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ABSTRACT

Endmember extraction is of prime importance in the process of hy-
perspectral unmixing so as to study the mineral composition of a
landscape from its hyperspectral observations. Though, a whole
bunch of pure-pixel based endmember extraction algorithms exists,
the quest for a reliable, repeatable, and computationally efficient
endmember extraction algorithm still prevails. In this work, we pro-
pose two pure-pixel based endmember extraction algorithms called
simplex estimation by projection (SIMPLE-Pro) algorithm and p-
norm based pure pixel identification (TRI-P) algorithm. The end-
member identifiability of the proposed two algorithms is theoreti-
cally proved under the pure pixel assumption. Both algorithms never
require any initializations and hence they are repeatable. Monte
Carlo simulations are performed to demonstrate the superior effi-
cacy and computational efficiency of the proposed two algorithms
over some existing benchmark endmember extraction algorithms.

Index Terms— Hyperspectral images, Endmember extraction,
Pure pixels, Endmember identifiability

1. INTRODUCTION
Hyperspectral unmixing (HU) is a process of extracting endmember
signatures and their corresponding abundance maps from the mea-
sured hyperspectral images, over a scene of interest [1]. Existing
HU algorithms can basically be classified into two groups, one fo-
cusing on pure pixels (pixels in the observed hyperspectral data, that
are contributed by a single endmember only) and the other with-
out relying on pure pixels. Based on the linear mixing model (to
be discussed later), identifying those pure pixels in the data cloud
will directly yield the endmember signatures. Thus, the pure-pixel
based algorithms aim to find the pure pixels in the given observa-
tions, and thus can only estimate the endmember signatures. Hence,
those algorithms are aptly called as endmember extraction (EE) al-
gorithms, and they are the ones considered in this work. EE algo-
rithms currently available in the literature, include pixel purity index
(PPI) [2], N-finder (N-FINDR) [3], convex cone analysis (CCA) [4],
simplex growing algorithm (SGA) [5] [6], vertex component analy-
sis (VCA) [7], and alternating volume maximization (AVMAX) [8],
to name a few. Once the pure pixels (endmember signatures) are
identified by EE algorithms, the corresponding abundance estimates
can be obtained by using the fully constrained least squares (FCLS)
algorithm [9].

Some issues associated with the above mentioned algorithms are
discussed next. Firstly, for noisy observations, EE algorithms such
as PPI, N-FINDR, and VCA are sensitive to initialization and hence
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are not repeatable [5]. Secondly, though the computational com-
plexity of EE algorithms is generally lower when compared to that
of HU algorithms without relying on the pure pixels, it increases
with the number of pixels and the number of endmembers present in
the given hyperspectral data. Hence, a computationally efficient EE
algorithm will always be preferred for real-time analysis of hyper-
spectral data. More importantly, rigorous theoretical proofs for the
endmember identifiability of the above mentioned algorithms (ex-
cept for AVMAX) are yet to be investigated.

The prime focus of this work is to propose reliable, repeatable
and computationally efficient pure-pixel based algorithms for end-
member extraction, along with a theoretical guarantee for their end-
member identifiability. In this regard, we propose two endmem-
ber extraction algorithms, namely simplex estimation by projection
(SIMPLE-Pro) and p-norm based pure pixel identification (TRI-P,
abbreviated for Triple-P). As in the aforementioned EE algorithms,
we begin with the linear mixing model for HU [2–8]. In our first
algorithm (SIMPLE-Pro), the principle is to project the data onto a
vector orthogonal to the affine hull of already found endmember sig-
natures. The index corresponding to the minimum of the projected
values yields a new pure pixel. In the second algorithm (TRI-P), the
data are projected onto a subspace orthogonal to already found end-
member signatures, and maximum p-norm is used to identify a new
pure pixel. In both algorithms, prior to endmember extraction, the
affine set fitting procedure [10] is used for dimension reduction, and
then maximum p-norm is used to find the first endmember signature.

The notations used in this paper are briefed as follows: R
M and

R
M×N represent the set of realM ×1 vectors andM ×N matrices,
respectively, 1N represents the N × 1 all-one vector, and IN is the
N ×N identity matrix. The symbol ‖ ·‖p represents the p-norm and
Q† stands for Moore-Penrose pseudo-inverse of matrixQ.

