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ABSTRACT 

Hyperspectral unmixing (HU) is an essential signal process
ing procedure for blindly extracting the hidden spectral signatures 
of materials (or endmembers) from observed hyperspectral imaging 
data. Craig's criterion, stating that the vertices of the minimum vol
ume enclosing simplex (MVES) of the data cloud yield high-fidelity 
endmember estimates, has been widely used for designing endmem
ber extraction algorithms (EEAs) especially in the scenario of no 
pure pixels. However, most Craig-criterion-based EEAs generally 
suffer from high computational complexity due to heavy simplex 
volume computations, and performance sensitivity to random ini
tialization, etc. In this work, based on the idea that Craig's simplex 
with N vertices can be defined by N associated hyperplanes, we de
velop a fast and reproducible EEA by identifying these hyperplanes 
from N(N - 1) data pixels extracted via simple and effective lin
ear algebraic formulations, together with endmember identifiability 
analysis. Some Monte Carlo simulations are provided to demon
strate the superior efficacy of the proposed EEA over state-of-the-art 
Craig-criterion-based EEAs in both computational efficiency and es
timation accuracy. 

Index Terms- Hyperspectral unmixing, Craig's criterion, min
imum volume enclosing simplex (MVES), hyperplane 

1. INTRODUCTION 

Hyperspectral remote sensing (HRS) is a crucial technology of imag
ing spectroscopy with numerous applications, such as planetary ex
ploration, mineral identification, and military surveillance [1,2]. The 
observed pixels in the hyperspectral imaging data are usually spec
tral mixtures of multiple substances [3] owing to limited spatial res
olution of the hyperspectral sensor used. Hyperspectral unmixing 
(HU) [3,4], an essential signal processing procedure for extract
ing individual spectral signatures of the underlying materials (or 
endmembers) from the measured spectral mixtures, is therefore of 
paramount importance in HRS. 

Many existing endmember extraction algorithms (EEAs) as
sume the existence of pure pixels (Le., the pixels that are solely 
contributed by a single endmember) [4]. Nevertheless, such pure 
pixel assumption (PPA) may be seriously infringed in practical ap
plications like retinal analysis in the ophthalmology [5]. Another 
widely known criterion without requiring the PPA was proposed by 
Craig [6], stating that the vertices of the minimum-volume data
enclosing simplex are high-fidelity endmember estimates. Many 
EEAs based on this criterion have been proposed in the last two 
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decades, e.g., minImum volume constrained nonnegative matrix 
factorization (MVC-NMF) [7], minimum volume simplex analysis 
(MVSA) [8], minimum-volume enclosing simplex (MVES) [9], and 
simplex identification via split augmented Lagrangian (SISAL) [10], 
etc., but their performance and computational efficiency may be lim
ited due to lots of complicated simplex volume calculations, sensi
tivity to initialization, and lack of rigorous performance analysis. 

This paper proposes a fast Craig-criterion-based EEA based on 
the idea that Craig's simplex with N vertices can be characterized by 
N hyperplanes. Each hyperplane parameterized by its normal vector 
and a constant can be efficiently estimated from N - 1 pixels in the 
data set via simple and effective linear algebraic formulations with
out involving any simplex volume computations. The resulting EEA, 
referred to as hyperplane-based Craig-simplex-identification (Hy
perCSI) algorithm, yields reproducible, non-negative, and, most im
portantly, high-fidelity end member estimates without requiring the 
PPA. We also present an end member identifiability analysis for Hy
perCSI algorithm. Some simulations are provided to demonstrate its 
superior efficacy over state-of-the-art Craig-criterion-based EEAs in 
both end member estimation accuracy and computational efficiency. 

Notation: conv A and aff A denote the convex hull and affine 
hull of a setA, respectively [11]. ]R (]RN, ]RMXN) is the set of real 
numbers (N-vectors, M x N matrices) . ]R� (]R:;rXN) is the set 
of non-negative real N-vectors (M x N matrices). The set IN = 

{ 1, 2, ... , N}. Xl is the pseudo-inverse of a matrix X. IN and ON 
are all-one and all-zero N-vectors, respectively. IN is the N x N 
identity matrix. ::: and >- stand for the componentwise inequality 
and strictly componentwise inequality, respectively. 11· 11 denotes the 
Euclidean norm. qi(X) denotes the ith principal eigenvector of a 
matrix X with Ilqi(X) 11 = 1. 

