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ABSTRACT

Inspired by the modulated and non-stationary nature of
speech signals, this paper proposes a new feature extrac-
tion scheme for speech emotion recognition (SER) using
cyclostationary spectral analysis (CSA). This spectral anal-
ysis discloses the underlying first-order and second-order
(hidden) periodicities in emotional speech signals using the
estimated spectral correlation function (SCF) via FAM al-
gorithm. Experiments on the Berlin database of emotional
speech (EmoDB) show that the proposed scheme using cyclo-
stationary spectral features (CSFs) significantly outperforms
state-of-the-art methods in terms of recognition accuracy.

Index Terms— speech emotion recognition, artificial in-
telligence, cyclostationarity, FAM algorithm, cyclic spectral
analysis, human machine interaction.

1. INTRODUCTION

Have we ever imagined an intelligent humanoid robot can feel
our emotion and react to us appropriately? This may be in the
realms of fantasy decades ago, but now it seems quite achiev-
able. Roughly speaking, the current technology is mainly en-
riched by cognitive intelligence, however, it is predictable that
the future generation of artificial intelligence will be equipped
with emotional intelligence. The primary approach for detect-
ing emotions has long been the facial recognition. However,
speech emotion recognition (SER) has become a trend in be-
havioral/speech signal processing and artificial intelligence.
SER attempts to recognize the underlying emotional state of
a speaker from the speech signal and has demonstrated its ef-
fectiveness in human-machine interactions [1, 2]. In a recent
review of tracing of SER in the past years, Schulller [3] noted
that despite significant advances of SER, until now only few
commercial products of automatic emotion recognition had
the chance to get a place in the market for widely-spreading
daily life usages.

The two major categories for feature extraction in SER
are prosodic and spectral features. The former is broadly
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studied as the most commonly used type of SER features
[4, 5]. On the other hand, the latter conveys frequency in-
formation of the speech signal and plays an important role in
SER such as linear predictor cepstral coefficients (LPCC) [6]
and Mel-frequency cepstral coefficients (MFCC) [7]. More-
over, [8] proposed a model using statistical features of Fourier
representation over frames of the emotional speech signals
for SER. One drawback behind [8] is to consider a subset of
Berlin database of emotional speech (EmoDB) [9] and hence
it lacks the completeness of analyzing the whole database.
Recently, [10] presented a biologically inspired method for
SER which operates directly on the speech signal without
the block of feature extraction, however, its recognition ac-
curacy for four out of seven emotions is just around 75% over
EmoDB. It is also noteworthy that the stationarity of speech
signals in short time segments is a cornerstone for many re-
search works focusing on spectral features. Despite many in-
sightful research works for SER, there are still serious chal-
lenges on this complicated task [11–14].

This paper proposes a new stochastic and statistical signal
processing approach toward SER. Our philosophy is to pay
particular attention to the non-stationary nature of emotional
speech signals for automatic affective information recognition
rather than focusing on the assumption of stationarity of this
type of signals in short time intervals. Accordingly, a new fea-
ture extraction scheme for affective information recognition
using cyclostationary spectral analysis (CSA) is proposed. To
this end, the spectral correlation function (SCF) will be es-
timated by the fast Fourier transform accumulation method
(FAM) [15] which is a computationally efficient algorithm
and this attempts to uncover the first-order (corresponding to
degenerate cyclic frequency) and second-order periodicities
(nonzero cyclic frequencies) [16] buried in the signal by an-
alyzing the quadratic form of the signal. To the best of our
knowledge, this is the first research work that interprets an
emotional speech signal as a cyclostationary signal.

The rest of this paper is organized as follows. Section 2
presents the track of cyclostationarity in speech signals. Sec-
tion 3 details the proposed scheme based on the CSA. Section
4 provides the experimental results using the EmoDB. Finally,
concluding remarks are given in Section 5.
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2. CYCLOSTATIONARITY IN SPEECH SIGNALS

2.1. Background of cyclostationary analysis

There is a special type of non-stationary stochastic processes
when their statistical properties vary periodically with time
called cyclostationary processes [17]. An important subclass
of cyclostationary processes is the one that exhibits cyclo-
stationarity in its mean and autocorrelation function which
is called wide-sense cyclostationary stochastic process. To
begin with, let us consider a wide-sense cyclostationary pro-
cess {x(n;w) ∈ R | n ∈ Z, w ∈ Ω} with period N0 ∈ Z
where Ω is the sample space, R and Z are the sets of real
and integer numbers, respectively. For this process we have
E{x(n + N0;w)} = E{x(n;w)} and Rx(n + N0, `) =

Rx(n, `) where Rx(n, `)
def= E{x(n;w)x(n − `;w)} is the

autocorrelation function, E{·} accounts for statistical expec-
tation and ` ∈ Z.

