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Abstract—Angle-of-arrivals (AoAs) estimation is one of the key
tasks of localization in massive multiple-input-multiple-output
(MIMO) system. Among all AoAs estimation methods, the class of
deep learning (DL) based methods has been recognized effective
with high estimation accuracy and low complexity. However, the
design for methods in this class requires obtaining adequate
labeled training data and training a specific network for each
of different channels in MIMO system, which is challenging and
costly. To overcome this bottleneck, a transfer learning method is
proposed in this paper based on the assumption that some com-
mon features exist among different channel models. The proposed
method is implemented by a deep residual network (ResNet)
composed of transfer layers (to extract the common features)
followed by fine-tuning layers (to extract other characteristic
features) in cascade, thus without need of a specific network
for each different channel. As a realization of the proposed
framework, the ResNet is trained on the data from the source
domain (i.e. the “basic” channel model) to obtain the weights of
transfer layers (fixed thereafter), which are used to initialize the
fine-tuning layers. Then, small amounts of data from the target
domain (i.e., a more sophisticated channel model like spatial
channel model), are used to adjust the weights of fine-tuning
layers. Finally, extensive simulation results demonstrate that the
AoAs estimation accuracy of the proposed method is comparable
to that of supervised DL-based methods, for which a specific
trained network is required for each channel.

Index Terms—Angle of Arrival, Massive MIMO, Deep Learn-
ing, Transfer Learning, Spatial Channel Model.

I. INTRODUCTION

Massive multiple-input-multiple-output (MIMO) is one of
the vital technologies in fifth generation (5G) and beyond
wireless communication systems. As a key task of localiza-
tion in any massive MIMO system, angle-of-arrivals (AoAs)
estimation has aroused great attention in the past decades.
However, there are still challenges in accurate AoAs esti-
mation, arising from sophisticated channel modeling, high
computational complexity due to a large number of antennas
applied, etc.

The classic methods for AoAs estimation in MIMO sys-
tem are subspace-based estimation methods, dating back to
some classic algorithms such as MUltiple SIgnal Classifi-
cation (MUSIC) [1] and Estimation of Signal Parameters
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via Rotational Invariant Techniques (ESPRIT) [2]. In recent
years, some further development of subspace-based methods
emerged, such as the algorithms with special antenna array
configurations [3], methods used in millimeter wave massive
MIMO (mmMIMO) system [4], etc. However, due to the
eigendecomposition of high-dimensional channel covariance
matrices in massive MIMO system, they may suffer from high
computational complexity.

Another class of methods based on compressed sensing
(CS) was proposed to reduce the computational complexity.
Such methods usually formulate the AoAs estimation as op-
timization problems, then reformulate them into semi-definite
programs, and then solve them by interior-point method. Some
excellent works have been proposed by using the alternating
direction method of multipliers [5], and some have been ex-
tended to arbitrary antenna array [6]. However, these methods
are based on some strict assumptions on the sparsity of the
wireless channels and/or the structure of the received signals,
so making it hard applied to more general channel models.

The recent development of machine learning has spurred
the applications of deep learning (DL) to AoAs estimation.
In general, DL-based methods can be categorized into “data-
driven” methods [7] and “model-driven” methods [8]. The
former follows the end-to-end principle and trains the networks
on a large number of labeled training data [9]. In contrast,
model-driven methods exploit the established physical models
and properties of signal propagation in wireless channel,
such as combining the DL with the subspace-based methods
[10], applying DL to CS-based algorithm [11], etc. Compared
with other classic methods, DL-based methods shift main
computation tasks to the training stage for low complexity
during deployment. However, it must train a specific network
for each channel scenario (or proper channel model) which is
costly and impractical with limited labeled training data.