2. SIGNAL MODEL AND PROBLEM STATEMENT 

Consider a given hyperspectral imaging data of L pixels that con
sists of N distinct substances (endmembers), each characterized by 
a spectral Signature vector ai E ]Rr (where M is the number of 
spectral bands). Then each pixel x[n] E ]RM in the data set can be 
represented as [1, 3, 4] 

N 
x [n] = As[n] = L sdn]ai, V n E h, (1) 

i=l 
where A = [al' " aN] E ]RMxN is the spectral Signature matrix 
and s[n] = [sJ[n] ... SN [n]]T E ]RN is the abundance vector. In this 
work, we assume that N ;::: 3 is known a priori as it can be estimated 
using model-order selection methods, such as virtual dimensionality 
(VD) [12] and hyperspectral signal subspace identification by mini
mum error (HySiMe) [13]. 

Hyperspectral unmixing is to blindly extract the N unknown 
endmembers (Le., al, ... , aN) from the observed spectral data 
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{x [ 1], ... , x [L]}. Some standard assumptions pertaining to the lin
ear mixing model (I) are as follows [1,3,4]: 

(Ai) s;[n] 2: 0, for all i E IN and n E h. 

(A2) L:f:1 s;[n] = 1, for all n E h. 

(A3) min{ L, M} 2: N and A E IR�XN is of full column rank. 

Under the above assumptions, the pixel x[n] in the original im
age can be equivalently represented in a dimension-reduced (DR) 
space via affine set fitting [14] as follows: 

where 

N 
x[n] = Ct(x[n] -d) = I:s;[n]ai E IRN-\ (2) 

i=l 

1 L 
d = 

L I: x[ n] E IR M (mean of data set) (3) 
n=l 

c = [ q1 (UUT), ... , QN_1 (UUT) ] E IRMX(N-1 ) (4) 

ai = Ct (ai -d) E IRN-1 (endmembers in the DR space) (5) 

in which U = [x [l] -d, ... , x [L] -d) E IRMxL (mean removed 
data matrix), C is semi-unitary (Le., C C = IN-1), and d corre
sponds to the origin ON-1 in the DR space IRN-1 (by (2) ) .  

From (2) and (Ai )-(A2), i t  can be seen that 

X � { x[I], ... , x[L] } � conv{ a1, ... , aN}, (6) 

i.e., the true endmembers' simplex conv{ a1, ... , aN} � IRN-1 
itself is a data-enclosing simplex (in the noiseless scenario). By 
Craig's criterion, a1, ... , aN are estimated by solving the follow
ing volume minimization problem [9]: 

min V(!31, ... , !3N) 
{3" .. ·,{3N (7) 

s.t. x[n] Econv{!31, ... , !3N}, \;I n, 
where V (!31, ... , !3 N ) denotes the volume of the simplex 
conv{!31, ... , !3N} � IRN-1 Under some mild conditions on data 
purity level, the optimal solution of the problem (7) can perfectly 
yield the true end members in the absence of pure pixels [15,16]. 

3, HYPERPLANE-BASED CSI ALGORITHM 

In this section, without involving any simplex volume computations, 
we propose a computationally efficient and performance effective 
algorithm based on the idea stated in the following proposition: 

Proposition 1 If { al, ... , aN} � IRN-1 is affinely independent 
(i.e., { a1 -aN, ... , aN -1 -aN} is linearly independent}, then the 
simplex T = conv{ a1, ... , aN} � IRN-1 can be reconstructed 
from the associated N hyperplanes {H1, ... , HN }, that tightly en
close T, where Hi � aff( { a1, ... , aN} \ { ad ). 