2. LINEAR MIXINGMODEL
Consider a scenario in which a hyperspectral sensor withM spectral
bands measures solar electromagnetic radiations reflecting from N
distinct substances, over a scene of interest. Due to low spatial res-
olution, each pixel vector of the measured hyperspectral image cube
can be described by anM × N linear mixing model [1, 3, 7]:

x[n] = As[n] =

N�

i=1

si[n]ai, ∀n = 1, . . . , L, (1)

where M is the number of spectral bands and N is the num-
ber of endmembers present in the scene. Further, x[n] =
[ x1[n], . . . , xM [n] ]T is the nth pixel vector in the hyperspectral
observation, A = [ a1, . . . , aN ] ∈ R

M×N denotes the endmember
signature matrix whose ith column vector ai is the ith endmember
signature (or simply endmember), s[n] = [ s1[n], . . . , sN [n] ]T ∈
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R
N is the nth abundance vector comprisingN fractional abundances
and L is the total number of observed pixel vectors.

EE algorithms aim to estimate the endmember signature matrix
A from the observed hyperspectral pixel vectors (or simply pixels)
x[1], . . . ,x[L], assuming that N is known a priori. The following
are the general assumptions in HU:
(A1) (Non-negativity condition) si[n] ≥ 0 ∀i, n.

(A2) (Full additivity condition) � N

i=1 si[n] = 1 ∀n.
(A3) min{L, M} ≥ N andA is of full column rank.
(A4) (Pure pixel assumption) There exists an index set

{l1, l2, . . . , lN}, such that x[li] = ai, for i = 1, . . . , N .

3. DIMENSION REDUCTION
Like many other HU algorithms [1], we begin with dimension reduc-
tion of the observed pixels. The affine set fitting procedure in [10] is
utilized for dimension reduction. The dimension-reduced pixel vec-
tors x̃[n] are obtained by the following affine transformation of x[n]:

x̃[n] = C
T (x[n] − d) ∈ R

N−1, (2)
where (C,d) is the affine set fitting solution given by

d =
1

L

L�
n=1

x[n], (3)

C = [ q1(UU
T ), q2(UU

T ), . . . , qN−1(UU
T ) ], (4)

in whichU = [ x[1] − d, . . . ,x[L] − d ] ∈ R
M×L, and qi(UUT )

denotes the unit-norm eigenvector associated with the ith principal
eigenvalue of the matrixUUT . Further, due to (A2), and by substi-
tuting the signal model (1) into (2), we have

x̃[n] =

N�
j=1

sj [n]αj , (5)

where
αj = C

T (aj − d) ∈ R
N−1 (6)

is the jth dimension-reduced endmember, by finding which, the cor-
responding aj can be obtained by aj = Cαj + d,∀j [10]. Also, it
follows from (5) that under (A4),

x̃[li] = αi, ∀i, (7)

and x̃[n] lies in the simplex [11] formed by α1, . . . , αN [10].

4. SIMPLEX ESTIMATION BY PROJECTION
In this section, let us present the new EE algorithm, SIMPLE-Pro.
We begin by considering the p-norm of the dimension-reduced data
cloud X̃ = [ x̃[1], . . . , x̃[L] ]. By the triangle inequality, (A1), and
(A2), one can infer from (5) that for all n,

‖x̃[n]‖p ≤

N�
i=1

si[n]‖αi‖p ≤ max
i=1,...,N

{‖αi‖p}, (8)

where p ≥ 1. The inequality in (8) holds with equality if and only if
n = li (a pure pixel index) for any i ∈ arg maxk=1,...,N{‖αk‖p}
(by (7)). Thus, a dimension-reduced endmember can be identified as
stated in the following lemma:

Lemma 1. Under (A1)-(A4), a dimension-reduced endmember can
be identified by

αi = x̃[li], (9)
for any li ∈ arg maxn=1,...,L{‖x̃[n]‖p}.

α1

(0, 0)

α2

d�

x̃[n]

yTd� = 0

x̃[n]Td�

α3 = x̃[l3], l3 ∈ arg minn{x̃[n]Td�}

Fig. 1. Illustration of SIMPLE-Pro for N = 3. Assume that α1 and
α2 have been found. The vector d� is orthogonal to the affine hull of
α1 and α2 and the third endmember is found as α3 = x̃[l3], where
l3 ∈ arg minn=1,...,L{x̃[n]T d�}.

