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ABSTRACT

Winter’s maximum-volume simplex approach is an efficiert eap-
resentative endmember extraction approach, as evideyadbe act
that N-FINDR, one of the most widely used class of endmemker e
traction algorithms, employs simplex volume maximizatas its
criterion. In this work, we consider a robust generalizaiid Win-
ter's maximum-volume simplex criterion for the noisy scemaOur
development is based on an observation that the presencasef n
would tend to expand the observed data cloud geometric@lhe
proposed robust Winter criterion is based on a max-min oistvor
case approach, where we attempt to counteract the data ejoud
pansion effects by using a shrunk simplex volume as the enigtri
maximize. The proposed criterion is implemented by a combin
tion of alternating optimization and projected subgratiierSome
simulation results are presented to demonstrate the peafare ad-
vantages of the proposed robust algorithm.

Index Terms— Endmember Extraction, Simplex Volume Max-
imization, Worse-case Optimization, Alternating Optiatinn, Pro-
jected Subgradients

1. INTRODUCTION

Hyperspectral endmember extraction has recently receivedid-
erable attention due to its various applications such asespbject
detection and planet exploration, as well as environmentatitor-
ing and military surveillance on Earth [1]. Endmember extin
methods may be classified by the criteria employed. A reptase
tive one is Winter's maximum-volume simplex criterion [®}hich
led to one of the most widely used class of endmember extracti
algorithms, namely, N-FINDR [3-5]. The belief in Winter'sigi-
nal work is to search for the set of “purest” pixel vectorsnfrthe
data cloud through a simplex volume maximization attempkep
advantage of Winter’s criterion is that it is structurallynpler than
Craig’'s minimum-volume enclosing simplex criterion [6ffdm an
optimization viewpoint; this is also a reason behind why INIBR
algorithms are often simple to implement.

In this paper, we propose a robust generalization of Wiater’

maximum-volume simplex criterion for the noisy scenario.e-R

cently, there has been growing interest in study of endmember >-n—: X[1], andC = [ g(HH),...

extraction for the noisy scenario; e.g. the optimal Bayes$iame-
work [8] in which noise is explicitly accounted for, simpléenti-
fication by split augmented Lagrangian (SISAL) [6] in whiabfts
constraints are used to handle outlier pixels caused by noiger
Craig’s minimum-volume criterion, and more [9, 10]. We farm
late a robust Winter criterion based on a max-min, or woasec
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optimization formulation. The underlying insight is toetipt to
counteract the size expansion effects of the data cloudrurase
perturbations. To practically realize the robust Wintetecion, we
design an optimization algorithm that combines altermpiipti-
mization and subgradient techniques. Some simulatioritsewill
be provided to demonstrate the merits of the proposed #hgori
Notations: 1x, =, and|| - ||2 representV x 1 all-one vector,
componentwise inequality, and Euclidean norm, respdygtive

2. WINTER'S ENDMEMBER EXTRACTION PROBLEM

Assuming that the incident solar radiation gets reflectechfthe
Earth surface through a single bounce and the materialdstiead,
each pixel vector of the hyperspectral data cube can begemexd
by a linear mixing model

x[n] = As[n] + w[n] 1)

1,...,L, @)

= zgi[n]ai +win], n

=1

wherex[n] = [ z1[n],...,zm[n] |* € RM denotes thenth
observed pixel vector which is constituted By spectral bands,
wln] € RM represents noised = [ai,...,an ] € RM*V de-
notes the signature matrix whoah column vectom,; is theith end-
memberN is the number of endmembessy] = [si[n],...,sn[n]]T
€ RY denotes the abundance vector associated with the pixg|
and L is the total number of observed pixel vectors. Some general
assumptions are as follows [1]:
(A1) (Non-negativity)s;[n] > 0 for all 7 andn.
(A2) (Full-additivity) S, si[n] = 1 for all n.
(A3) min{L, M} > N anda,...,ay are linearly independent.
(A4) There exist pure pixels, i.ex[(;] = a;, i = 1,..., N for
some index sefl,...,¢n}.