Proof' It suffices to show that { a1, ... , aN} can be determined by 
{H1, ... , HN}. Note that hyperplane Hi can be parameterized by 
a normal vector bi E IRN-1 and a constant hi E IR as [II] 

Hi(bi, hi) = { x E IRN-1 I bf x = hi }. (8) 

As ai E aff( { al, ... , aN} \ { aj} ) = Hj for all j i- i, we have 
from (8) that bJ ai = hj for all j i- i, Le., 

(9) 
where 

B-i � [b1, ... , bi-1 , bi+1, ... , bN]T E IR(N-1 ) X(N-1 ) (10) 

h-i � [ h1 , ... , hi-1 , hi+1 , ... , hN]T E IRN-1 (11) 
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As T is a simplex in IRN-1 , B-i must be of full rank and hence 
invertible [II]. Hence, we have from (9) 

(12) 

implying that the simplex T can be reconstructed. • 
Moreover, the outward-pointing normal vector bi (cf. Figure 1) 

of hyperplane Hi given by (8) has a closed-form expression [17]: 

bi=vi( a1, ... , aN) (13) 

� (IN-1 - p(pTp)-lpT) ( ) f . -I. . . aj - ai , or any J r 2, 

where P � Q - aj 1�_2 E IR(N-1 ) X(N-2) , and Q E 
IR(N-1 ) x(N-2) is the matrix [a1' "  aN] E IR(N-1 ) xN with its ith 
and jth columns removed. Besides (13) for obtaining the normal 
vector bi of Hi, one can show that bi can also be alternatively ob
tained from any given affinely independent set {pii) , ... , P�)-l} � 
Hi as follows: 

_ (i) (i) (i) (i) bi - Vi(Pl , ... , Pi-1 ' ON-1, Pi , ... , PN-1 ), (14) 

where ViC) is defined in (13). The proof of (14) is omitted due to 
space limitation. 

It can be inferred from (A3) that the set of DR endmembers 
{ a1, ... , aN} is affinely independent. By Proposition I, problem 
(7) can be decoupled into N subproblems of hyperplane estimation 
or equivalently, estimation of the parameter vectors (bi, hi), i E IN 
(cf. (8) ) .  In the following subsections, let us present how to estimate 
bi and hi from the DR data set X, respectively. 

3.1. Normal Vector Estimation 

Based on (14), the idea of determining the normal vector of Hi is to 
find N - 1 affinely independent points 

{pii) , · .. , P�)-l} � Pi � X 

that are as close to Hi as possible. Another important observation 
from (6) is given in the following fact: 

(Fi) All the pixels in X lie on the same side of Hi (cf. (6) ),  imply
ing that the pixel P E X closest to Hi is exactly the one with 
maximum value of b[ p. 

Suppose that we are given N "purest " pixels ai E X, which 
basically maximize the simplex volume inscribed in X and can be 
obtained using the reliable and reproducible TRIP algorithm [18]. 
So ai can be viewed as the pixel in X "closest " to ai (ef. Figure 1) . 
Let bi be the outward-pointing normal vector of hyperplane Hi � 
aff( {a1, ... , aN} \ {ad ), i.e., 

(15) 

Considering (Fi) and that Pi must contain N - 1 distinct pixels, we 
search for the desired affinely independent set Pi by: 

pii) E argmax { bfpl pEXn nii)}, \;IkEIN-1, (16) 

where 

n(i) � 
{B(ak,r), ifk < i, 

k B(ak+1, r), if k 2: i, 
(17) 

in which B(ak,r) � {x E IRN I Ilx - akll < r} is the open 
Euclidean norm ball with center ak E IRN and radius r � ( 1/2) . 

min{ llai-ajll l l ::; i < j ::; N} > 0. Note that xnnii) i- 0 (as 



Fig. 1. An illustration of hyperplanes and DR data in IR2 for the 
case of N = 3. where a3 is a purest pixel in X (a purest pixel 
ai can be considered as the pixel closest to ai) but not very close 
to hyperplane 1£1 = aff{ a2, a3}. leading to nontrivial orientation 
difference between bl and bl. 

it contains either ak or ak+l. cf. (17)) .  Le .. problem (16) is feasible. 
Then we obtain the estimated normal vector associated with 1£i as 

A (i) (i) (i) (i) bi = Vi(Pl , ... , Pi-I' ON-I, Pi , ... , PN-l)' (cf. (14)) (18) 

In addition to assumptions (A 1 )-(A3). with one more assump
tion that is extensively used to characterize the behavior of the abun
dance vectors in the HRS context [19,20]: 

(A4) the abundance vectors { s[n]} <;;; IRN are independent and 
identically distributed (LLd.) following the Dirichlet distribu
tion [21] with parameter vector T = bl' ... ,I'N]T r- ON, 

the obtained Pi by (16) can be proved to be affinely independent as 
stated in the following theorem (with proof given in Appendix): 

Theorem 1 Assume (A1)-(A4) hold true. Let pii) E Pi be a solu

tion to (16) with nii) defined in (17), for all i E 'IN and k E'IN-l. 
Then, the set Pi is affinely independent with probability 1 (w.p.I). 