As the autocorrelation function is periodic in the time do-
main, it can be expressed using the Fourier series representa-
tion as [17]

Rx(n, `) =
∑
α∈A

rαx (`)ei2παn, (1)

where i =
√
−1 andA is a finite set of cyclic frequencies and

rαx (`)
def= lim

N→∞

1

2N + 1

N∑
n=−N

x(n+ `)x(n)e−i2παn, (2)

is called the discrete-time cyclic autocorrelation function [17–
19] at cyclic frequency α provided that x(n;w) is a cycloer-
godic process and 2N + 1 is the truncation length.

Furthermore, the cyclostationary process can be charac-
terized in the frequency domain using SCF which can be ob-
tained from cyclic Wiener relation [20] as

Sαx (f)
def=

∞∑
`=−∞

rαx (`)e−i2πf`, (3)

where f is the cross spectrum frequency and SCF is the
Fourier transform of the cyclic autocorrelation function on a
bifrequency plane (α, f).

In practice, a single realization of the finite length of this
stochastic process is available and it is characterized as the
cyclostationary signal. Let x[n], 0 ≤ n ≤ N − 1 be a cy-
clostationary signal with sampling interval of Ts = 1/fs. In
this paper we use the FAM algorithm [15] which is based on
the time-smoothed cyclic periodogram. First, the signal is
windowed and for that the Hamming window T = N ′Ts, de-
noted as w(p), −N ′/2 ≤ p ≤ N ′/2 − 1, is hopped over
the signal in blocks of L samples which leads to P = N/L
segments. Then the complex demodulate (short-time Fourier
transform with N ′-point FFT) of these windowed segments

can be obtained as [15]

XT (n, f) =
∑
p

w(p)x(n− p)e−i2πf(n−p)/N ′ , (4)

where n is the center of a time segment. By inherent proper-
ties of this algorithm, it estimates SCF over diamond shape
regions of support, which are called channel-pairs and the
pattern of tiled bifrequency plane is depicted in Fig. 1 for
N ′ = 8. The center of each channel-pair region is charac-
terized by an ordered pair as

(j, i)
def= (

l + l′

2
, l − l′), l, l′ = −N ′/2, ..., N ′/2− 1. (5)

Then, the SCF is estimated over each channel-pair region for
P -point estimation (indexed by q) and separated by ∆α =
fs/N (cyclic frequency resolution) as

Sαi,qxT (fj) =

P−1∑
r=0

XT (rL, fl)X
∗
T (rL, fl′)g(r)e−

i2πrq
P , (6)

where g(n) is the data tapering Hamming window of length

P , αi,q
def= α̂i + q∆α and fl (and fl′ ) can be obtained as

fl
def= l(fs/N

′), l = −N ′/2, ..., N ′/2− 1. (7)

is the discretized frequencies of each complex demodulate
and the bifrequency coordinate associated with the center of
each channel-pair region is determined as

(fj , α̂i)
def= (f l+l′

2

, αl−l′), (cf. (5)), (8)

Fig. 1: Tiling of the bifrequency plane coressponding to the
location of estimated SCF channel pair regions



where the coordinate of channel-pair region is denoted by
indicies of frequencies. In fact, estimated SCF is the Fourier
transformation of products of the complex demodulates,
XT (rL, fl)XT (rL, fl′), with P -point FFT. Besides, it is
noted in [15] that due to minimizing the variability of SCF es-
timation near the top and bottom of each channel-pair region,
the point estimates within the range of−Q/2 ≤ q ≤ Q/2−1
where Q = PL/N ′ must be retained (cf. Fig. 1).

Moreover, the physical interpretation behind SαxT (f) is
the correlation of spectral components of the signal x(n) over
time span of NTs with frequency resolution of 1/T . Besides,
it is noted in [15], L = N ′/4 is a good choice for practi-
cal use. For more details about the FAM algorithm, one can
refer to [15]. Moreover, without loss of generality it can be
assumed that fs = 1 and then (f, α) will contain normalized
frequencies.

