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ABSTRACT

Winter’s maximum-volume simplex approach is an efficient and rep-
resentative endmember extraction approach, as evidenced by the fact
that N-FINDR, one of the most widely used class of endmember ex-
traction algorithms, employs simplex volume maximizationas its
criterion. In this work, we consider a robust generalization of Win-
ter’s maximum-volume simplex criterion for the noisy scenario. Our
development is based on an observation that the presence of noise
would tend to expand the observed data cloud geometrically.The
proposed robust Winter criterion is based on a max-min or worst-
case approach, where we attempt to counteract the data cloudex-
pansion effects by using a shrunk simplex volume as the metric to
maximize. The proposed criterion is implemented by a combina-
tion of alternating optimization and projected subgradients. Some
simulation results are presented to demonstrate the performance ad-
vantages of the proposed robust algorithm.

Index Terms— Endmember Extraction, Simplex Volume Max-
imization, Worse-case Optimization, Alternating Optimization, Pro-
jected Subgradients

1. INTRODUCTION

Hyperspectral endmember extraction has recently receivedconsid-
erable attention due to its various applications such as space object
detection and planet exploration, as well as environmentalmonitor-
ing and military surveillance on Earth [1]. Endmember extraction
methods may be classified by the criteria employed. A representa-
tive one is Winter’s maximum-volume simplex criterion [2],which
led to one of the most widely used class of endmember extraction
algorithms, namely, N-FINDR [3–5]. The belief in Winter’s origi-
nal work is to search for the set of “purest” pixel vectors from the
data cloud through a simplex volume maximization attempt. Akey
advantage of Winter’s criterion is that it is structurally simpler than
Craig’s minimum-volume enclosing simplex criterion [6,7]from an
optimization viewpoint; this is also a reason behind why N-FINDR
algorithms are often simple to implement.

In this paper, we propose a robust generalization of Winter’s
maximum-volume simplex criterion for the noisy scenario. Re-
cently, there has been growing interest in study of endmember
extraction for the noisy scenario; e.g. the optimal Bayesian frame-
work [8] in which noise is explicitly accounted for, simplexidenti-
fication by split augmented Lagrangian (SISAL) [6] in which soft
constraints are used to handle outlier pixels caused by noise under
Craig’s minimum-volume criterion, and more [9, 10]. We formu-
late a robust Winter criterion based on a max-min, or worst-case,
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optimization formulation. The underlying insight is to attempt to
counteract the size expansion effects of the data cloud under noise
perturbations. To practically realize the robust Winter criterion, we
design an optimization algorithm that combines alternating opti-
mization and subgradient techniques. Some simulation results will
be provided to demonstrate the merits of the proposed algorithm.

Notations: 1N , �, and‖ · ‖2 representN × 1 all-one vector,
componentwise inequality, and Euclidean norm, respectively.

2. WINTER’S ENDMEMBER EXTRACTION PROBLEM

Assuming that the incident solar radiation gets reflected from the
Earth surface through a single bounce and the materials are distinct,
each pixel vector of the hyperspectral data cube can be represented
by a linear mixing model

x[n] = As[n] +w[n] (1)

=
N∑

i=1

si[n]ai +w[n], n = 1, . . . , L, (2)

where x[n] = [ x1[n], . . . , xM [n] ]T ∈ R
M denotes thenth

observed pixel vector which is constituted byM spectral bands,
w[n] ∈ R

M represents noise,A = [ a1, . . . , aN ] ∈ R
M×N de-

notes the signature matrix whoseith column vectorai is theith end-
member,N is the number of endmembers,s[n] = [ s1[n], . . . , sN [n] ]T

∈ R
N denotes the abundance vector associated with the pixelx[n],

andL is the total number of observed pixel vectors. Some general
assumptions are as follows [1]:

(A1) (Non-negativity)si[n] ≥ 0 for all i andn.