Now, suppose that the dimension-reduced endmembers
α1, . . . , αk (where k < N ) are already identified. To find the other
endmembers, we consider the following optimization problem:

min
d∈RN−1

‖d‖2
2 (10)

s.t. d ∈ aff{α1, . . . , αk},

where aff{α1, . . . , αk} is the affine hull of {α1, . . . , αk}, defined
as [11]

aff{α1, . . . , αk} = � x =

k�
i=1

θiαi ����
1

T
k θ = 1, θ ∈ R

k � , (11)

in which θ = [θ1, . . . , θk]T . Note that (10) is a quadratic convex
problem, and it can be easily shown that its closed-form solution is:

d
� = (I − BB

†)αk = P
⊥
Bαk, (12)

whereB = [α1 − αk, . . . , αk−1 − αk] ∈ R
(N−1)×(k−1) and P⊥

B

is the orthogonal complement projector of B. By projecting all the
dimension-reduced data onto d�, and by (A1) and (A2), we have

x̃[n]T d
� =

N�
i=1

si[n]αT
i d

� ≥ min
i=1,...,N

{αT
i d

�}, (13)

and the inequality in (13) holds with equality if and only if n = lz
for any z ∈ arg mini{α

T
i d�}. The (k + 1)th dimension-reduced

endmember can then be found as αk+1 = x̃[lz] where

lz ∈ arg min
n=1,...,L

{x̃[n]T d
�}. (14)

The above procedure is illustrated in Figure 1, for the N = 3 case.
Next, in the following lemma we show that x̃[lz] is different from
those endmember estimates already found.

Lemma 2. Suppose that {α1, . . . , αk} is the set of endmembers
already found and d� is obtained by (12). Then, under (A1)-(A4),
x̃[lz] ∈ {αk+1, ..., αN} for any lz ∈ arg minn=1,...,L{x̃[n]T d�}.

Proof: It is well known that the projector P⊥
B satisfies P⊥

BB = 0,
implying

P
⊥
B(αq − αk) = 0, q = 1, . . . , k − 1. (15)

1370



It follows that P⊥
Bαk = P⊥

Bαq, q = 1, . . . , k − 1. By pre-
multiplying by αT

q on both sides, we get

α
T
q P

⊥
Bαk = α

T
q P

⊥
Bαq, q = 1, . . . , k − 1. (16)

Since the projector P⊥
B is positive semi-definite; i.e., αT

q P⊥
Bαq ≥

0, we have

α
T
q d

� = α
T
q P

⊥
Bαq ≥ 0, q = 1, . . . , k − 1. (17)

Moreover, it is straightforward to see from (12) thatαT
k d� ≥ 0. Due

to the nature of {x̃[n]}L
n=1, which is centered at the origin, there

exists at least one vector in {x̃[n]}L
n=1 such that x̃[n]T d� < 0. This

can also be justified by the fact that there exists pixel vectors on
either side of the hyperplane {y ∈ R

N−1 | yT d� = 0}. Therefore
(14) will never yield an index that was already identified; i.e., the
new index lz �∈ {l1, . . . , lk} and further, due to (13), the obtained
index must be a pure pixel index. Thus x̃[lz] ∈ {αk+1, ..., αN}. �

By repeating the above procedure for k = 1, . . . , N − 1, all
the dimension-reduced endmembers can be identified. The resulting
EE algorithm is the SIMPLE-Pro algorithm, which is summarized in
Table 1.

Table 1. Simplex estimation by projection (SIMPLE-Pro) algorithm.

Given dimension-reduced observations x̃[n], and the number of
endmembers N .

Step 1. Find l1 ∈ arg maxn{‖x̃[n]‖p}. Set α1 = x̃[l1] and
k = 1.

Step 2. Define the matrix B = [α1 − αk, . . . , αk−1 − αk] and
find the vector d� as given by (12).

Step 3. Update k := k + 1 and then obtain αk = x̃[lk] for any
lk ∈ arg minn=1,...,L{x̃[n]T d�}.

Step 4. Go to Step 2 until k = N − 1.

Step 5. Output the dimension-reduced endmember estimates
α1, ..., αN .

