kg
(45)
Wi, =

where T';(k) =
27k/M).

I'y(w = 2wk/M) and W,(i, k) =

B. Mean and Variance of C,

For the bottom path of Fig. 2, only noise is present.
The mean and variance of C, can be directly obtained from
(37), (44), and (45) by letting P, — 0, and setting K, =
K,, Wd(q, k) = Wx(q, k), M = N and B; = By, i.e.

s = a(g) = (5 - 5) () - 5 )

(46)
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~ b B_N 1 ky Kz 5
Var [C)] = <UN> < TN> X, R 2 W b
AV lﬂ)
<l K2> (l K, @
where
N—-1
Uy = N n; wi(n). (48)

Wy(q, w) is the Fourier transform of

wy(g, n) = wy(n) wy(n + gD,). 49)

Wy(gq, k) = Wy(q, w = 2wkIN), Ty = NT, k, = kj, — k|
+ 1 = TyBy, and k] and k;, are the smallest and largest
integers in ( f] NT, fiNT).

C. K, of an Unbiased Estimate of P,

From (37) and (46) one can form an unbiased estimate
for P, as

. UT TsB,
P = - G ).
T UM (C‘ TyBy 2>

Note that Tz = MT and Ty = NT denote the time interval
of one data segment for the top and the bottom signal path
in Fig. 2, respectively.

Finally, we have

(30)

. UT\ ToB,\’
Var [P,] = U T, Var (C)) + TuBy Var (Gy) ;.

(5D

Combining (45), (47), and (51), and substituting into (12)
leads to the expression for K, as follows:

1 1 1 ks K1 K
K, = — )= =
" JTsB, (MUf > {Kf L=—ks El j§1
1 ) ]
SNR k,
. 1 (TeB)\ (MU, 2 [ % §
K, \TyBy/ \WUy/ SNR? |k=—k ¢=-K:

172

(-]
k, K,

The resulting K, equation appears to be complicated.
However, we will consider two particular examples in the
next section. One of these examples shows that this
expression reduces to the well-known analog K, equation.
The other example shows that this expression reduces to

the normalized standard deviation of Welch’s power spec-
trum estimate when k£, = 1 and SNR = o,

l_](k) + oo W(l “.]’ k)

- | Wag, B (1 (52)
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IV. EXAMPLES OF EVALUATING THE DIGITAL K,

EQuATION K, = \/' W0, 0)|
The first example is for K| = K, = 1, (T/Ty) << k;
< M/2, wy(n), and wy(n) are rectangular windows. This 11 (Mt 1
case should correspond to the analog filter processor. For = MU 71—(- ,E‘o win) | = \/_I_( (595
this example, U, = Uy = 1, UF = T,/Tg, W,(0,0) = M )
Wy(0, 0) = N, T';,(0) = MT,/T;, and which was also shown by Welch [6].
y  M=-1 5 Second, let us consider the 50-percent overlapping case
Z |P11(k)| -3 Y1) _ I (D = M/2). In this case, W(q, k) = 0 for g > 1. Equation
M Ts (54) can be expressed as
The K, is then K - W0, O + 2
1 T (% ' MU \/—
K, { ITh®? + =3 W0, 0))? 1 112
P JTB M, NR : <1 - 1?) w1, 0)|2} . (56)
2 .
* SNR ' (0) W0, 0) Following an example in Welch’s paper, we examine the
- case with the following window function:
+ (LeB:) (M g | Wy (0, 0))2 " :
7yBy) \) sngz " n_M;I
L T f)p (L) M w =1\ )
JToB, MT, T;) = SNR? )
L 2L, lezTGBs} O=n=M-1. (57)
SNR T SNR TyB
¢ NN For this case
L 2 (T () 4 LB 2 41 2
T B, SNR ' SNRZ\T, TyBy) ) Wil (1, 0)° = § [W(0, 0)|".
(53) Therefore .
Equation (53) is exactly the analog filter expression de- K, = L 1 <£ — i) |W,(0, 0)|
rived in [7] (also see [3]). This example provides a con- MU, JK 9K,
nection of the K, equations for analog and digital signal 1 1 <1 1>1/2 w0, 0] <1 1>1/2 1 %)
processors. = == —
As a second example, we examine the K equation for MU, JK 9 ‘ JK
Tg =T, =Ty, D, = Dy, By = By, K, = = K. Thus, which is the same as the results shown in [6]. As previ-
M= Nand U, = Uy = U; and T;y(k) = Ws(l J» k) = ously stated, Welch’s power spectrum estimation results
Wy(i — j, k). Equation (52) then reduces to are special cases of the derived K, equation.
1 1 1 2 5 \ 12 Case II. Assume that w(n) is a generalized Hamming
K = 1+ — + — window given by
P \/E MU, \/I_( SNR  SNR

w(n) = a — (1 — a) cos (%)
{ Z Z |W(q. b

O<sn=M-1. 59)

k N2 Note that it is a rectangular window (i.e., no weight) for

. <1 - u) <1 — l_‘]_l)} (54) o = 1, and a Hamming window for o = 0.5. W(0, k)
ks K can be easily shown to be

We will discuss two special cases for this example.