To our best knowledge, our work is the first by combining
transfer learning with AoAs estimation across various channel
models in massive MIMO system. Similar to DL-based meth-
ods, our framework has low computational complexity during
deployment, and can be applied to more general scenarios.
Based on the key assumption that channel models used for
AoAs estimation in different scenarios share some common
features, the proposed framework requires only one network
(transfer layers), followed by fine-tuning layers for AoAs esti-
mation, and hence overcomes the above-mentioned bottleneck
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issue of the DL-based methods. Compared with the existing
transfer learning works used in wireless communications [12],
the channel models in the source domain are different from
those in the target domain. Specifically, the framework is
trained by the data from a “basic” simulation channel model
in the source domain, while the final estimation is made on a
sophisticated channel from the protocol, i.e., spatial channel
model (SCM) [13].

II. SYSTEM MODEL

In this paper, two different channel types in massive MIMO
uplink systems are considered as source and target domain,
respectively. For the source domain, a “basic” channel is
modeled which consists of one base station (BS) and K mobile
stations (MSs). The BS is equipped with a uniform linear
array (ULA) of Nr antenna elements, and each MS equipment
has one antenna. The MSs are assumed to be stationary (zero
mobile speed) for T time slots, during which the BS collects
T snapshots of the received signals to estimate the MSs’
locations. Each MS k’s location is specified by the distance
to the BS and the AoA θk ∈ [−π

2 ,
π
2 ]. MS k’s AoA θk is

the impinging direction of the received signal, relative to the
broadside of the BS’s antenna array (i.e., perpendicular to the
antenna array). Given the AoA θk, MS k’s signal experiences
different phase shifts across the antenna array, as characterized
by the array response vector

a(θk) =
[
1, ej

2πds
λ sin θk , . . . , ej

2πds
λ (Nr−1)sin θk

]T
, (1)

where λ is the wavelength and ds ≥ λ
2 is the inter-element

distance (in meters) of BS antenna array.
MS k’s signal is also attenuated due to the slow fading chan-

nel in the source domain. The vector of channel gains from
the K MSs to the BS is denoted by h = α⊙ ejψ , where “⊙”
denotes the component-wise product of two vectors with the
same dimension, α = [α1, α2, . . . , αK ]

T ∈ RK is the vector
of path gains and ψ = [ψ1, ψ2, . . . , ψK ]

T ∈ RK . We assume
that h is Gaussian distributed, namely h ∼ CN (µh,Σh).
Then, the source-domain channel response matrix H(s) ∈
CNr×K can be represented as[

H(s)
]
:,k

= αke
jψk ·

[
1, . . . , ej

2πds
λ (Nr−1)sin (θk)

]T
, (2)

where [·]:,k means the elements of the kth column in the
matrix and the superscript ‘T ’ means the transpose of vector
or matrix. Moreover, following the literature [14], [15], the
channel gains and AoAs are assumed to be independent of
each other.

Based on the “basic” model, the source-domain received
signals during the T snapshots, denoted by Y (s) ∈ CNr×T ,
can be written as

Y (s) =H(s)X(s) +W , (3)

where X(s) =
[
x
(s)
1 ,x

(s)
2 , . . . ,x

(s)
T

]
∈ CK×T collects the

K transmitted signals respectively from the K MSs, and
W = [ω1,ω2, . . . ,ωT ] ∈ CNr×T is the complex circular

Fig. 1: Illustration of the SCM for urban micro-cell environ-
ments with LoS path.

symmetric white Gaussian noise with ωt ∼ CN (0, σ2INr )
for t = 1, . . . , T .

For the target domain, the signal propagation model can be
modeled as the SCM for urban micro-cell environments with
one BS and K MSs. The BS is still equipped with a ULA of
Nr antennas, while each MS equipment has Nt ULA antennas.
The channel between each MS and the BS is depicted in
Fig. 1. We assume that the SCM consists of N path clusters,
including line-of-sight (LoS) path. For each path cluster, there
are M sub-paths with the offset AoAs ∆n,m,AoA and angle-
of-departures (AoDs) ∆n,m,AoD, whose values are taken from
[13]. The AoA for the LoS component θBS is defined as the
angle between the LoS path direction and the array broadside,
so is the AoD for the LoS component θMS . The N AoDs (in
degrees) are independent identically distributed (i.i.d.) uniform
random variables δn,AoD ∼ U(−40, 40), n = 1, . . . , N ,
while the associated N AoAs (in degrees) are i.i.d. Gaussian
random variables δn,AoA ∼ N (0, σ2

n,AoA), where σn,AoA =

104.12(1− e−0.265|10 ln (Pn)|) and Pn is the relative power of
the nth path cluster. The power of each path cluster can be
expressed as P