(A2) (Full-additivity)
∑N

i=1 si[n] = 1 for all n.
(A3) min{L,M} ≥ N anda1, . . . ,aN are linearly independent.
(A4) There exist pure pixels, i.e.,x[`i] = ai, i = 1, . . . , N for

some index set{`1, . . . , `N}.
We consider dimension reduction of the observed pixel vectors

by the following procedure [7]:

x̃[n] , C
T (x[n]− d), n = 1, . . . , L. (3)

Here,x̃[n] ∈ R
N−1 is thenth dimension-reduced pixel vector,d =

1
L

∑L

n=1 x[n], andC = [ q1(HHT ), . . . , qN−1(HHT ) ] where
H = [ x[1]− d, . . . ,x[L]− d ] ∈ R

M×L andqi(HHT ) is theith
principal unit-norm eigenvector ofHHT . Note that the dimension
reduction in (3) is lossless in the absence of noise, either from a
principal component analysis perspective or from a convex geometry
perspective [7]. From (2)-(3), we obtain the following dimension-
reduced signal model:

x̃[n] =

N∑

i=1

si[n]αi + w̃[n], n = 1, . . . , L, (4)



whereαi = CT (ai − d) ∈ R
N−1 is the dimension-reduced

endmember corresponding toai, andw̃[n] = CTw[n] denotes a
dimension-reduced noise vector.

The goal of endmember extraction is to estimatea1, . . . ,aN

from the observed pixel vectorsx[n], n = 1, . . . , L, which is also
equivalent to estimatingα1, . . . ,αN from the dimension-reduced
pixel vectorsx̃[n], n = 1, . . . , L. We consider Winter’s endmem-
ber extraction belief [2]. Based on the dimension-reduced model (4),
we formulate Winter’s belief as an optimization criterion:

max
νi∈F,

i=1,...,N

|det(∆(ν1, . . . , νN))|,
(5)

where

F = {ν ∈ R
N−1| ν = X̃θ, θ � 0, 1T

Lθ = 1} (6)

is the convex hull of̃x[1], . . . , x̃[L], X̃ = [ x̃[1], . . . , x̃[L] ], and

∆(ν1, . . . ,νN ) =

[
ν1 · · · νN

1 · · · 1

]
∈ R

N×N . (7)

The Winter problem (5) seeks to find an estimate of the endmembers,
denoted by theN -tuple (ν1, . . . ,νN ), from the pixel-constructed
convex hullF such that the respective simplex volume is the largest.

In [11], we will study the Winter problem in (5) using an op-
timization perspective. In particular, its connections toN-FINDR
and vertex component analysis (VCA) [12] will be shown. In this
paper, our interest is in the noisy scenario. Assuming existence of
pure pixels [cf.,(A4)], one would anticipate that the Winter problem
can lead to perfect recovery of the ground-truth endmembersin the
absence of noise; this in fact can be shown to be true even by anal-
ysis [11]. However, the Winter problem may be sensitive to noise.
An illustration is given in Figure 1 to get an idea of how noisemay
affect the data geometry (forN = 3) and the subsequent Winter’s
endmember estimates. We assume that the noise perturbations are
random and isotropic; e.g., i.i.d. Gaussian noise. The noise effects
tend to expand the size of the pixel-constructed convex hullF , and
subsequently the endmember estimatesν1,ν2,ν3 are away from the
ground truthα1,α2,α3.
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Fig. 1. Data geometry of the Winter problem forN = 3.

3. ROBUST GENERALIZATION OF WINTER’S PROBLEM

The noise robust generalization of the Winter problem is developed
in this section.

3.1. Robust Winter Formulation by Worst-Case Optimization

As discussed above, noise perturbations may result in expansion of
the size ofF , as compared to the simplex volume of the ground truth
endmembers. Our intuition is to reduce the simplex volume ofthe
endmembers estimate(ν1, . . . , νN) to a certain extent, thereby at-
tempting to neutralize the size expansion ofF . The idea is illustrated
in Figure 2. We see that by introducing some reduction of the sim-
plex volume, which physically results in some backoff of theend-
member estimates from the boundary ofF , the estimate(ν1,ν2, ν3)
may be brought closer to the ground truth(α1,α2,α3).

Let us formulate the above described robust Winter belief prop-
erly. From the original Winter problem (5), a noise robust general-
ization of the Winter problem is formulated as follows:

max
vi∈F,

i=1,...,N



 min

‖ui‖≤r,
i=1,...,N

∣∣det(v1 − u1, . . . ,vN − uN )
∣∣



 , (8)

whereui ∈ R
N−1, i = 1, . . . , N, are error vectors lying in a norm

ball {u ∈ R
N−1 | ‖u‖2 ≤ r}, with a given radiusr. By letting

(v?
1 , . . . ,v

?
N ,u?