We consider dimension reduction of the observed pixel vscto

by the following procedure [7]:

%n] 2 C"(x[n]—d), n=1,...,L. (3)

Here,x[n] € RY~!is thenth dimension-reduced pixel vectat,=

1 ,qn—1(HH") ] where
H=[x[1]-4d,...,x[L] —d] € RM*L andq;(HHT) is theith
principal unit-norm eigenvector #H”. Note that the dimension
reduction in (3) is lossless in the absence of noise, eittoen fa
principal component analysis perspective or from a conesxtetry
perspective [7]. From (2)-(3), we obtain the following dinsén-
reduced sighal model:

=1,...,L, (4)

X[n] = Zsi[n]ai + win], n



wherea; = CT(a; — d) € RY! is the dimension-reduced 3.1. Robust Winter Formulation by Worst-Case Optimization

H ~ _ T
S_ndmer_nber Zorre(sjpondlng t0, andw(n] = C win] denotes @ 5 giscussed above, noise perturbations may result in siqranf
imension-reduced noise vector. . . the size ofF, as compared to the simplex volume of the ground truth
The goal of endmember extraction is to estimate...,an  endmembers. Our intuition is to reduce the simplex volumehef

from the observed pixel vectosgn], n = 1,..., L, which is also  andmembers estimates, . . ., vy) to a certain extent, thereby at-
equivalent to estimatinges, ..., a from the dimension-reduced  tempting to neutralize the size expansioofThe idea is illustrated
pixel vectorsx([n], n = 1,..., L. We consider Winter's endmem- i, Figure 2. We see that by introducing some reduction of tire s
ber extraction belief [2]. Based on the dimension-reducedeh(4),  plex volume, which physically results in some backoff of tred-
we formulate Winter’s belief as an optimization criterion: member estimates from the boundaryfthe estimatéu, , v», vs)
may be brought closer to the ground trdda: , vz, as3).
max  |det(A(v1,...,vN))], 5 Let us formulate the above described robust Winter belieppr
Z;’IUN ®) erly. From the original Winter problem (5), a noise robusteml-
ization of the Winter problem is formulated as follows:
where
F={veR"v=X0,0-0,176=1}  (6) max | min - det(vi—w,.ovv—uw)]o, | @)
i=1,..., i=1,...,N
is the convex hull ok[1], ..., %[L], X = [x[1],...,%[L] ], and
whereu; € RVN~!, ¢ =1,..., N, are error vectors lying in a norm
ball {u € R¥~! | ||u||2 < r}, with a given radius-. By letting
1 %4 . 14 = ’
A(vi,...,uN) = { 11 1N } e RVN, (M) (v},...,vi,ul,...,u}) be the outer-inner solution of (8), the ro-
bust Winter endmember estimates afe= v; —u},i=1,..., N.

Our robust Winter formulation (8) follows an approach tret i
generally called max-min or worst-case optimization in ¢batext
of robust optimization. The error vectors, ..., uy are incorpo-
rated to introduce backoff of the estimaies . . ., v, and they are
controlled by the inner minimization of (8), which seeks telg the
smallest possible (or worst-case) simplex volume. In thaéi min-
imization, the prescribed parametegoverns how much backoff of
v1,...,vN is allowed. In other words, the valuequantifies the
desired robustness against noise. As a rule of thumb, onddsho
increaser when the noise variance, or the magnitude of the noise
perturbations, increases.