′

n = 10−(τn+zn/10), where τn ∼ U(0, 1.2) is
the random delays (in microseconds) and zn ∼ N (0, σ2

zn) is a
Gaussian random variable with σzn = 3dB. Thus the relative
power is given by

Pn =
P

′

n

(ρ+ 1)
∑N
n=1 P

′
n

, (4)

where ρ = 13−0.03d is the power ratio of LoS to the scattered
paths in dB [16], and d is the distance between MS and BS
in meters. Note that the mobility of each MS (with velocity
vector v shown in Fig. 1) is also taken into consideration in
the target domain.

Thus, for the target domain, the Nr ×Nt channel response
matrix can be denoted as[

H(t)
n (t)

]
i,l

=

√
1

ρ+ 1
[Hn(t)]i,l (5)

+ I(n = 1)

√
ρσ2

SF

ρ+ 1


√
GBS(θBS)e

j
2πds(i−1)

λ sin(θBS)×√
GMS(θMS)e

j
2πdu(l−1)

λ sin(θMS)×
ej

2π
λ ∥v∥cos((θMS−θv)t)ejϕLoS

 ,

where I(n = 1) is the indicator function (taking value of n = 1
(LoS path) and zero otherwise), v = ∥v∥ejθv is the velocity
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of the MS, σSF (4dB) is the log-normal shadowing standard
deviation, ds (du) is the inter-element distance of BS (MS)
antenna array, and

[Hn(t)]i,l =

√
PnσSF
M

(6)

·
M∑
m=1


√
GBS(θn,m,AoA)e

j
2πds(i−1)

λ sin(θn,m,AoA)×√
GMS(θn,m,AoD)e

j
2πdu(l−1)

λ sin(θn,m,AoD)×
ej

2π
λ ∥v∥cos((θn,m,AoD−θv)t)ejϕn,m

 ,

where ϕn,m is the angle of the mth sub-path in the path-cluster
n. For each and every antenna element at the MS, the antenna
pattern is assumed omnidirectional with an antenna gain of
−1 dBi, i.e., GMS(θ) = 1. While for each and every antenna
element at the BS, the 6-sector antenna pattern is used

GBS(θ) = 10
−0.1·

(
min

[
12

(
θ

θ3dB

)2
,Am

])
. (7)

where θ3dB = 35◦ and Am = 20dB.
Based on the SCM, the target-domain received signals are

Y (t) =
[
y(t)(1),y(t)(2), . . . ,y(t)(T )

]
∈ CNr×T , where

y(t)(t) =

N∑
n=1

H(t)
n (t)x(t)

n (t− τn) + ωt, (8)

in which x(t)
n (t) ∈ CNt is the transmitted signal in the nth path

from the MS, and ωt is the Gaussian noise defined above.
Let us conclude this section with some notes about the

received signals given by (3) in the source domain and that (8)
in the target domain as follows. Since each MS has only one
antenna Nt = 1 and multiple path clusters are not considered
for the former, the transmitted signal from all K MSs can
be expressed as a matrix X(s) ∈ CK×T in (3), while the
transmitted signal in (8) applies to each of the K MSs.

III. TRANSFER LEARNING-BASED AOAS ESTIMATION
FRAMEWORK

The aim of this paper is to estimate the AoA for the
direct component θBS of each MS, based on the received
signals Y (t) in the target domain. Note that the target domain
channel response matrix changes due to the different nature
of each MS, e.g., the number of antennas Nt, the mobility v,
etc. The proposed framework allows the designed network to
adapt itself to different scenarios AoAs estimation. Next, an
overview of our framework and high-level design principles
are provided, then followed by presentation in detail.