1, . . . ,u
?
N ) be the outer-inner solution of (8), the ro-

bust Winter endmember estimates areν?
i = v?

i −u?
i , i = 1, . . . , N .

Our robust Winter formulation (8) follows an approach that is
generally called max-min or worst-case optimization in thecontext
of robust optimization. The error vectorsu1, . . . ,uN are incorpo-
rated to introduce backoff of the estimatesν1, . . . ,νN , and they are
controlled by the inner minimization of (8), which seeks to yield the
smallest possible (or worst-case) simplex volume. In that inner min-
imization, the prescribed parameterr governs how much backoff of
ν1, . . . ,νN is allowed. In other words, the valuer quantifies the
desired robustness against noise. As a rule of thumb, one should
increaser when the noise variance, or the magnitude of the noise
perturbations, increases.

F
α1

α2

α3

ν1

ν2

ν3

r

r

r

x̃[n]

Fig. 2. Data geometry of the worst-case Winter problem.

3.2. Worst-Case Alternating Volume Maximization

Our next endeavor is to develop an optimization algorithm for the
robust Winter problem (8). For this purpose, we use the change of
variablesνi = X̃θi, i = 1, . . . , N , to reexpress Problem (8) as

max
θi∈S,

i=1,...,N

ϕ(θ1, . . . ,θN ),
(9)

whereS is a simplex given by

S = {θ ∈ R
L | θ � 0, 1T

Lθ = 1}, (10)



andϕ(θ1, . . . ,θN ) captures the inner minimization of the problem:

ϕ(θ1, . . . , θN) = min
‖ui‖≤r,
i=1,...,N

det(∆(X̃θ1 − u1, . . . , X̃θN − uN)).

(11)
Note that in (11), we have removed the absolute term [cf., (8)]; this
is without loss of generality, as we have shown in [11].

There are two obstacles that make Problem (9) a difficult opti-
mization problem. First, the determinant in the objective function is
nonconcave. Second, dealing with max-min optimization maynot
be easy. We handle the first issue in a practical way by employing
alternating optimization: Let̂θ1, . . . , θ̂N denote the endmember es-
timates. In alternating optimization, we updateθ̂i’s by performing
the following partial maximization of Problem (9)

θ̂j = argmax
θi∈S

ϕ(θj , Θ̂j), j = 1, . . . , N, (12)

whereΘ̂j = [θ̂1, . . . , θ̂j−1, θ̂j+1, . . . , θ̂N ]. The update process
(12) is conducted cyclically until some stopping rule is satisfied. We
will call this methodworse-case alternating volume maximization
(WAVMAX) in the sequel.

The key issue of WAVMAX lies in handling (12). By applying
a cofactor expansion todet(∆(X̃θ1 − u1, . . . , X̃θN − uN )), we
rewrite the objective function of (12) as

ϕ(θj ,Θj) = min
‖ui‖≤r,
i=1,...,N

b
T
j (U)(X̃θj − uj) + hj(U). (13)

Here,Θj is defined in the same way aŝΘj , U = [u1, . . . ,uN ],
bj(U) = [(−1)i+jdet(Qij)]

N−1
i=1 whereQij is a submatrix of

∆(X̃θ1 − u1, . . . , X̃θN − uN ) with the ith row and thejth col-
umn removed, andhj(U) = (−1)N+jdet(QNj). It can be shown
that (13) is a concave function, and it follows that Problem (12) is a
convex optimization problem, a merit of considering WAVMAX.

3.3. Projected Subgradient Method for WAVMAX

While the partial maximization problems of WAVMAX in (12) are
structurally simpler than the original robust Winter problem in (9),
the max-min problem structure of (12) remains an obstacle. Fortu-
nately, the fact that (12) is a convex problem enables us to deal with
it using the subgradient approach [13]. The latter is a key approach
to solving non-differentiable convex problems, and Problem (12) fits
into that scope.