Note that the orientation difference between bi and the true bi 
may not be small (cf. Figure I) . Hence, bi itself may not be a good 
estimate for bi. Nevertheless, it can be shown that the orientation 
difference between hi and bi tends to be very small for large L, 
even in the absence of pure pixels (as stated in Remark 1 below). 

3.2. Hyperplane Estimation and Performance Analysis 

With the estimated normal vector bi (cf. (18)), as the hyperplanes 
associated with the minimum-volume data-enclosing simplex must 
be externally tangent to the data cloud X, they can be determined as 
1£i(hi, hi), ViE 'IN, where hi is obtained by solving 

hi = max { hip I P EX }. (19) 

Considering the volume expansion due to noise effect [22, 23], the 
estimated hyperplanes need to be properly shifted closer to the ori
gin, so instead, 1£i (bi, hi / c), i E 'IN, are the desired hyperplane 
estimates for some c 2: 1. Therefore, the corresponding DR end
member estimates are obtained by (cf. (12)) 

ai = B=�· lLi/c, Vi E'IN, (20) 

where B-i and h-i are given by (10) and (11) with bj and hj re
placed by bj and hj, V j =I i, respectively. It is necessary to choose 

c such that the associated endmember estimates in the original space 

ai = C ai + d � OM, ViE 'IN. (cf. (5) and (A3)) 
By (20) and (21), it is required that c 2: c' where 

c' £ min{cI IC (B=�.h-i)+c".d�OM, Vi} 
c" 2': 1 

(21) 

(22) 
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which can be further shown to have a closed-form solution: 

c' = max {I, max{ -vij/dj liE 'IN, j E 'IM}}, (23) 

where Vij is the jth component of C (B=� . h-i) E IRM and dj is 
the jth component of d. 

Note that c' is just the minimum value for c to yield non-negative 
endmember estimates. Thus, we need to set c = c' /TJ 2: c' for some 
TJ E (0,1]. Moreover, the value of TJ = 0.9 is empirically found to 
be a good choice for signal-to-noise ratio (SNR) greater than 20 dB; 
typically the value of SNR in real hyperspectral data is much higher 
than 20 dB, e.g., AVIRIS [24]. Let us emphasize that the larger the 
value of TJ (or the smaller the value of c), the farther the estimated 
hyperplanes from the origin ON-I, or the closer the estimated end
members' simplex conv{ aI, ... ,aN} to the boundary of the non
negative orthant IR.'f. On the other hand, we empirically observed 
that typical endmembers in the U.S. geological survey (USGS) li
brary [25] are close to the boundary of IR.'f. That is to say, a reason
able choice of TJ E (0, 1] should be large (Le., close to 1), accounting 
for the reason why the preset value ofTJ = 0.9 can always yield good 
performance. The resulting HyperCSI algorithm is summarized in 
Table I. 

Given 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Table 1. Pseudo-code for HyperCSI Algorithm 

Hyperspectral data {x[I], ... ,x[L]}, number of end
members N, and TJ = 0.9. 

Calculate (C, d) using (3)- (4), and obtain the DR data 
X = {x[I], ... ,x[L]} using (2) . 

Obtain {al, ... ,aN} using TRIP algorithm [18]. 

Obtain bi using (13), V i, and nii) using (17), V i, k. 

Obtain (Pi, bi, hi) by (16), (18), and (19), ViE 'IN. 
Obtain c' by (23), and set c = c' /TJ. 

Calculate ai by (20) and ai = C ai + d by (21), V i. 
Output The estimated endmembers {aI, ... , aN}. 

