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Abstract—This paper studies a downlink multiuser transmit
beamforming design under spherical channel uncertainties, using
a worst-case robust formulation. This robust design problem is
nonconvex. Recently, a convex approximation formulation based
on semidefinite relaxation (SDR) has been proposed to handle the
problem. Curiously, simulation results have consistently indicated
that SDR can attain the global optimum of the robust design
problem. This paper intends to provide some theoretical insights
into this important empirical finding. Our main result is a
dual representation of the SDR formulation, which reveals an
interesting linkage to a different robust design problem, and the
possibility of SDR optimality.

I. INTRODUCTION

This paper focuses on a standard wireless multiuser uni-
cast system where a multiple-antenna transmitter broadcasts
independent data streams to multiple single-antenna receivers
using transmit beamforming [1]. In this context, the efficacy
of beamforming designs relies on knowledge of the channel
state information (CSI) of all the receivers. However, the
transmitter often has some uncertainties on the CSI, due to
issues such as finite-length training and finite-rate feedback
[2]. CSI uncertainties at the transmitter can result in signif-
icant performance outage, if not taken into consideration in
the beamforming designs. The CSI uncertainty problem has
motivated considerable research endeavors in robust transmit
beamforming design techniques. This includes the chance
constrained robust designs [3], [4], where the CSI uncertainties
are modeled as random variables, and the worst-case robust
designs [5]–[8], where the CSI uncertainties are modeled as
bounded unknowns within a predetermined, small error set.

Our problem of interest is the worst-case signal-to-
interference-plus-noise ratio (SINR) constrained robust trans-
mit beamforming design problem under spherically bounded
CSI uncertainties, which has drawn much interest recently [6]–
[8]. Presently available beamforming solutions for this worst-
case robust problem are based on approximation methods,
either restriction [6], [7] or relaxation [8], and it is now not
clear whether the worst-case robust problem can be optimally
(and efficiently) solved. However, simulations seem to have
provided the answer to the latter— the semidefinite relaxation
(SDR) method [8]. SDR is a convex relaxation technique for

a certain class of hard (nonconvex) optimization problems,
and has recently gained popularity owing to its wide scope
of applicability [9], [10]. For a general application, SDR
is considered a suboptimal solver; however, for the worst-
case robust beamforming problem, simulation results have
indicated that SDR should to be a globally optimal solver,
which is a rather surprising empirical finding. As such, being
able to provide a theoretical analysis proving whether SDR is
optimal would be of much significance. A recent result [11]
has partially addressed this open question, where the SDR
optimality under sufficiently small error radii is analyzed.

This paper intends to address the mystery of SDR optimality
in worst-case robust transmit beamforming optimization using
a different analysis approach. We show that the worst-case
robust problem has a close relationship to a different robust
beamforming problem, in form of max-min optimization. In
particular, we prove that their SDR problems are dual, or
equivalent, to each other. This new, intriguing, duality relation-
ship provides a new perspective and useful insights explaining
the optimality of SDR. In particular, we will give a condition
under which SDR provides globally optimal solutions to the
worst-case robust problem.

II. SIGNAL MODEL AND BACKGROUND

Consider a wireless downlink system where a transmitter,
equipped with Nt antennas, wants to communicate with K
single-antenna receivers using transmit beamforming. The
problem formulation follows a standard unicast setting [1]:
Let hi ∈ CNt denote the channel vector of receiver i, and let
wi ∈ CNt be the associated beamforming vector for receiver
i. The SINR of receiver i is given by

SINRi(w1, . . . ,wK ,hi) =
|hH

i wi|
2∑K

k �=i |h
H
i wk|2 + σ2

i

, (1)

where σ2
i > 0 is the noise power at receiver i, for all

i = 1, . . . ,K . Our goal is to design the beamforming vectors
{wi}

K
i=1 such that each receiver achieves a desired SINR level.