(@ + 11 - M, k=0
Case 1. Assume that k;, = 1 and SNR = oo. The re-

sulting K, should correspond to the normalized standard —a(l — )M, =1, M—-1 (60)
deviation of Welch’s power spectrum estimate. First, let W0, k) = :
us consider the nonoverlapping case where W(q, k) = 0 a - a)’M, k=2,M-2

for g # 0. The K, equation (54) can be further reduced
to 10, otherwise
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Kp(a)/Kp (1)

Fig. 3. K,(a)/K,(1) for a generalized Hamming window for one data seg-

ment.

~

and U; = W0, 0)/M = o* + 5(1 — )’ First, let us
consider the case K = 1 and 2 << k, < M/2. For this
special case, (54) can be reduced to

K, =

) 2 .1/2
L+ ==+ =
U, SNR © SNR

12

=l-

M-1

2 w0, b

1 @+ 301 = o) + 31 - a)H'”

ok

o + 11 — a)?

2 ) 1/2
Nt + =+ =) -
.<1 SNR SNR2>

The ratio of K,(«) to K, (1) versus « is plotted in Fig.
3. This verifies that, indeed, as mentioned in the intro-
duction, the use of windows increases K, and therefore
degrades system performance.

Next we consider the overlapping case with SNR = 1,

= 256, and L = 1024. We directly compute K, using
(54) for K = 4 with nonoverlapping, K = 5 with 25 -per-
cent overlapping, K = 7 with 50-percent overlapping, K
= 13 with 75-percent overlapping data segment, and K
= 25 with 87.5-percent overlapping data segment. The
resulting K,,’s (as function of «) are shown in Fig. 4(a)-
(d) for k; = 1, 2, 4, and 64, respectively. Note that the
oy cells associated with k, = 1, 2, and 4 are much smaller
than the oy cell associated with k, = 64 because B, =k f/
M. From Fig. 4(a) we see that K, does not depend on the
window for the nonoverlappmg case when k;, = 1. Data
segment overlapping improves K,. The amount of im-
provement depends on the window chosen. Notice that
when k; = 1 the correlation between frequency bins due
to windowing and data segment overlapping does not ap-
pear in the K, equation. When k; > 1, the correlation
between frequency bins due to windowing and data seg-

(61)
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ment overlapping may actually degrade K, (see Fig. 4(b)-
(d).

Finally, we consider K, versus the percentage in data
segment overlap for SNR = 1, M = 256, L = 8192, k,
=4, and o = 0.5 (Hamming window). The result is shown
in Fig. 5. From this figure we see that K, decreases as the
amount of overlap increases and approaches an asymptote
for overlap greater than 50 percent. In other words, little
improvement in K, is obtained when the amount of over-
lapping is more than 50 percent.

We note that a generalized Hamming window is very
narrow in the frequency domain because only three values
are nonzero for 0 < k < M — 1. The hardware required
to implement the generalized Hamming window can be
quite simple because it only involves three frequency bins
for convolution in the frequency domain.

V. DiscussION

A digitial Doppler processor is planned for on-board
digital signal processing for NSCAT. In this paper, we
have derived an expression for the normalized standard
deviation of backscatter power measurements K, for such
a digital signal-processor. The effects of two dlgltal signal
processing techniques, namely windowing and data seg-
ment overlap processing, are treated. Windowing must be
invoked in cases where spectral leakage is to be mini-
mized in order to avoid inter-o, cell interference. When
windowing is used, overlap processing may then be con-
sidered to minimize the system performance degradation

due to the windowing. Although the resulting expression

for K, is quite complex, we have demonstrated that it re-
duces to the well-known K, expression for analog signal
processors and that Welch’s power spectrum estimation
results [6] are special cases of the derived K, expression.

In the NSCAT baseline design, a Hammmg window and
50-percent overlap processing will be used. The Hanning
window, applied through convolution in frequency do-
main, was chosen because it minimizes spectral leakage
and is simple to implement. In fact, since the window
weights are § and }, only bit shifting, addition and sub-
traction are required without any multiplication. This
lessens the computation load in a spaceborne processor.
Based on K|, values versus computational load, a 50-per-
cent overlap was chosen for the baseline design (see Fig.
5). There are on-going efforts to refine this baseline de-
sign using the K, expression.