A. Overview and Design Principles

In the proposed framework, the autocorrelation matrix of
the received signals are used as the inputs of the network,
which are defined asR

(s)
Y Y = E

[
Y (s)(Y (s))H

]
R

(t)
Y Y = E

[
Y (t)(Y (t))H

] , (9)

where the superscript ‘H’ means the conjugate transpose.
According to [17], the source/target domain can be defined

as D(∗) =
{
R(∗)
Y Y , P (R

(∗)
Y Y )

}
, where R(∗)

Y Y denotes the

feature space and P (R(∗)
Y Y ) is the marginal probability density

function with R(∗)
Y Y ∈ R(∗)

Y Y . Correspondingly, the goal of
the proposed transfer learning framework is to come up with
the set by T ≜

{
Θ, P (θ|R(∗)

Y Y )
}

, where Θ denotes the

label space and P (θ|R(∗)
Y Y ) is the posterior probability density

function with θ ∈ Θ.
As presented in Section II, let us emphasize that the AoA

(θk) for MS k at the BS for the source model is actually the
same as θBS (LoS path angle) for the target model for MS
k, thereby disclosing some common features (through their
array response vectors) shared by the two channel models.
Therefore, we come up with an important conjecture that
both domains share some common features for AoAs esti-
mation, thereby providing the assumption for the design of
the proposed framework and its validity to be justified by
experimental results later.

As a result, a canonical approach of transfer learning is
considered that uses some layers to learn the common features
of both domains while the other layers are used to extract other
features. Thus, the proposed framework can be divided into
transfer layers (TL) and fine-tuning layers (FL). The former
is used to learn the common features of both domains, while
the latter is used to extract the other characteristic features.

Mathematically, we can model the TL as a function gTLθ (·),
and the FL as gFL

θ(s)(·) and gFL
θ(t)(·) for source-domain and

target-domain AoAs estimation, respectively. On this base, the
common features of both domain channels can be extracted
via gTLθ (R

(∗)
Y Y ) and fed into the FL. As a result, the network

parameters estimation of the target domain can be composedly
expressed as

θ̂(t) = gFLθ(t)(g
TL
θ (R

(t)
Y Y )). (10)

In order to make sure that θ̂(t) → θ(t), where “→” means
“approaches to”, the weights of the proposed framework
should be updated so as to achieve gFL

θ(t)(g
TL
θ (R

(t)
Y Y )) →

P ∗(θ|R(t)
Y Y ), where P ∗(θ|R(t)

Y Y ) is the optimal posterior
probability density function.

B. Implementation of Proposed Framework

Figure 2 shows a detailed architecture flowchart of the
proposed transfer learning framework, where a deep residual
network-18 (ResNet-18) is used as its backbone. The TL
consists of residual connection blocks of the ResNet, while the
FL consists of fully connected layers. In order to reduce the
possibility of overfitting in the source domain and to smoothly
operate in the target domain, a dropout layer is inserted into
each of two layers in FL.

In the proposed framework, the number of labeled training
data in the source domain is assumed ten times that in the
target domain. To be addressed in Section III, training the
specific network for each channel with limited training data
is difficult. Hence, it is important to pre-train the proposed
framework with labeled training data in the source domain.
In the pre-training phase, the data in the source domain is
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Fig. 2: Illustration of the proposed transfer learning framework.

divided into training data and validation data, and the output
θ̂(s) is used to evaluate the pre-training of the network. Thus,
the weights of the network is updated to minimize the loss
function as follows:

L(s) = E
[
∥θ(s) − θ̂(s)∥22

]
, (11)

where ∥ · ∥2 stands for ℓ2-norm of vectors and the network is
evaluated by the validation data.