To be precise, we employ the projected subgradient method to
deal with Problem (12). The basic idea is to generate a sequence of
points according to the following iteration

θ
(k+1)
j =

{
θ
(k)
j − γkg

(k)
}

S
, (14)

whereg(k) is a subgradient of−ϕ(θj , Θ̂j) at θ(k)
j , γk is the step

size,k is the current iteration number, and{x}S = argminθ∈S ‖x−
θ‖2 denotes the projection ofx ontoS . The projected subgradient
method keeps track of the best solution found; i.e., at each iteration
we update

ϕ
(k+1)
best = max

{
ϕ

(k)
best, ϕ(θ

(k+1)
j , Θ̂j)

}
, (15)

and updatêθj = θ
(k+1)
j if ϕ

(k+1)
best = ϕ(θ

(k+1)
j , Θ̂j). As a key

property, the projected subgradient method can converge tothe opti-
mal objective value for certain kinds of step size sequences; e.g., the
diminishing step size sequenceγk = γ/

√
k for someγ > 0 [13].

The projection onto the simplex{x}S can be efficiently im-
plemented by a waterfilling-type algorithm [14]. The subgradients
of −ϕ(θj , Θ̂j) can be computed as follows. By Danskin’s theo-
rem [13], a subgradient of−ϕ(θj , Θ̂j) atθj is given by

g = −X̃
T
bj(U

?), (16)

whereU? = [u?
1 , . . . ,u

?
N ] is the optimal solution of (12); i.e.,

(u?
1, . . . ,u

?
N ) = arg min

‖ui‖2≤r,
i=1,...,N

det(∆(X̃θ̂1−u1, . . . , X̃θ̂N−uN )).

(17)
The above problem is nonconvex, but can be approximated by al-
ternating optimization. To be concise, here we only describe the
key steps. The partial minimization problem of (17) w.r.t.uj can be
expressed as

min
‖uj‖2≤r

k
T
j (X̃θ̂j − uj) + (−1)N+jdet(UNj), (18)

wherekj = [(−1)i+jdet(U ij)]
N−1
i=1 and U ij is a submatrix of

∆(X̃θ̂1− û1, . . . , X̃θ̂N − ûN ) with theith row and thejth column
removed. By Cauchy-Schwarz inequality, it can be easily shown that
the solution to (18) is uniquely given bŷuj = rkj/‖kj‖2. The
pseudo code of alternating optimization for (17) is given inTable 1.

The development of the WAVMAX method is complete. A sum-
mary of WAVMAX in pseudo code form is given in Table 2.

Table 1. A Summary of Alternating Optimization for Handling (17)

Given a convergence toleranceε > 0, an error tolerancer, the di-
mension reduced data matrix̃X, the parameterŝθ1, . . . , θ̂N ,
and the number of endmembersN .

Step 1. initialize (û1, . . . , ûN ) with all zero vectors, setj = 1, and
calculate% = det(∆(X̃θ̂1 − û1, . . . , X̃θ̂N − ûN )).

Step 2. computekj = [(−1)i+jdet(U ij)]
N−1
i=1 in which U ij is a

submatrix of∆(X̃θ̂1 − û1, . . . , X̃θ̂N − ûN ) with the ith
row and thejth column removed.

Step 3. obtainûj = rkj/‖kj‖2.
Step 4. if (j moduloN) 6= 0, thenj := j + 1 and go toStep 2,

else computē% = det(∆(X̃θ̂1 − û1, . . . , X̃θ̂N − ûN )),
Step 5. if |%̄− %|/% > ε, then set% := %̄, j := 1, and go toStep 2,

else output(û1, . . . , ûN ) as an approximate solution of (17).

4. SIMULATIONS AND CONCLUSION

A Monte Carlo simulation of one hundred independent runs is pre-
sented to demonstrate the performance of the proposed WAVMAX
algorithm. Five existing endmember extraction algorithms, I-N-
FINDR [3], SQ-N-FINDR [4], SC-N-FINDR [4], SGA [5], and
VCA [12], were tested for comparison. In each run,8 endmember
signatures with224 bands selected from the U.S. geological survey
(USGS) library, abundances generated following Dirichletdistribu-
tion [12], and additive zero-mean white Gaussian noise wereused to
generate the1000 noisy observed pixel vectors with various signal-
to-noise ratios (SNRs), whereSNR =

∑L

n=1 ‖As[n]‖22/(σ2ML)
in which σ2 is the noise variance. The root-mean-square (rms)
spectral angle distance, denoted byφ, was used as the performance
measure [12]. The computation timeT (in secs) of each method (im-
plemented on Matlab) running in a computer equipped with Core
i7-930 CPU 2.80GHz and 12GB memory is used as the complexity
measure.