5. P -NORM BASED PURE PIXEL IDENTIFICATION
In this section, we present yet another EE algorithm namely the TRI-
P algorithm to find the dimension-reduced endmembers. Unlike the
previous EE algorithm, here we begin by incorporating the assump-
tion (A2) in (5) so that we have the following augmented dimension-
reduced data:

x̄[n] = � x̃[n]
1 � =

N�
i=1

si[n]ᾱi ∈ R
N , (18)

where ᾱi = [αT
i 1]T , i = 1, . . . , N are the augmented dimension-

reduced endmembers. As in SIMPLE-Pro, following the steps
leading to Lemma 1, one can show that a pure pixel index
(and therefore an endmember) can be perfectly identified from
arg maxn=1,...,L{‖x̄[n]‖p}, under (A1)-(A4) (see (8)).

Suppose that ᾱi is already found. To find a new endmember
different from ᾱi, we consider the following subspace projection:

x[n] = P
⊥
ᾱi

x̄[n] =
N�

k=1,k �=i

sk[n]P⊥
ᾱi

ᾱk,∀n, (19)

whereP⊥
ᾱi

= IN −ᾱi(ᾱ
T
i ᾱi)

−1ᾱT
i is the orthogonal complement

projector of ᾱi. Then, a new dimension-reduced endmember can be
identified as stated in the following lemma:

ᾱ1

(0, 0)

ᾱ2

x̄[n]

x[n]

P⊥
ᾱ1

ᾱ1 = 0

Fig. 2. Illustration of TRI-P for N = 2. Assume that ᾱ1 has been
found. ᾱ2 = x̄[l2], where l2 ∈ arg maxn=1,...,L{‖x[n]‖p}, and
x[n] is given by (19).

Lemma 3. Suppose that ᾱi has been found. Then, under (A1)-
(A4), a new dimension-reduced endmember can be identified by

αj = x̃[lj ] (20)

for any lj ∈ arg maxn=1,...,L‖P
⊥
ᾱi

x̄[n]‖p and αj �= αi.

Proof: By the triangle inequality, (A1), (A2), and (18), we have

‖P⊥
ᾱi

x̄[n]‖p ≤
�
k �=i

sk[n]‖P⊥
ᾱi

ᾱk‖p ≤ max
k �=i

{‖P⊥
ᾱi

ᾱk‖p}. (21)

The inequality in (21) holds with equality if and only if n = lj
for any j ∈ arg maxk �=i {‖P⊥

ᾱi
ᾱk‖p}. So one can find a

new dimension-reduced endmember αj = x̃[lj ] for any lj ∈
arg maxn=1,...,L{‖P

⊥
ᾱi

x̄[n]‖p} and αj �= αi. �

To find the next dimension-reduced endmember, the projected
data x[n] is again projected onto to a subspace orthogonal to the
previously found endmember; P⊥

ᾱj
x[n]. Then by Lemma 3, one

can identify another new dimension-reduced endmember. The pro-
cedure is repeated until all theN endmembers are found. The above
endmember estimation methodology is the TRI-P algorithm which
is summarized in Table 2. Figure 2 illustrates the idea of TRI-P for
the N = 2 case.

Table 2. p-norm based pure pixel (TRI-P) algorithm.

Given dimension-reduced observations x̃[n], x̄[n] given by (18),
and no. of endmembers N . Set i = 1 and x[n] = x̄[n].

Step 1. Obtain ᾱi = x[li] for any li ∈ arg maxn{‖x[n]‖p}.
Step 2. Calculate P⊥

ᾱi
= IN − ᾱi(ᾱ

T
i ᾱi)

−1ᾱT
i , and update

x[n] := P⊥
ᾱi

x[n].
Step 3. Update i := i + 1, and go to Step 1 if i ≤ N .
Step 4. Output x̃[l1], ..., x̃[lN ] as the estimates of α1, ..., αN .

Remarks: Existing pure-pixel based EE algorithms such as PPI,
VCA, N-FINDR and SGA require initializations. For both of the
proposed algorithms SIMPLE-Pro and TRI-P, there is no need of
any initialization, and hence they are repeatable. While both TRI-P
algorithm and VCA [7] involve the notion of orthogonal complement
projections, there exists a subtle algorithmic difference between the
two: VCA involves some sort of random vector projection in end-
member estimation, but there is no randomness involved in TRI-P.

1371



Table 3. Average φen (degrees) and average computation time Tc (secs) over the various EE methods for different purity levels (ρ) and SNRs.