Asymptotic identifiability of the proposed HyperCSI algorithm 
can be guaranteed as stated in the following theorem: 
Theorem 2 Under (A 1)-(A4), the noiseless assumption and L -+ 

00 . the simplex identified by HyperCSI algorithm with c = 1 is ex
actly the Craig's minimum-volume simplex (i.e., solution of (7)) and 
the true endmembers' simplex conv{ aI, ... , aN} in the DR space 
w.p.1. 

The proof is omitted due to space limit. Instead, the philosophies be
hind the proof of Theorem 2 are given in the following two remarks: 

Remark 1 With the abundance distribution stated in (A4), the N-I 
pixels in Pi can be shown to be arbitrarily close to 1£i as the pixel 
number L -+ 00 , and they are affinely independent w.p.1 (cf. Theo
rem 1). That is to say, bi can be uniquely obtained by (18), and its 
orientation approaches to that of bi w.p.1. 

Remark 2 Remark 1 together with (6) implies that hi is upper 
bounded by hi w.p.I (assuming that Ilbill = Ilbill ), and this up
per bound can be shown to be achievable w.p.I as L -+ 00 . Thus, as 

c = 1, we have that hi = hd c w. p.l. 

It can be further inferred, from the above two remarks, that ai is 
exactly the true ai w.p.I (cf. (20)) as L -+ 00 in the absence of 
noise. Actually, with a moderate L and finite SNR. the proposed 
HyperCSI algorithm can yield high-fidelity endmember estimates as 
demonstrated in the simulation results below. 



4. SIMULATION RESULTS 

Six endmembers (Le., ]arsoite, Pyrope, Dumortierite, Budding
tonite, Muscovite, and Goethite) with M = 224 spectral bands 
randomly selected from the USGS library [25] are used to generate 
L = 10000 synthetic hyperspectral data x[n]. where the abundance 
vectors s[n] are LLd. generated according to Dirichlet distribution 
with parameter "( = IN / N (automatically enforcing (A 1 )-(A2)) for 
various values of SNR (Gaussian noise added) and different data pu
rity levels p = max{lls[n] I I , n E h} [9,15,23]. The average root
mean-square (RMS) spectral angle <Pen between the true endmem
bers {ai, ... , aN} and their estimates {ai, ... , aN} [9, 26] over 
100 independent runs is used as the performance measure for com
parison of the proposed HyperCSI algorithm and four benchmarked 
Craig-criterion-based EEAs, including MVC-NMF [7]. MVSA [8], 
MVES [9], and SISAL [10]. It should be mentioned that the per
formances of these four EEAs are dependent on their respective reg
ularization parameters, and we have tried our best to select these 
parameters so as to yield their best performances. 

The simulation results of average RMS spectral angle <Pen and 
average computation time T per realization are shown in Table 2, 
where bold-face numbers indicate the best performance (Le., the 
smallest <Pen or T) for a specific scenario of p and SNR. From this 
table, it can be seen that HyperCSI algorithm significantly outper
forms all the other EEAs in terms of <Pen and T for almost all the 
cases, especially for lower value of SNR or lower value of p, while 
SISAL outperforms the other three EEAs for SNR > 20dB. These 
results also indicate that L = 10000 (typically several ten thousands 
in HRS applications) is large enough for the proposed algorithm to 
achieve the asymptotic performance as stated in Theorem 2. 

Table 2. Performance comparison of the proposed HyperCS! algo
rithm and four state-of-the-art Craig-criterion-based EEAs. 

<Pen degrees 
Methods p C>I'K (Otl) T (seconds) 

LU Lo SU So 4U 
0.8 2.87 2.38 1.50 1.24 1.18 

MVC-NMF 0.9 2.98 1.87 0.93 0.54 0.44 347.77 
I 3.26 1.90 1.01 0.52 0.21 

0.8 11.05 6.23 3.41 1.87 1.03 
MVSA 0.9 11.58 6.46 3.48 1.90 1.05 3.18 

I 11.65 6.54 3.54 1.93 1.06 
U.� IU.bb b.Ub S.S� 1.�1 1.1b 

MVES 0.9 10.17 6.06 3.48 1.97 1.12 27.97 
I 9.95 5.96 3.55 2.19 1.30 

0.8 4.01 2.31 1.30 0.72 0.39 
SISAL 0.9 4.19 2.43 1.36 0.74 0.40 0.69 

I 4.49 2.59 1.45 0.79 0.42 
0.8 1.88 1.28 0.91 0.61 0.39 

HyperCSI 0.9 1.34 0.90 0.61 0.44 0.31 0.43 
I 1.15 0.78 0.54 0.37 0.26 

5. CONCLUSIONS 

We have presented a new fast Craig-criterion-based EEA, called Hy
perCS! algorithm, given in Table I, based on the convex geometry 
concept-hyperplane. It has several remarkable characteristics: 

• It never requires the presence of pure pixels in the data. 