Conventionally, transmit beamforming designs require full
channel state information (CSI) at the transmitter; i.e., knowl-
edge of {hi}

K
i=1. In wireless communications, however, it
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is difficult for the transmitter to acquire accurate CSI, due
to imperfect channel estimation and finite rate feedback [2].
Hence there are channel uncertainties at the transmitter; i.e.,

hi = h̄i + ei, i = 1, . . . ,K, (2)

where h̄i denotes the channel estimate available at the trans-
mitter, and ei ∈ CNt represents the channel uncertainty. In this
work, we focus on spherically bounded channel uncertainties:

‖ei‖
2 ≤ r2i , i = 1, . . . ,K, (3)

where ‖ · ‖ denotes the Euclidean norm, and ri > 0 is the
radius of the uncertainty ball. We study the following worst-
case robust beamforming design [6], [8]:

min
wi∈C

Nt ,
i=1,...,K

K∑
i=1

‖wi‖
2 (4a)

s.t. SINRi(w1, . . . ,wK , h̄i + ei) ≥ γi ∀ ‖ei‖
2 ≤ r2i ,

i = 1, . . . ,K, (4b)

where γi > 0 is the SINR requirement of receiver i, which
must be fulfilled even under worst possible CSI uncertainties.

The challenge of solving the worst-case robust problem (4)
lies in the worst-case SINR constraints in (4b), each of which
corresponds to an infinite number of nonconvex quadratic
constraints. As mentioned, there are several approximation
methods for managing problem (4) [6]–[8], and here we focus
on the SDR method [8]. The development of SDR consists of
two steps. The first step, which is standard (see, e.g. [10]), is
to substitute Wi = wiw

H
i , k = 1, . . . ,K , into (4b), and then

replace Wi = wiw
H
i by Wi � 0 (i.e., Wi being positive

semidefinite (PSD)) to obtain a relaxed problem

min
Wi∈H

Nt ,
i=1,...,K

K∑
i=1

Tr(Wi) (5a)

s.t. (h̄i + ei)
H

⎛
⎝ 1

γi
Wi −

K∑
k �=i

Wk

⎞
⎠ (h̄i + ei) ≥ σ2

i

∀ ‖ei‖
2 ≤ r2i , k = 1, . . . ,K, (5b)

W1, . . . ,WK � 0, (5c)

where HNt is the set of all Nt by Nt Hermitian matrices, and
Tr(Wi) denotes the trace of Wi. The motivation of this step
is to linearize the nonconvex constraints. The second step is
to turn (5b) to finite numbers of constraints, thereby enabling
efficient implementations. By applying S-lemma (see [12]) to
(5b), we obtain the following SDR formulation of (4):

min
Wi∈H

Nt ,λi∈R,
i=1...,K

K∑
i=1

Tr(Wi) (6a)

s.t. Ψi (W1, . . . ,WK , λi) � 0, i = 1, . . . ,K, (6b)

W1, . . . ,WK � 0, λ1, . . . , λK ≥ 0,

where the matrix functions Ψi (W1, . . . ,WK , λi) are defined
as

Ψi (W1, . . . ,WK , λi) �

[
I

h̄H
i

]⎛⎝ 1

γi
Wi −

K∑
k �=i

Wk

⎞
⎠[

I h̄i

]

+

[
λiI 0

0 −σ2
i − λir

2
i

]
, i = 1, . . . ,K, (7)

where I is the Nt by Nt identity matrix. Note that the SDR
problem (6) is a semidefinite program (SDP), which is convex
and tractable.

The SDR problem (6) is methodologically an approximation
to the worst-case robust problem (4) because the ranks of Wi

are not constrained. However, if the optimal solution of the
SDR problem (6), denoted by (W �

1 , . . . ,W
�
K), is of rank one;

i.e., W �
i = w�

i (w
�
i )

H for all i = 1, . . . ,K , then it can be
verified that (w�

1 , . . . ,w
�
K) is a globally optimal solution to

the worst-case robust formulation (4). Rather surprisingly, it is
found through simulations that SDR yields rank-one solution
automatically, and it happens seemingly all the time [8], [11]
(see also [4]). Our endeavor in the subsequent section is to
provide a dual formulation of the SDR problem (6) that may
shed light into this empirical finding.

Before we proceed to the main result, let us present some
simulation results to further strengthen the motivation of
the raised analysis problem. Specifically, we benchmark the
SDR method against other concurrent approximation methods,
namely, the robust SOCP-based method in [6], and the MMSE-
based SDP method in [7]. The simulation settings are: Nt = 4,
K = 4, γ � γ1 = · · · = γK , σ2

1 = · · · = σ2
K = 0.1,

r � r1 = · · · = rK = 0.1, and (h̄1, . . . , h̄K) being inde-
pendent and identically distributed complex Gaussian random
variables with zero mean and unit variance. The result is shown
in Fig. 1, where we see that the SDR method outperforms the
other two methods. Moreover, we should emphasize that the
SDR method yielded rank-one solution in all the trials ran.