The Winter problem (5) seeks to find an estimate of the endreesnb
denoted by theV-tuple (v1,...,vx), from the pixel-constructed
convex hullF such that the respective simplex volume is the largest

In [11], we will study the Winter problem in (5) using an op-
timization perspective. In particular, its connectionsNig-INDR
and vertex component analysis (VCA) [12] will be shown. listh
paper, our interest is in the noisy scenario. Assuming ex¢st of
pure pixels [cf.(A4)], one would anticipate that the Winter problem
can lead to perfect recovery of the ground-truth endmemibettse
absence of noise; this in fact can be shown to be true evendly an
ysis [11]. However, the Winter problem may be sensitive ts®0
An illustration is given in Figure 1 to get an idea of how noisay
affect the data geometry (fa¥ = 3) and the subsequent Winter’s
endmember estimates. We assume that the noise perturbatien
random and isotropic; e.g., i.i.d. Gaussian noise. Theengifects
tend to expand the size of the pixel-constructed convexAuknd
subsequently the endmember estimatgs-», v; are away from the
ground trutho , ez, acs.

Fig. 2. Data geometry of the worst-case Winter problem.

3.2. Worst-Case Alternating Volume Maximization

Our next endeavor is to develop an optimization algorithmtifie
robust Winter problem (8). For this purpose, we use the oharg

variablesy; = X6;,i=1,...,N, to reexpress Problem (8) as

Fig. 1. Data geometry of the Winter problem fof = 3.

_fr?gg’ ©0(01,...,6N), ©)

i=1,...,N

3. ROBUST GENERALIZATION OF WINTER'S PROBLEM whereS is a simplex given by

The noise robust generalization of the Winter problem istiped

in thi i = L1o=0,1760=
in this section. §={6cR”|60=0,1.0 =1}, (10)



andp(64, ...

©(01,...,0n) = | mlllg det(A(XGl —ui,..., XON — un)).
i:f,f,r’

(11)
Note that in (11), we have removed the absolute term [cf]; (8]
is without loss of generality, as we have shown in [11].

There are two obstacles that make Problem (9) a difficult opti whereU™ =

mization problem. First, the determinant in the objectiwedtion is
nonconcave. Second, dealing with max-min optimization maty
be easy. We handle the flrst issue i in a practical way by emmjoyi
alternating optimization: Le?l, .. GN denote the endmember es-
timates. In alternating optimizatlon, we updm by performing
the following partial maximization of Problem (9)

~ ~

0; = arg max ©(0;,0;), j=1,...,N, (12)
Where(:)j = [51, R éj,l, §j+1, e éN]. The update process
(12) is conducted cyclically until some stopping rule issfad. We
will call this methodworse-case alternating volume maximization
(WAVMAX) in the sequel.

The key issue of WAVMAX lies in handling (12). By applying
a cofactor expansion tdet(A(X6; — ui,..., X0y — uy)), we

rewrite the objective function of (12) as

©(0;,9;) = in by (U)(X6; — ;) +h;(U).  (13)
i=1,. N
Here, ©, is defined in the same way 8,, U = [ui,...,un],

b;(U) = [(—1)""det(Q;;)]Y;" where Q;; is a submatrix of
A(X6; — ui,..., X0y — uy) with the ith row and thejth col-
umn removed, andl; (U) = (—1)V " det(Qx;). It can be shown
that (13) is a concave function, and it follows that Probldm)(s a
convex optimization problem, a merit of considering WAVMAX

3.3. Projected Subgradient Method for WAVMAX

While the partial maximization problems of WAVMAX in (12) er
structurally simpler than the original robust Winter preol in (9),
the max-min problem structure of (12) remains an obstactetuF
nately, the fact that (12) is a convex problem enables usabwi¢h
it using the subgradient approach [13]. The latter is a key@ach
to solving non-differentiable convex problems, and Prob{&2) fits
into that scope.

To be precise, we employ the projected subgradient method 0

deal with Problem (12). The basic idea is to generate a segquzn
points according to the following iteration

ot = {93‘“ - %g(k)}s ;

whereg® is a subgradient of-¢(6;,©;) at 05“, vk is the step
size,k is the current iteration number, afigt } s = arg minges ||z—
0||> denotes the projection af ontoS. The projected subgradient
method keeps track of the best solution found; i.e., at e&chtion
we update

(14)

(k+1)
best

(k)

= max { (k) (67,0, }, (15)

and updated; = 6%V if oY = 40"V ©;). As akey
property, the projected subgradient method can convertpetopti-
mal objective value for certain kinds of step size sequerees, the
diminishing step size sequeneg = ~/+/k for somey > 0 [13].