2.2. Tracking Cyclostationarity in speech signals

The modulation theory presented in [21] assumes speech sig-
nal to be the modulated output of different components such
as affective control, speech gesture, and vocal carrier signal.
Due to such model, it can be assumed that affective informa-
tion modulates the vocal carriers in speech signal. Consistent
with the Napolitano’s definition for cyclostationary process,
which is the modulation of a periodic process by a random
one [22], affective information can be extracted using CSA.
Consequently, the underlying second-order (hidden) period-
icity, can be uncovered by analyzing the quadratic form of
the signal. The estimated SCF of a frame of speech signal
from EmoDB database is shown in Fig. 2. The estimated
SCF shows noticeable spectral lines (|Sαx (f)| 6= 0) for some
α 6= 0. This implies a cyclostationarity (of second order) be-
havior of the emotional speech signal to some extent. How-
ever, there are very few papers in which the cyclostationary
analysis for speech signals are discussed. Recently [23] pro-
poses a new approach to track the fundamental frequency us-
ing the cyclostationary analysis on the intrinsic mode func-
tions of the target vowel for automatic speech recognition. It
is also interestingly specified in [23] that the fundamental fre-
quency in speech signal is equivalent to the cyclic frequency
in CSA.

Now, the critical question that arises here is: can this trace
of cyclostationarity in speech signals lead to an effective fea-
ture extraction scheme for emotion recognition? In the fol-
lowing sections, we will answer this question.

3. PROPOSED METHOD

As the preprocessing step, to preserve the information from
variations in an utterance due to the dynamic nature of the
speech signal, it is necessary to partition the speech signal into
K overlapped frames of the length τ ms with ∆τ ms step size
and let xk[n] be the k-th frame of the speech signal. Then,

Fig. 2: Estimated SCF of a frame of a sample speech signal
from EmoDB

it is beneficial to multiply the speech segment by a Hamming
window to tone down the abrupt changes at the edges.

3.1. Feature extraction scheme

In this section, our objective is to take advantage of the sta-
tistical properties of the channels in the bifrequency plane
of the estimated SCF (as seen in Fig. 2) for feature extrac-
tion. To do so, for each windowed frame of an utterance,
the SCF is estimated using FAM algorithm which computes
the SCF in diamond-shape channel pair regions on the bifre-
quency plane. Moreover, it is notable that for an N ′-point
channelizer in FAM algorithm, due to the symmetry in SCF,
it is enough to estimate only N ′2/4 channels (the highlighted
quadrant in Fig. 1).

3.1.1. Features from low cyclic frequency band

Here, we aim to derive features from spectral lines corre-
sponding to the low cyclic frequency band B0 (cf. Fig. 1 and
it is the set of cyclic frequencies close to the degenerate cyclic
frequency α0,0). Let us define

Tk,h
def= {

∑
j |S

α0,h
xk (fj)|

N ′ + 1
: −N ′/2 ≤ j ≤ 0}, (9)

where −Q/2 ≤ h ≤ 0. It is needed first to normalize this set

and we have T k,h = Tk,h/ηk where ηk
def= max−Q/2≤h≤0 Tk,h.

Then the block of features are defined as

ψu
def= [ψu(T h)]0h=−Q/2, u = 1, . . . , 4, (10)

where the features ψ1(T h), ψ2(T h), ψ3(T h) and ψ4(T h) are
the mean, minimum, standard deviation and median of T h,
respectively.

3.1.2. Features from dynamics of cyclic frequencies

First, for the xk[n], it needs to define the set corresponding
to the magnitude of spectral lines for the cyclic frequency
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Fig. 3: SER system using the proposed CSA based feature extraction scheme

bands of the highlighted quadrant (cf. Fig. 1) and we have
Sk

def= ∪0
j=−N ′/2Sk,j where

Sk,j
def= {|Sαi,qxk

(fj)| : αi,q ∈ Aj}, (11)

and fj is defined in (8),

Aj ⊂ A = {m/N : m = 0, 1, . . . ,
(2N ′ − 1)Q

2
},

which is the unified cyclic frequency set shown in Fig. 1 con-
taining cyclic frequencies corresponding to the frequency fj .
For instance in Fig. 1, A0 is the set contains all the point esti-
mates depicted by red colors. Due to the high dynamic range
of SCF, first, it is needed to normalize it with respect to its
maximum as Sk,j = Sk,j/ρk,j where j is defined in (5) and

ρk,j
def= max

αi,q∈Aj
|Sαi,qxk

(fj)|.