III. DUALITY OF WORST-CASE ROBUST SDR
Consider the following max-min optimization problem

max
ei∈C

Nt ,
i=1,...,K

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
wi∈C

Nt ,
i=1,...,K

K∑
i=1

||wi||
2

s.t. SINRi(w1, . . . ,wK , h̄i + ei) ≥ γi,
i = 1, . . . ,K,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

s.t. ‖ei‖
2 ≤ r2i , i = 1, . . . ,K. (8)

At first look, problem (8) is different from the worst-case
robust problem in (4). In (8), the inner minimization is a
standard non-robust beamforming design problem [1] which
finds the most power efficient design given a presumed CSI
{h̄i + ei}

K
i=1. The outer maximization, however, targets to

find a “worst” set of CSI uncertainties {ei}Ki=1 that maximizes
the inner-minimum transmit power. We should also note that
problem (8) has a flavor of two-player zero-sum game.

We are particularly interested in applying SDR to (8). Like
SDR for the worst-case robust problem, we replace each
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Fig. 1: Simulation results of average transmission power versus
target SINR γ, for uncertainty radius r = 0.1.

wiw
H
i with a PSD matrix Wi, and each [eHi 1][eHi 1]H with

a PSD matrix Vi, to obtain the following problem

max
Vi∈H

Nt+1,
i=1,...,K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Wi∈HNt

K∑
i=1

Tr(Wi)

s.t. Tr

⎛
⎝
⎛
⎝ 1

γi
Wi −

K∑
k �=i

Wk

⎞
⎠Ri

⎞
⎠ ≥ σ2

i ,

i = 1, . . . ,K,
W1, . . . ,WK � 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

s.t. Tr(Vi) ≤ (1 + r2i ), i = 1, . . . ,K,

[Vi]Nt+1 = 1, i = 1, . . . ,K,

V1, . . . ,VK � 0, (9)

where [Vi]Nt+1 is the (Nt + 1, Nt + 1)th entry of Vi and
Ri =

[
I h̄i

]
Vi

[
I h̄i

]H
, i = 1, . . . ,K.

An important observation of problem (9) is that there
always exists a rank-one solution for the inner minimization
of problem (9):

Fact 1 [1] Consider the following SDP:

min
Wi∈H

Nt ,
i=1,...,K

K∑
i=1

Tr(Wi) (10)

s.t. Tr

⎛
⎝
⎛
⎝ 1

γi
Wi −

K∑
k �=i

Wk

⎞
⎠Ri

⎞
⎠ ≥ σ2

i , i = 1, . . . ,K,

Wi � 0, i = 1, . . . ,K,

where R1, . . . ,RK � 0. Suppose that (10) is feasible. Then
there exists an optimal solution (W �

1 , . . . ,W
�
K) for which

rank(W �
i ) = 1 for all i.

Fact 1 implies that the SDR of (W1, . . . ,WK) is always tight
for the max-min SDR problem (9). Fact 1 raises an intriguing
question—What is the relationship between the max-min SDR
problem (9) and the robust SDR problem (6)? If the optimal
solutions of (W1, . . . ,WK) of the two problems are identical,
then Fact 1 immediately implies that (6) has a rank-one
optimal solution and hence SDR is tight to (6) as well.

A. Main Result

It turns out that problems (9) and (6) are strongly connected:

Proposition 1 Suppose that problem (6) is feasible. Then
problems (9) and (6) attain the same optimal objective value.
Moreover, if (W �

1 , . . . ,W
�
K , λ�

1, . . . , λ
�
K) is an optimal so-

lution of problem (6), then there exists (V �
1 , . . . ,V �

K) such
that (V �

1 , . . . ,V �
K ,W �

1 , . . . ,W
�
K) is an outer-inner solution

of problem (9).