Since the channel model and the marginal distribution of
the data are different for each of the two domains, the pre-
trained network cannot be used directly in the target domain.
It is necessary to fine-tune the weights of the network by a
few labeled training data in the target domain for the domain
adaptation. In the proposed framework, since the TL is to
extract the common features of both domains, the weights
of TL are fixed after the pre-training. Thus, we fine-tune the
weights of the FL with a few labeled training data in the target
domain with a fine-tuning loss function as follows:

L(t) = E
[
∥θ(t) − θ̂(t)∥22

]
. (12)

IV. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the pro-
posed framework and compare with some benchmark methods.
Different scenarios such as the mobility, the antenna array
configuration, will be taken into consideration to demonstrate
the high domain adaptability of the proposed framework. We
compare the estimation accuracy of the proposed framework
with the canonical MUSIC algorithm [1] and the supervised
DL-based estimation method. The architecture of the latter is
also used in the proposed framework. In order to extract the

latent information of the sophisticated channel in the target
domain, the residual connections are considered to build a deep
network without vanishing/exploding gradient, i.e., ResNet-18.
The performances of the proposed framework in the following
figure will be marked as “Ours”, together with those of the
MUSIC algorithm as “MUSIC” and the supervised DL-based
estimation method as “Supervised”.

We set the number of MSs K = 2, the number of snapshots
T = 32, the number of BS antennas Nr = 32, the number
of MS antennas Nt = 1 and the antenna spacing for both BS
and MS as ds = du = λ/2, unless clearly re-specified. The
neural network is trained by the adaptive moment estimation
algorithm with a fixed learning rate of 10−4. The batch size
of the input data is 128. The source-domain training data set
includes 40960 samples and the validation data set has 10240
samples, while in the target domain, there are 5120 samples
for both labeled fine-tuning data set and unlabeled test data
set. The maximum number of the pre-training epochs is set to
100 while that for the fine-tuning phase is set to 50, and the
network is trained for SNR values between 0dB and 20dB
separately

A. Performance Comparison
We first evaluate the performance of the proposed frame-

work, for which all the parameters of the SCM in the target
domain are the same as those of the “basic” channel in the
source domain.

Figure 3 shows the mean squared error (MSE) of the AoAs
estimation in the target domain. It can be seen from this figure
that all the methods under test perform better for fewer MSs,
and the MUSIC performs best for the case of one MS. The
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0 2 4 6 8 10 12 14 16 18 20

SNR / dB

10-5

10-4

10-3

10-2

M
S

E

MUSIC-1MS

MUSIC-2MS

MUSIC-3MS

Supervised-1MS

Supervised-2MS

Supervised-3MS

Ours-1MS

Ours-2MS

Ours-3MS

Fig. 3: Performance (MSE versus SNR) comparison of the
proposed framework, the MUSIC algorithm and the supervised
learning method, with SNRs of the received signals following
the uniform distribution U(0, 20)

in dB used in the pre-training, and all the MSs assumed
stationary.

0 2 4 6 8 10 12 14 16 18 20

SNR / dB

10-4

10-3

10-2

M
S

E

MUSIC-2MS

MUSIC-3MS

Supervised-2MS

Supervised-3MS

Ours-2MS-w/o FT

Ours-3MS-w/o FT

Ours-2MS

Ours-3MS

Fig. 4: Performance (MSE versus SNR) comparison of the
proposed framework (for which “w/o FT” means “without the
fine-tuning phase”), the MUSIC algorithm and the supervised
learning method.

MUSIC, in spite of the best performance for the single MS
case, performs significantly worse than both the supervised
DL-based method and the proposed framework due to the non-
ignorable cross channel correlation and interference between
MSs. These results also demonstrate the best performance of
the proposed framework, including its higher robustness to the
number of MSs.