• It is reproducible without involving random initialization. 

• It estimates Craig's minimum-volume simplex by finding only 
N(N - 1) pixels (regardless of L, cf. (16)) without involving 
any simplex volume computation, accounting for its high compu
tational efficiency. 

• The estimated endmembers are guaranteed non-negative, and the 
identified simplex was proven to be both Craig's simplex and true 
endmembers' simplex as L -+ 00 for the noiseless case w.p.1. 
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Simulation results also demonstrated its superior efficacy over some 
state-of-the-art algorithms in both solution accuracy and computa
tional efficiency. 

6. APPENDIX: PROOF OF THEOREM 1 

For a fixed i E 'IN, one can see from (17) that n�i) n n�i) 
0, V k oF C, implying that the N - 1 pixels p�i) , V k E 'IN-l, iden
tified by solving (16) must be distinct. Hence, it suffices to show that 
Pis affinely independent w.p.1 for any P � {Pi, ... , PN-d <;;; X 
that satisfies 

Pk oF Pc, for alII :s; k < C :s; N - 1. (24) 

Then, as Pk E X, V k E 'IN-l, we have from (A4) and (24) that 
there exist LLd Dirichlet distributed random vectors {Sl, ... , SN-d 
such that (cf. (2) ) 

Pk = [al ... aN] Sk, for all k E'IN-l. (25) 
For ease of the ensuing presentation, let Pr{·} denote the probability 
function and define the following events: 

E1 The set P is affinely dependent. 
E2 The set {Sl, ... , sN-d is affinely dependent. 

E3(k) Sk E aff {{Sl, ... , SN-d \ {sd}, V k E'IN-l. 
Then, to prove that Pi is affinely independent w.p.I, it suffices to 
prove Pr{E1} = O. 

Next, let us show that E1 implies E2. Assume E1 is true. Then 
Pk E aff{P\ {Pk}} for some k E 'IN-i. Without loss of generality, 
let us assume k = 1. Then, 

Pi = 02' P2 + ... + ON-i' PN-l, (26) 
for some Oi, i = 2, ... , N - I, satisfying 

02 + ... +ON-l = 1. (27) 

By substituting (25) into (26), we have 
N-l 

[al ... aN] Sl = L [al' " aN] (Om' sm). (28) 
1n=2 

Then, from the fact that { ai, ... , aN} is affinely independent (cf. 
(A3)) and the fact that I�(L:;'::� (Om' sm)) = 1 (by (27) and the 
fact that I�sk = 1, V k). (28) implies 

Sl = 02' S2 + ... + ON-i' SN-l, 
which together with (27) further implies that E2 is true. Thus we 
have proved that E1 implies E2, and hence 

Pr{E1} :s; Pr{E2}. (29) 

As Dirichlet distribution is a continuous multivariate distribution 
[27] for a random vector S E ]RN to satisfy (A1 )-(A2) with an (N -
I)-dimensional domain, any given affine hull A <;;; ]RN with affine 
dimension P must satisfy [21] 

Pr{ sEA } = 0, if P < N - 1. (30) 

Moreover, as {Sl, ... , SN -d are LLd. random vectors and the affine 
hull aff { {Sl, ... , SN -d \ {sd} must have affine dimension P < 
N - 1. we have from (30) that 

Pr{E3(k)} = 0, for all k E 'IN-i. (31) 

Then we have the following inferences: 

o :s; Pr{E1} :s; Pr{E2} (by (29)) 

= Pr{ui"'==-/ E3(k)} (by the definitions of E2 and E3(k») 
N-l 

:s; L Pr{E3(k)} = 0, (by the union bound and (31)) 
k=l 

Le., Pr{E1} = O. Therefore, the proof is completed. • 
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