In addition to utilizing a digital signal processor to im-
prove system performance, NSCAT also plans to use six
antennas in contrast to the four antennas on SASS. Each
side of the subsatellite track will be illuminated by three
antennas. They will provide three different azimuthal ob-
servations of g, from the ocean for wind vector estima-
tion. This will simplify data interpretation by reducing the
number of ambiguities in the estimated wind direction (see
[3] and [9]).

Details of the NSCAT design, as well as further trade-
offs in the digital Doppler processors will be reported in
future papers.
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(@) (b)
K, (@)
0.207 T T | T

Kp(a) ks=4
0.77 T T T T

OVERLAP 0%

0.7~ — 0.193 -

OVERLAP 25%
OVERLAP 25%

0.64 ~ ) 0.179

OVERLAP 50%

0.58 0.165

OVERLAP 87.5%

0.52 — 0.151

OVERLAP 75%

0.137 1 1 | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

© (d)

Fig. 4. K (o) for a generalized Hamming window and overlapping and
nonoverlapping segments for (a) k, = 1, (b) k, = 2, (¢) k, = 4, and (d)
k, = 64, respectively.

E [xk) x;(1) x,(m) x(n)]
= Elxk) x(1)] Elx,(m) x,(n)]

APPENDIX [
Proor or EquaTioN (11)

From (4) we have

E{J() J (@)} + Elx(k) %4m) Elx(0) x,m)]
_ < 1 > ( 1 > + EL(K) x4m) B () x,(m)]
MU;) \MU, = ¢l — k) $u(n — m)
E {% % 3 2 (0 31 x,0m) %,() t &tk = m + aD) ¢l = n + qD)

+ ¢k —n + gD) ¢(I — m + gD) (A2)

= Yilk) vill) v(m) v, (n) )
where ¢,(k) is the correlation function of x(n), and

* eXp (J[w,(k - l) + wz(m - n)])}. (Al) q = l — r. (A3)
For a zero-mean stationary Gaussian process x(n), it is Thus
well known that E{J{w) J(w)} = O + O + Os (A4)
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0.229
0.213
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OVERLAP (%)
Fig. 5. K, versus overlapping for k, = 4 and o = 0.5.
where
1 1
0.~ (i) () (22 23
C 0l = k) du(n — m) yik) vi) v(m) v, (n)
- exp (Jlwik — 1) + wy(m — n)])} (A5)
1
o= ) ) 7323
: {d)x(k —m+ qD)
© ¢l = n + gD) yik) v, (1) v (m) v,(n)
- exp (jlwitk — 1) + wx(m — n)D} (A6)
and
o () o) 3723
MU,' MU, k | m n
“{odk — n + gD) (Il — m + ¢D)
=itk vl v, (m) v, ()
wexp (Jlwik = 1) + wx(m — nm)D}. (A7)

We now derive Q,, 0,, and Q;. Because the power den-
sity spectrum P(w) of x(n) is the Fourier transform of
¢.(n), O can be expressed in frequency domain

o a) () 3523

1\ ("
. {<_> S_w P.(0)) exp [j0,( — k)] db,

2w

: S_W P(0,) exp [ jO,(n — m)]
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© dO; yi(k) (1) v, (m) v, (n)

cexp (Jloyk — 1) + wy(m — n)])}

_ (L) (! izswgwpepe
= Ml]l MUr 27|' . —7r x( ]) x( 2)

DID §mJ ; Yilk) vil) v, (m) yn)

k!

©exp [—j(wr — ) — k)]

" exp [—jlwy — B)(n — m)] db, doz}

- () (o) ()

. S_w g_w P(6;) P.(0,) lFi(wl - 01)‘2

* |Tw, — 6] db, db,
= ElJ(w)] E[J(w)].

Therefore

(A8)

Cov {J(wy),

From (A6) we have
1 1 1\
&= (MU) <MU,> <ﬂ>
- {S S ZCHRACAPIDIDIPY

= yik) vill) v,(m) y(n) - exp (jl6,(k — m)
+ 0,(I —n) + wik — 1) + w,(m — n)

J{ )} = 0, + 05 (A9)

- exp [j(6, + 6,) gD] db, dez}

1 1 1 2 T T
- (5w) () () (12 1 oo

“THO + @) T, — o) 0, — w)

I'0, + wy) - exp [j(6, + 6,) gD] db, dez}

- () (i) () ST P(9) T}
- MU; MU, 27 x (01) i(01+w])

T, (0, — w,) exp [jo,gD] dol}

: {S_W P.(8,) T6, — w) T,(6, + wy)

- exp [jO,qD] dOZ}.