As the main contribution of this paper, Proposition 1 pro-
vides a solution correspondence between problems (9) and (6),
showing that problem (9) is actually a dual representation of
problem (6). To prove that problems (9) and (6) attain the
same optimal objective value, we show that the Lagrangian
dual of problem (6) is equivalent to the Lagrangian dual of
problem (9). The former can be shown to be

max
Ai∈H

Nt+1,
i=1,...,K

K∑
i=1

σ2
i [Ai]Nt+1 (11)

s.t. Yi(A1, . . . ,AK) � 0, i = 1, . . . ,K,

Tr(Ai) ≤ (1 + r2i )[Ai]Nt+1, i = 1, . . . ,K,

A1, . . . ,AK � 0,

where A1, . . . ,AK ∈ HNt+1 are the (Lagrangian) dual
variables associated with constraints (6b), and

Yi(A1, . . . ,AK) � I −
1

γi

[
I h̄i

]
Ai

[
I

h̄H
i

]

+

K∑
k=1,k �=i

[
I h̄k

]
Ak

[
I

h̄H
k

]
, i = 1, . . . ,K. (12)

Now let us consider the Lagrangian dual of the inner mini-
mization problem of (9), which can be shown to be

max
μ1,...,μK≥0

K∑
i=1

μiσ
2
i (13)

s.t. I −
μi

γi
Ri +

K∑
k=1,k �=i

μkRi � 0, i = 1, . . . ,K,

where μ1, . . . , μK are the dual variables associated with
the trace inequality constraints of the inner problem of (9).
Replacing the inner problem of (9) with its dual (13), we
obtain the following problem

max
Vi∈H

Nt+1,
i=1,...,K

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
μi≥0,

i=1,...,K

K∑
i=1

μiσ
2
i

s.t. Yi(μ1V1, . . . , μKVK) � 0,
i = 1, . . . ,K,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(14)

s.t. Tr(Vi) ≤ (1 + r2i ), i = 1, . . . ,K,

[Vi]Nt+1 = 1, i = 1, . . . ,K,

V1, . . . ,VK � 0.

Since strong duality holds for the inner parts of (9) and (14),
the two problems have the same optimal objective value.
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One may observe a connection between (11) and (14):

[Ai]Nt+1 = μi, Ai = μiVi, i = 1, . . . ,K. (15)

In fact, (11) and (14) are equivalent problems, as we show in
Appendix the following lemma:

Lemma 1 If (A�
1, . . . ,A

�
K) is an optimal solution of (11),

then

(V �
1 , . . . ,V �

K) = (A�
1/[A

�
1]Nt+1, . . . ,A

�
K/[A�

K ]Nt+1),

(μ�
1, . . . , μ

�
K) = ([A�

1]Nt+1, . . . , [A
�
K ]Nt+1) (16)

is an optimal outer-inner solution pair of (14). If
(V �

1 , . . . ,V �
K , μ�

1, . . . , μ
�
K) is an optimal outer-inner solution

of (14), then (A�
1, . . . ,A

�
K) = (μ�

1V
�
1 , . . . , μ�

KV �
K) is optimal

to (11).

Lemma 1 shows that (V �
1 , . . . ,V �

K) of (14) only differs from
(A�

1, . . . ,A
�
K) of (11) up to a positive scalar. Hence, (14) and

(11) attain the same optimal objective value, implying that (9)
and (6) attain the same optimal objective value. By Lemma 1,
one can further show that (W �

1 , . . . ,W
�
K), the optimal primal

solution of (6), is also optimal to (9). The detailed proof is
presented in Appendix.

B. Implication and Concluding Remark

To show that the robust SDR problem (6) has a rank-one so-
lution, we still need to prove that the optimal (W1, . . . ,WK)
of (9) is also optimal to (6). Now, let us assume:

Condition 1 The optimal solution of the inner minimization
of problem (9), (W �

1 , . . . ,W
�
K), is unique.

Condition 1 is considered mild; by numerical experience,
Condition 1 is found to hold all the time. Under Condition
1, we can infer from Fact 1 and Proposition 1 that the SDR
problem (6) has a rank-one solution. Hence, we conclude that

Claim 1 Under Condition 1, the SDR problem (6) solves the
worst-cast robust problem (4) optimally.

Our analysis above narrows down the SDR optimality
question to the proof of unique rank-one solution of the inner
minimization problem of (9). As a future research direction, it
would be interesting to investigate sufficient conditions under
which Condition 1 holds true.