,On) captures the inner minimization of the problem:

The projection onto the simpleke}s can be efficiently im-
plemented by a waterfilling-type algorithm [14]. The sultfjeats
of —(8;,©,) can be computed as follows. By Danskin's theo-
rem [13], a subgradient 6f »(8;, (:)j) at@; is given by

g=-X"b,;(U"), (16)

[ul,...,ux]is the optimal solution of (12);i.e.,
(ui,...,uy) = arg mni det(A(X0:—uy,...,X0r—uy)).
pale=
17)

The above problem is nonconvex, but can be approximated-by al
ternating optimization. To be concise, here we only desctiite
key steps. The partial minimization problem of (17) waj.can be
expressed as

k] (X8, — ;) + (—1)V I det(Un;),

min
lujll2<r (18)
wherek; = [(—1)"det(U;;)]Y;" andU,; is a submatrix of
A(X6;—1y,..., X0y —uy) with theith row and thejth column

removed. By Cauchy-Schwarz inequality, it can be easilywthihat
the solution to (18) is uniquely given by; = rk;/|k;|2. The
pseudo code of alternating optimization for (17) is givefale 1.

The development of the WAVMAX method is complete. A sum-
mary of WAVMAX in pseudo code form is given in Table 2.

Table 1. A Summary of Alternating Optimization for Handling (17)

Given a convergence toleranee> 0, an error tolerance, the di-

mension reduced data mati, the parameterel, .. ON,
and the number of endmembe¥s

Step 1. initialize (uy, . . ., ux) with all zero vectors, set = 1, and
calculatep = det(A(X91 —U,..., X0y — un)).
Step 2. computek; = [(—1)"7det(:;) N~1 in which U is a

i=1
submatrix of A (X8, — 1i,..., X0y — tiy) with the ith
row and thejth column removed.

obtainu; = rk;/||k;||2.

if (j moduloN) # 0, thenj := j + 1 and go toStep 2

else compute = det(A(X6; — 1, ..., X0y — Gin)),

if |o — o|/0 > ¢,then seb := g, j := 1, and go tdStep 2
else outputuy, . . ., Uy) as an approximate solution of (17).

Step 3.
Step 4.

Step 5.

4. SIMULATIONS AND CONCLUSION

A Monte Carlo simulation of one hundred independent runges p
sented to demonstrate the performance of the proposed WA/MA
algorithm. Five existing endmember extraction algorithriadl-
FINDR [3], SQ-N-FINDR [4], SC-N-FINDR [4], SGA [5], and
VCA [12], were tested for comparison. In each r@nendmember
signatures witl224 bands selected from the U.S. geological survey
(USGS) library, abundances generated following Diricklistribu-
tion [12], and additive zero-mean white Gaussian noise wseel to
generate thé000 noisy observed pixel vectors with various signal-
to-noise ratios (SNRs), whe@NR = " ||As[n]||3/(c* ML)

in which 2 is the noise variance. The root-mean-square (rms)
spectral angle distance, denoteddyywas used as the performance
measure [12]. The computation tirfi&(in secs) of each method (im-
plemented on Matlab) running in a computer equipped witheCor
i7-930 CPU 2.80GHz and 12GB memory is used as the complexity
measure.



Table 2. A Summary of WAVMAX Algorithm

mance compared to some other algorithms.