To show the impact of the-tuning layers on the performance
of the proposed framework, some simulation results are shown
in Fig. 4. Again, as observed from Fig. 3, all the methods under

0 2 4 6 8 10 12 14 16 18 20

SNR / dB

10-4

10-3

10-2

M
S

E

MUSIC-1N
t

MUSIC-4N
t

MUSIC-8N
t

Supervised-1N
t

Supervised-4N
t

Supervised-8N
t

Ours-1N
t

Ours-4N
t

Ours-8N
t

Fig. 5: Performance (MSE versus SNR) comparison of the
proposed framework, the MUSIC algorithm and the supervised
learning method for the number of ULA antennas Nt ∈
{1, 4, 8} of each MS.

test perform better for fewer MSs. An interesting observation,
from Fig. 4, is that the performance of the proposed framework
without applying the fine-tuning is somewhat worse than that
of the supervised DL-based method; however, the former is
significantly better than the latter when the fine-tuning layers
is applied in the target domain. Therefore, these results also
show the powerfulness of the fine-tuning in the extraction of
the common feature in both domains, thereby enabling the pro-
posed framework to well learn in-depth channel information
in addition to robust domain adaptability.

B. Performance Sensitivity Evaluation

Because of the slow fading channel assumed in the source
domain and the target domain, the performance of the pro-
posed method is insensitive to T (the number of snapshots),
we only show some simulation results on the performance
sensitivity of the proposed method to Nt (number of antenna
elements of each MS) and the mobility of MSs.

1) Number of Antennas Nt: It is obvious to see, from (2)
and (5), that the target-domain channel is very different from
the source-domain channel because of the mismatch of AoAs
and AoDs in the SCM.

Figure 5 shows that the MUSIC method and the supervised
DL-based method perform better for larger Nt thanks to larger
diversity gain. However, the mismatch of AoAs and AoDs
implies that the SCM becomes more complicated for larger Nt,
thus leading to some performance degradation. Nevertheless,
the performance of the proposed framework is still comparable
to the supervised DL-based method.

2) Mobility: It can be seen from (5) that the channel
response matrix (the target domain) is also dependent upon the
mobility of the MS, thus having impact on the performance.
Next, we show some simulation results for all the methods
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0 2 4 6 8 10 12 14 16 18 20

SNR / dB

10-4

10-3

10-2

M
S

E

MUSIC-0km/h

MUSIC-5km/h

MUSIC-10km/h

Supervised-0km/h

Supervised-5km/h

Supervised-10km/h

Ours-0km/h

Ours-5km/h

Ours-10km/h

Fig. 6: Performance (MSE versus SNR) comparison of the
proposed framework, the MUSIC algorithm and the supervised
learning method for mobile speeds ∥v∥ ∈ {0, 5, 10} (km/h).

under test only under the low mobility scenario, since they all
fail under the high mobility scenario.

Figure 6 shows the performance simulation results for the
mobile MS with speed ∥v∥ ∈ {0, 5, 10} (km/h). One can see
from this figure that the MUSIC method and the supervised
DL-based method are less sensitive to the mobility of the MS
than the proposed framework. The reason for this may be that
the mobility of the MS is not considered in the source domain.
Nevertheless, the performances of the proposed framework and
the supervised DL-based method are still quite comparable,
and the former performs remarkably better than the latter when
the MS is not mobile, thus demonstrating its good domain
adaptability under the low mobility scenario.

V. CONCLUSIONS

We have presented a TL framework (cf. Fig. 2) for AoAs
estimation by simultaneously considering different channel
models in massive MIMO systems, thus providing a solution
to the computational bottleneck of DL-based methods, i.e.,
training a specific network for each channel with limited
labeled data. The proposed framework is composed of TL
layers and FL layers in cascade, where the former (the latter)
is to extract the common feature of channels in the source
domain (other channel characteristics in the target domain)
for accurate AoAs estimation in both domains. Therefore, the
proposed framework is also a more practical application of the
prospective TL in AoAs estimation than existing DL-based
methods. Some numerical simulations were also presented
to demonstrate the effectiveness of the proposed framework
with mean square error performance comparable to DL-based
methods.

Some further studies are left in the future, including 1) qual-
itative and/or quantitative analyses of the convergence analysis
of the proposed TL based method for AoAs estimation, and 2)

its applications in various wireless communication scenarios
and applications.
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