IV. APPENDIX

KKT conditions of (6)
The KKT conditions of (6) and (11) can be shown to be

W1, . . . ,WK � 0, λ1, . . . , λK ≥ 0,A1, . . . ,AK� 0, (17a)

Ψi(W1, . . . ,WK , λi) � 0, i = 1, . . . ,K, (17b)

Yi(A1, . . . ,AK) � 0, i = 1, . . . ,K, (17c)

Ψi(W1, . . . ,WK , λi)Ai = 0, i = 1, . . . ,K, (17d)

Yi(A1, . . . ,AK)Wi = 0, i = 1, . . . ,K, (17e)

Tr(Ai) ≤ (1 + r2i )[Ai]Nt+1, i = 1, . . . ,K, (17f)(
Tr(Ai)− (1 + r2i )[Ai]Nt+1

)
λi = 0, i = 1, . . . ,K, (17g)

where Ψi(·) and Yi(·) are defined in (7) and (12), respectively.
Proof of Lemma 1: Lemma 1 can be easily proved by in-
spection of (14) and (11). What remains is to show that
μ�
i > 0 and [A�

i ]Nt+1 > 0 for all i = 1, . . . ,K . The
former has been proved in [13, Proposition 4.2]; while the
latter can be proved as follows. One can observe from (17a)
and (17f) that [A�

i ]Nt+1 = 0 results in A�
i = 0. In

this case, Yi(A
�
1, . . . ,A

�
K) in (12) is positive definite, i.e.,

Yi(A
�
1, . . . ,A

�
K) � 0. By the complementary slackness (17e),

this leads to the primal solution W �
i = 0, which however

violates (17b) [see (7)] due to σ2
i > 0. �

Proof of Proposition 1: Here we prove that (W �
1 , . . . ,W

�
K),

the optimal primal solution of (6), is also optimal to
(9). By Lemma 1 which shows that (A�

1/[A
�
1]Nt+1,

. . . ,A�
K/[A�

K ]Nt+1) is an optimal outer maximizer of (9),
it suffices to show that (W �

1 , . . . ,W
�
K) is optimal to the

following problem

min
W1,...,WK�0

K∑
i=1

Tr(Wi) (18)

s.t. Tr

⎛
⎝
⎛
⎝ 1

γi
Wi −

K∑
k=1,k �=i

Wk

⎞
⎠[

I h̄i

]
A

�
i

[
I

h̄H
i

]⎞
⎠

≥ σ2
i [A

�
i ]Nt+1, i = 1, . . . ,K.

This can be shown by examining that (W �
1 , . . . ,W

�
K) satisfies

the KKT conditions of (18), which are given as follows:

W1, . . . ,WK � 0, μ1, . . . , μK ≥ 0, (19a)

Yi (μ1(A
�
1/[A

�
1]Nt+1), . . . , μK(A�

K/[A�
K ]Nt+1)) � 0,

(19b)

Yi (μ1(A
�
1/[A

�
1]Nt+1), . . . , μK(A�

K/[A�
K ]Nt+1))Wi = 0,

(19c)

Tr

⎛
⎝
⎛
⎝ 1

γi
Wi −

K∑
k=1,k �=i

Wk

⎞
⎠[

I h̄i

]
A

�
i

[
I

h̄H
i

]⎞⎠= σ2
i [A

�
i ]Nt+1,

(19d)

for i = 1, . . . ,K .
Since (W �

1 , . . . ,W
�
K , λ�

1, . . . , λ
�
K) and (A�

1, . . . ,A
�
K)

satisfy the KKT conditions in (17a), (17c) and
(17e), (W �

1 , . . . ,W
�
K) and (μ1, . . . , μK) �

([A�
1]Nt+1, . . . , [A

�
K ]Nt+1) satisfy (19a), (19b) and (19c). To

show that (W �
1 , . . . ,W

�
K) also fulfills (19d), let us consider

an alternative representation of (6):

Lemma 2 Problem (6) can be equivalently expressed as the
following problem

min
Wi�0,
i=1,...,K

K∑
i=1

Tr(Wi) (20a)

s.t. min
Vi∈Vi

Tr

⎛
⎝
⎛
⎝ 1

γi
Wi −

K∑
k=1,k �=i

Wk

⎞
⎠[

I h̄i

]
Vi

[
I

h̄H
i

]⎞⎠
≥ σ2

i , i = 1, . . . ,K, (20b)
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where Vi = {Vi ∈ H
Nt+1 | Tr(Vi) ≤ (1 + r2i ), [Vi]Nt+1 =

1,Vi � 0}.