Table 3. Performance comparison of averagddegrees) and av-

Given a convergence toleranee> 0, the dimension reduced data erageT’ (secs) over different endmember extraction methods for
matrix X, the number of endmembers, the subgradient N =8, L = 1000 and various SNRs.

step sizey, and the maximum number of subgradient itera-

> . SNR (dB)
quqsf{. ~ R . o Algorithms 5 15 o5 35 75
Step 1. initialize (61, ...,60xN) by aAIternatlng volume maximization VCA $ | 1534 | 379 | 1.26 | 044 | 013
(AVMAX) [11] and obtainU by Table 1. T | 012 0.08 | 0.08 | 0.06 | 0.05
; s oAt . s ¢ 13.92 3.34 0.96 0.29 0.09
Step 2. Alternating optlmlzatlgnonerAeh e ’gﬁ' setAj := 1 and SGA 7| o1 009 | 008 | 0os | 008
computep = det(A (X6 — 1y, ..., X0y —un)). NFINDR | @ | 1443 | 350 | 107 | 0.32 | 0.10
Step 3. Projected subgradient iterations for 8; T | 021 0.20 | 0.27 | 017 | 0.21
3.1. setk = 1 andppes: = O. N é | 1417 | 349 | 1.08 | 0.32 | 0.10
32 calculateh ﬁ% " 1 et N1 SQ-N-FINDR| 7 | ‘019 | 015 | 013 | 012 | 0.12
2. caledlateb(U) = [(=1)'7det(Qy)],—,” where  ——— =~ 51459 [ 374 [ 118 [ 0.32 [ 0.11
Q,;; is asubmatrix oA (X6, — Uy, ..., X0y —Un) T 0.08 0.07 | 0.06 | 0.06 | 0.06
with thesth row and thejth column removed. WAVMAX ¢ | 1284 | 3.08 | 0.92 | 0.30 | 0.09
3.3. update T | 134.88| 72.21 | 69.23 | 55.04 | 53.48

0; = {ej + %S(Tb(ﬁ)}s ,
[1
wherey,, = v/vk and{x}s is the projectiont onto
the simplex using a water-filling method [14]. 2l
3.4. updateU by Table 1 with the giverio;,, C:)j).
3.5. updateéj = 6, if ©(8;,0;) > pest and (3]
Pbest 1= Max {wbest, (05, @j)} .
[4]
3.6. updatek := k + 1 and go ta3.2until &k > K. 5]
Step 4. if (j moduloN) # 0, thenj := j + 1 and go toStep 3
else computeU by Table 1 andg det(A (X0, —
U1,...,X0x —1n)).
Step 5. if |0 — 0|/0 > €, then seb := g, j := 1, and go tcStep 3
otherwise7; = X6; — 1, for all ;.
Step 6. output(z, . .., Un) as the robust Winter's estimates.

(6]

[7]

Some parameter settings are as follows: The convergerse tol
ance for the WAVMAX algorithm and its associated sub-altjorni
in Table | was sette = 5x10~°. We also set the maximum number
of subgradient iteration& = 5 and step sizey = 1 in the WAV-
MAX algorithm. The error tolerance for the proposed WAVMAX
algorithm was setto = 1.30.

Table 3 shows the averageand T of all the endmember ex-
traction algorithms oveBNR = 5, 15, ..., 45 (dB). Herein, each
boldface value denotes the best performance among the tigte
rithms for a specific SNR. One can see from Table 3 that WAVMAX
yields better endmember extraction performance than ther atl-
gorithms forSNR < 25dB. The performance gap is particularly
noticeable for low SNRs. For high SNRs suchS3$R > 35dB,
all the algorithms are quite on par in performance, with WAYKI
and SGA being the best two. Table 3 also shows that the compu-
tation time required by WAVMAX is higher. Future work should
consider complexity reduction of WAVMAX. Also, the perfoemce
of WAVMAX on real data, such as the Cuprite scene datasetjldho
be investigated. [

In conclusion, we have established a robust Winter endmembe
extraction approach for the noisy scenario. The approatiased  [14]
on max-min or worst-case robust optimization. The restikdgo-
rithm, WAVMAX, has been numerically demonstrated to yietd r
bustness against noise and improved endmember extra&itorp

(8]

9]

(10]

(11]

[12]

13] D. P. Bertsekas, Nonlinear Programming,
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