The corresponding feature space includes six blocks of mea-
sures denoted by ϕv

def= [ϕv(Sk,j)]0j=−N ′/2, v = 1, . . . , 6
where each component is denoted as

ϕv(Sk,j) =
1

K

K∑
k=1

ϕv,k(Sk,j), (12)

and the features ϕv,k(Sk,j) are defined as follows. Here,
ϕ1,k(Sk,j) is the standard deviation of Sk,j . The second
measure ϕ2,k(Sk,j) is the skewness of Sk,j which is the
amount and direction of asymmetry over Aj . The next mea-
sure ϕ3,k(Sk,j) is the kurtosis of Sk,j , as the fourth standard-
ized moment, representing sharpness of the central peak over
Aj . The fourth measure is the spectral flatness of Sk,j and is
defined as

ϕ4,k(Sk,j)
def=

(∏
αi,q∈Aj |S

αi,q
xk (fj)|/ρk,j

)1/n(Aj)∑
αi,q∈Aj |S

αi,q
xk (fj)|/

(
ρk,jn(Aj)

) , (13)

where n(·) is the cardinality of corresponding set. Another
block of feature is the modified spectral centroid defined as

ϕ5,k(Sk,j)
def=

∑
αi,q∈Aj (|fj |+ |αi,q|)|S

αi,q
xk (fj)|∑

αi,q∈Aj |S
αi,q
xk (fj)|

. (14)

Algorithm 1: Our proposed scheme
input : x[n] ∈ EmoDB, n = 1, . . . , N
output: Θ, the standardized feature vector
begin initialization

set N ′, τ , and ∆τ

L← N ′/4, K ←
⌈
N−bτfsc
b∆τfsc

⌉
, P ← N/L

end
for frame k ∈ {1→ K} do

Compute k-th frame, xk, using τ,∆τ
Compute |Sαi,qxk (fj)| (Eq. (6))

Compute
∑0
j=−N′/2 |S

α0,h
xk

(fj)|
(N ′+1) (Eq. (9))

Compute ϕv,k(Sk,j)|6v=1 (Eq. (12))
end
ψu = [ψu(T h)]0h=−Q/2
ϕv = [ϕv(Sk,j)]0j=−N ′/2
Θ = [ψu,ϕv], 1 ≤ u ≤ 4, 1 ≤ v ≤ 6

Θ = [ϑi]
M
i=1 (Eq. (15))

Table 1: Confusion table for the proposed CSFs using PCA
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CCR (%)
Anger 124 0 1 1 1 0 0 97.6

Boredom 0 76 0 0 0 0 5 93.8
Disgust 2 0 40 1 0 0 3 87.0

Fear 5 1 0 61 0 0 2 88.4
Happiness 22 0 0 1 47 1 0 66.2
Sadness 0 2 0 0 0 59 1 95.2
Neutral 0 9 1 0 0 1 68 86.1

Percision (%) 81.0 86.4 95.2 95.3 97.9 96.7 86.1 88.8

The next measure ϕ6,k(Sk,j) is the trimmed mean of
the Sk,j which is defined as the difference of the mean of
upper-half of Sk,j and the mean of lower-half of this set
for each unified-channel1. Now, the complete raw feature
space can be constructed by concatenation of the extracted

1Here, the lower-half/upper-half of a data set is defined as the set of all
values of the ascending ordered data set that are less/greater than the mean
value.



Table 2: Recognition results in terms of weighted accuracy for the CSF and various state-of-the-art methods

Feature Scheme CCR (%) Weighted Accuracy (%)

Anger Boredom Disgust Fear Happiness Sadness Neutral Achievable Average†

Wu: PROS [11] 87.4 82.7 78.3 79.7 49.3 83.9 82.3 78.7 NA
Wu: MSF [11] 91.3 86.4 78.3 71.0 60.6 88.7 83.5 81.3 NA

Zhang [14] 90.8 78.8 84.8 81.1 65.8 88.7 75.9 79.6 NA
Bhargava [13] 83.5 84.8 84.1 80.9 60.6 88.7 73.9 80.3 NA

Tawari [12] 93.7 92.6 80.4 76.8 57.7 91.9 88.6 84.5 NA
CSF* 93.7 90.1 84.8 87.0 67.6 93.6 87.3 87.1 85.0± 0.6
CSF** 97.6 93.8 87.0 88.4 66.2 95.2 86.1 88.8 86.1± 0.4

†Over 400 Monte Carlo runs; NA‡: Not available; ∗Without feature reduction; ∗∗Using PCA

features from spectral information corresponding to the first
and second-order periodicities consequently and we have
Θ

def= [ψu,ϕv], 1 ≤ u ≤ 4, 1 ≤ v ≤ 6 (the overall number
of features is M = 4(Q/2 + 1) + 6(N ′ + 1)). Finally, it
is essential to normalize the feature matrix and we use the
z-score technique which makes the values of each feature
have zero-mean (µ = 0) and unit-variance (σ2 = 1); the
standardized feature is denoted by Θ = [ϑi]