It is easy to verity that, for (W �
1 , . . . ,W

�
K),

min
Vi∈Vi

Tr

⎛
⎝
⎛
⎝ 1

γi
W

�
i −

K∑
k=1,k �=i

W
�
k

⎞
⎠[

I h̄i

]
Vi

[
I

h̄H
i

]⎞
⎠

= σ2
i , i = 1, . . . ,K, (21)

i.e., the inequality constraints in (20b) are all active for the
optimal solution (W �

1 , . . . ,W
�
K). Hence, to show that (19d)

is also fulfilled by (W �
1 , . . . ,W

�
K), it is sufficient to prove

that

A
�
i /[A

�
i ]Nt+1 =

arg min
Vi�0

Tr

⎛
⎝
⎛
⎝ 1

γi
W

�
i −

K∑
k=1,k �=i

W
�
k

⎞
⎠[

I h̄i

]
Vi

[
I

h̄H
i

]⎞⎠
s.t. Tr(Vi) ≤ (1 + r2i ), (22a)

[Vi]Nt+1 = 1, (22b)

for all i = 1, . . . ,K . Let ξi and τi be the dual variables
associated with the constraints in (22a) and (22b), respectively,
and define

Ψ̃i (W
�
1 , . . . ,W

�
K , ξi, τi)

�

[
I

h̄H
i

]⎛
⎝ 1

γi
W

�
i −

K∑
k=1,k �=i

W
�
k

⎞
⎠[I h̄i

]
+

[
ξiI 0

0 ξi + τi

]
.

The KKT conditions of the minimization problem in (22) can
be obtained as

Tr(Vi)≤(1 + r2i ), [Vi]Nt+1=1,Vi�0, ξ ≥ 0, τi ∈ R, (23a)

Ψ̃i (W
�
1 , . . . ,W

�
K , ξi, τi) � 0, (23b)

Ψ̃i (W
�
1 , . . . ,W

�
K , ξi, τi)Vi = 0, (23c)

ξi
(
Tr(Vi)− (1 + r2i )

)
= 0, τi ([Vi]Nt+1 − 1) = 0. (23d)

For each i ∈ {1, . . . ,K}, let V �
i = A�

i /[A
�
i ]Nt+1, ξ�i =

λ�
i , τ�i = −σ2

i − (1 + r2i )λ
�
i . It follows from the KKT

conditions in (17a), (17b), (17d) and (17g) that (V �
i , ξ�i , τ

�
i )

satisfies all the conditions in (23). Thus (22) is true for all
i = 1, . . . ,K . The proof is then completed. �

Proof of Lemma 2: It suffices to show that (6b) is equivalent
to (20b). Note that (6b) is equivalent to

min
‖ei‖2≤r2

i

⎧⎨
⎩(h̄i + ei)

H

⎛
⎝ 1

γi
Wi −

K∑
k=1,k �=i

Wk

⎞
⎠ (h̄i + ei)

⎫⎬
⎭

≥ σ2
i , i = 1, . . . ,K. (24)

(the equivalence is owing to the S-Lemma; see [8], [11]).
Note that the minimization problem on the left-hand side
of (24) may not be convex with respect to (e1, . . . , eK)
because the matrix ( 1

γi

Wi −
∑K

k �=i Wk) may not be positive
semidefinite. Nevertheless, SDR can be applied. Through the

same procedure as in obtaining (9), one can obtain the SDR
problem of the minimization problem in (24) as

min
Vi∈Vi

Tr

⎛
⎝
⎛
⎝ 1

γi
Wi −

K∑
k=1,k �=i

Wk

⎞
⎠[

I h̄i

]
Vi

[
I

h̄H
i

]⎞
⎠ . (25)

While (25) is obtained by relaxation of the rank of Vi, the SDR
problem (25) is actually tight and optimal to the minimization
problem in (24); see [14, Lemma 3.1]. We thus obtain (20b)
by substituting (25) into (24). �
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