Methods ρ
φen (degrees)

Tc (secs)SNR (dB)
0 5 10 15 20 25 30 35 40

N-FINDR
0.6 19.61 14.95 11.13 9.14 8.41 8.42 8.57 8.53 8.60
0.8 19.08 14.49 10.39 8.03 6.51 6.31 5.31 5.25 5.25 3.61
1 19.06 14.42 10.55 8.02 5.47 2.93 1.38 0.85 0.53

VCA
0.6 19.34 14.75 10.84 8.74 8.00 7.71 8.32 9.13 9.19
0.8 18.94 14.14 10.24 7.87 6.61 5.92 8.01 7.60 7.12 0.66
1 18.83 14.14 10.15 8.03 5.86 3.72 8.49 7.56 6.25

SGA
0.6 18.77 14.16 10.68 8.69 7.83 7.74 7.72 7.58 7.61
0.8 18.30 13.89 10.12 7.77 6.72 6.09 5.62 5.49 5.37 0.35
1 18.40 13.93 10.20 8.02 6.09 3.37 1.24 0.75 0.41

SIMPLE-Pro
0.6 19.09 14.27 10.58 8.63 7.89 7.92 7.83 7.65 7.63
0.8 18.49 13.63 10.18 7.78 6.50 6.25 5.74 5.67 5.48 0.21
1 18.34 13.74 10.07 7.99 5.93 3.63 1.32 0.79 0.47
0.6 19.98 14.77 10.99 8.45 7.92 7.79 7.66 7.77 7.74

TRI-P 0.8 19.42 14.35 10.11 7.79 6.41 5.70 5.14 4.78 4.54 0.22
(p = 2) 1 19.40 14.53 10.25 7.69 5.68 3.19 1.13 0.63 0.36

6. SIMULATIONS AND CONCLUSIONS

The performance evaluation of the proposed two EE algorithms,
SIMPLE-Pro and TRI-P (with p = 2), by simulation is presented
in this section. Other EE algorithms that are compared are N-
FINDR, VCA, and SGA. The root-mean-square (rms) spectral angle
φen [7,10] between the true and the estimated endmember signatures
is used as the performance index. In the simulations the number of
endmembers is 12 (N = 12) and the number of observed pixels is
1000 (L = 1000). The endmember signatures are chosen from the
USGS library [12], and it has 224 bands (M = 224). In each run,
1000 noise-free observed pixel vectors were synthetically generated
following the signal model in (1), and the abundance vectors s[n]
were generated following Dirichlet distribution (as in [7]), for dif-
ferent purity levels ρ [10]. The noisy data were generated by adding
independent and identically distributed zero-mean Gaussian noise to
the noise-free data for different signal-to-noise ratios (SNRs), where
SNR= � L

n=1 ‖x[n]‖2
2/MLσ2 and σ2 is the noise variance. For

each scenario 100 independent runs are performed and the average
φen (over 100 runs) and the average computation time Tc (over all
the scenarios under consideration) of each algorithm (implemented
in Matlab R2008a and running in a desktop computer equipped with
Dual Core CPU 2.80 GHz, 2 GB memory) are calculated, for differ-
ent purity levels (ρ = 0.6, 0.8, 1) and SNRs ranging from 0 dB to
40 dB, in steps of 5 dB.

The obtained simulation results are shown in Table 3. The bold-
faced numbers in Table 3 correspond to the minimum rms spectral
angle for a specific pair of (ρ, SNR), over all the algorithms under
test. It can be observed from Table 3 that although the performances
of all the EE algorithms are competitive, SIMPLE-Pro and TRI-P
still outperform the other algorithms in most of the scenarios. On
the other hand, the average computation times (Tcs) for SIMPLE-
Pro and TRI-P are almost the same and they are about 17 times, 3
times and 1.5 times smaller than that of N-FINDR, VCA, and SGA,
respectively. These simulation results demonstrate the efficacy and
computational efficiency of the proposed two EE algorithms.

In summary, we have presented two effective and computation-
ally efficient EE algorithms namely, SIMPLE-Pro and TRI-P and
we have theoretically proved their endmember identifiability under
the assumptions (A1)-(A4). It is shown via simulations that either

SIMPLE-Pro or TRI-P yields the best performance in most of the
scenarios under consideration, and the computational complexities
of SIMPLE-Pro and TRI-P are lower than some existing benchmark
EE algorithms. The application of SIMPLE-Pro and TRI-P algo-
rithms to real hyperspectral data is currently under investigation.
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