Table 2. A Summary of WAVMAX Algorithm

Given a convergence toleranceε > 0, the dimension reduced data
matrix X̃, the number of endmembersN , the subgradient
step sizeγ, and the maximum number of subgradient itera-
tionsK.

Step 1. initialize (θ̂1, . . . , θ̂N ) by alternating volume maximization
(AVMAX) [11] and obtainÛ by Table 1.

Step 2. Alternating optimization over θ1, . . . ,θN : set j := 1 and
compute% = det(∆(X̃θ̂1 − û1, . . . , X̃θ̂N − ûN )).

Step 3. Projected subgradient iterations for θj

3.1. setk = 1 andϕbest = 0.

3.2. calculateb(Û) = [(−1)i+jdet(Qij)]
N−1
i=1 where

Qij is a submatrix of∆(X̃θ̂1−û1, . . . , X̃θ̂N −ûN )
with theith row and thejth column removed.

3.3. update

θj :=
{
θj + γkX̃

T
b(Û)

}

S
,

whereγk = γ/
√
k and{x}S is the projectionx onto

the simplex using a water-filling method [14].

3.4. updateÛ by Table 1 with the given(θj , Θ̂j).

3.5. updateθ̂j := θj if ϕ(θj , Θ̂j) > ϕbest and

ϕbest := max
{
ϕbest, ϕ(θj , Θ̂j)

}
.

3.6. updatek := k + 1 and go to3.2until k > K.
Step 4. if (j moduloN) 6= 0, thenj := j + 1 and go toStep 3,

else computeÛ by Table 1 and%̄ = det(∆(X̃θ̂1 −
û1, . . . , X̃θ̂N − ûN )).

Step 5. if |%̄− %|/% > ε, then set% := %̄, j := 1, and go toStep 3,
otherwise,̂νj = X̃θ̂j − ûj for all j.

Step 6. output(ν̂1, . . . , ν̂N ) as the robust Winter’s estimates.

Some parameter settings are as follows: The convergence toler-
ance for the WAVMAX algorithm and its associated sub-algorithm
in Table I was set toε = 5×10−5 . We also set the maximum number
of subgradient iterationsK = 5 and step sizeγ = 1 in the WAV-
MAX algorithm. The error tolerancer for the proposed WAVMAX
algorithm was set tor = 1.3σ.

Table 3 shows the averageφ andT of all the endmember ex-
traction algorithms overSNR = 5, 15, ..., 45 (dB). Herein, each
boldface value denotes the best performance among the tested algo-
rithms for a specific SNR. One can see from Table 3 that WAVMAX
yields better endmember extraction performance than the other al-
gorithms forSNR ≤ 25dB. The performance gap is particularly
noticeable for low SNRs. For high SNRs such asSNR ≥ 35dB,
all the algorithms are quite on par in performance, with WAVMAX
and SGA being the best two. Table 3 also shows that the compu-
tation time required by WAVMAX is higher. Future work should
consider complexity reduction of WAVMAX. Also, the performance
of WAVMAX on real data, such as the Cuprite scene dataset, should
be investigated.

In conclusion, we have established a robust Winter endmember
extraction approach for the noisy scenario. The approach isbased
on max-min or worst-case robust optimization. The resultant algo-
rithm, WAVMAX, has been numerically demonstrated to yield ro-
bustness against noise and improved endmember extraction perfor-

mance compared to some other algorithms.

Table 3. Performance comparison of averageφ (degrees) and av-
erageT (secs) over different endmember extraction methods for
N = 8, L = 1000 and various SNRs.

Algorithms SNR (dB)
5 15 25 35 45

VCA
φ 15.34 3.79 1.26 0.44 0.13
T 0.12 0.08 0.08 0.06 0.05

SGA
φ 13.92 3.34 0.96 0.29 0.09
T 0.11 0.09 0.08 0.08 0.08

I-N-FINDR φ 14.43 3.50 1.07 0.32 0.10
T 0.21 0.20 0.27 0.17 0.21

SQ-N-FINDR φ 14.17 3.49 1.08 0.32 0.10
T 0.19 0.15 0.13 0.12 0.12

SC-N-FINDR φ 14.59 3.74 1.18 0.32 0.11
T 0.08 0.07 0.06 0.06 0.06

WAVMAX
φ 12.84 3.08 0.92 0.30 0.09
T 134.88 72.21 69.23 55.04 53.48
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