M
i=1 where

ϑi =
ϑi − µ1

σ
, (15)

where ϑi is the i-th column of Θ and 1 is an all-one vector.
Feature reduction is an important step in machine learning

applications in order to avoid challenges due to the curse of
dimensionality and further decreases the computational cost
and complexity for the ensuing classification task [24]. To this
end, we use the cross validated principal component analysis
(PCA) [24]. Here, our objective is to investigate the effec-
tiveness of our CSFs rather than using advanced techniques
for feature reduction which often lead to higher classifica-
tion rate. Fig. 3 shows our proposed SER system using CSA.
Moreover, the proposed feature extraction scheme is summa-
rized in Algorithm 1 which provides all the features Θ for
training and testing.

4. EXPERIMENTAL RESULTS

The EmoDB [9] is a publicly available database which con-
sists of utterances expressed by ten German actors for ten sen-
tences and six basic emotions as well as neutral speech includ-
ing anger (127), boredom (81), disgust (46), fear (69), happi-
ness (71), sadness (62) and neutral (79). Our experiments are
based on all the 535 available utterances in the EmoDB.

In our scheme, we set the window length for framing of
the speech signal to τ = 150 ms with ∆τ = 15 ms step size.
For SCF estimation, we set N ′ = 64, L = 16, and finally 522
features are extracted. For classification, we use the support
vector machine (SVM) [24] with radial basis kernel of MAT-
LAB 2016b for training and testing the data. Moreover, all
of our results in this paper are based on the stratified 10-fold

cross validation2. The confusion table for the proposed CSFs
resulting from the PCA method for 30 features is shown in Ta-
ble 1, where the correct classification rate (CCR) column lists
the correct recognition rate per class. Clearly, the CCR for
emotions Anger, Boredom and Sadness are quite satisfactory.

Table 2 presents the CCR of the proposed CSFs per emo-
tion and various state-of-the-art methods. All those methods
have been tested on the EmoDB using SVM with radial ba-
sis kernel and stratified 10-fold cross validation. Wu [11]
reaches up to 78.7% and 81.3% weighted accuracy3 for
prosodic (PROS) and modulation spectral features (MSF),
respectively. Besides, Zhang [14] achieved 79.6% weighted
accuracy using an enhanced kernel isomap. Bhargava [13]
achieved 80.3% of the weighted accuracy using rhythm and
temporal feature. Tawari [12] achieved 84.5% weighted ac-
curacy by proposing a new set of features based on cepstrum
analysis of pitch and intensity contours. However, it is men-
tioned in [12] that the feature selection is prior to the training
and testing phase in the system model. This violates the cross
validation procedure and can mislead to subsequent increase
in the recognition accuracy. Whereas in our system depicted
in Fig. 3, the test set is kept completely unseen from the train-
ing including the feature reduction stage. The proposed CSFs
reaches up to 87.1% weighted accuracy even without any
feature reduction. Finally, our scheme reaches up to 88.8%
weighted accuracy for seven emotions using cross-validated
PCA with only 30 selected features. Due to that training and
testing sets for randomized cross validation can be different
in each run, the accuracy would have some tolerances and
hence doing Monte Carlo runs is necessary. The obtained
average of weighted recognition accuracy of our scheme over
400 Monte Carlo simulation runs is 86.1± 0.4 which is supe-
rior to the achievable accuracy of all the other methods (such
Monte Carlo simulation averages are not available for any of
the other methods). Clearly, our method significantly outper-
forms the other methods in terms of recognition accuracy.

2The MATLAB code of this research work is publicly available at:
http://www1.ee.nthu.edu.tw/cychi/links.php.

3The weighted accuracy is the ratio of the total number of correctly rec-
ognized samples to the total number of samples.



5. CONCLUSION

We have presented a new feature extraction scheme for SER
using CSA. This includes features from spectral content re-
lated to the low cyclic frequency band and features from spec-
tral information corresponding to the dynamics of cyclic fre-
quencies in emotional speech signals. The SCF of segmented
speech signal are computed using FAM algorithm and then
blocks of features are extracted using statistical parameters of
magnitudes of the spectral lines over the bifrequency plane.
Experimental results have demonstrated that this scheme sig-
nificantly boosts the emotion recognition accuracy and mean-
while open up new avenues for further research in SER. Our
future work will be focused on further analysis and experi-
ments in broader datasets and noisy environments.
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