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ABSTRACT
Recently, the federated learning (FL) has been a machine
learning paradigm for the preservation of data privacy,
though high communication cost and privacy protection are
still the main concerns of FL. However, in many practi-
cal applications, the trained model needs certain nature or
characteristics, such as sparseness in classification, otherwise
learning performance loss is inevitable. In order to upgrade
the learning performance, a suitable non-smooth regularizer
(e.g., ℓ1-norm for the model sparseness) can be added
to the loss function (often non-convex) in the considered
optimization problem. This paper proposes a novel primal-
dual learning algorithm to handle such non-smooth regu-
larization aided non-convex FL problems, that yields much
superior learning performance over some state-of-the-art FL
algorithms under privacy guarantee by means of differential
privacy. Finally, some experimental results are provided to
demonstrate the efficacy of the proposed algorithm.

Index Terms— Federated learning, primal-dual method,
non-convex and non-smooth optimization, differential pri-
vacy.

I. INTRODUCTION

Federated learning (FL) offers the training of machine
learning (ML) models in distributed manner, where mas-
sively distributed clients repeatedly refine the model pa-
rameters under the orchestration of a parameter server (PS)
without the need of sharing their private data [1]. The train-
ing process of FL faces many challenges due to unreliable
and limited network resources [2], [3]. Consequently, the
communication between clients and the PS can be very
costly and inefficient, certainly resulting in a bottleneck to
the applicability of FL [4]. Besides the concern of commu-
nication efficiency, FL may still suffer from privacy leakage

This work is supported by the Ministry of Science and Technology,
Taiwan, under Grants MOST 111-2221-E-007-035-MY2 and 111-2221-E-
007-047-MY2-.

as the exchanged messages between the clients and the PS
can be reversely deduced by professional or experienced
adversaries, especially in wireless scenarios [5], [6].

Recent progress and increasing efforts have driven the
development of FL algorithms by focusing on the aforemen-
tioned issues. Most works tried to improve communication
efficiency by allowing partial client participation (PCP) and
proper multiple updates of local stochastic gradient descent
(SGD) in each communication round [1], [5]. Despite their
improved results, few works can effectively handle the
following non-convex and non-smooth problem [7]–[9]:

min
{ 1

N

N∑
i=1

fi(x) + h(x)
}
, (1)

where x is the model parameter vector, and N is the number
of devices (or clients), fi is a non-convex loss function, and h
is a non-smooth (possibly non-convex) regularizer including
the regularization parameter. Problem (1) is pervasive and
covers many ML applications, e.g., sparse learning [6], [10].
However, it is quite hard to solve problem (1) due to its non-
convexity and non-smoothness in the FL design, especially
under uncompromising requirements for both communica-
tion efficiency and privacy protection [6], [11].

The primal-dual method (PDM) [8], [9] in distributed
optimization has been widely used for exploring frontiers
of FL. Recent works applied PDM to FL and demonstrated
its good convergence performance over the traditional FL
algorithms such as FedAvg [2], [6], [12], thereby having
drawn high attention to the communication efficiency im-
provement. On the other hand, various differential privacy
(DP) based mechanisms have been proposed thanks to its
well-supported theory and negligible system overhead [5],
[6], [13], [14]. Nevertheless, high communication efficiency
and privacy guarantee for solving the optimization problem
(1) through the combination of primal-dual methods and DP
remains to be solved effectively and efficiently.

This paper proposes an algorithm for solving problem
(1) in FL system for better communication efficiency and
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stronger privacy guarantee together with superior learning
performance. We validate the efficacy of the proposed algo-
rithm by both theoretical analysis and experimental results.
So far, quite few effective works have been reported for the
development of FL algorithms involving a non-convex loss
function and a non-smooth regularizer.

Notation: Let Rd and Rm×n denote the set of real d× 1
vectors and m × n matrices, respectively; [N ] denotes the
integer set {1, . . . , N}; {xi} denotes the set of x1,x2, . . .
for all the admissible i. Let x⊤ denote the transpose of vector
x; [X]jk is the (j, k)-th entry of matrix X; Id represents the
d × d identity matrix. Let ∥x∥, ∥x∥1 and ∥x∥0 denote the
Euclidean norm, ℓ1-norm and the cardinality of vector x, re-
spectively; the operators E[·] and P[·] represent the statistical
expectation and the probability function, respectively. Tr(·)
denotes the trace operator; ∇f(x) denotes the gradient of
function f(x) with respect to (w.r.t.) x.

II. PRELIMINARIES AND PROBLEM SETUP

A. Problem Formulation

We consider a vanilla FL framework consisting of one PS
and N clients. Suppose that client i ∈ [N ] holds a private
local dataset Di with finite size |Di|, and fi(x;Di) is the
given loss function. For simplicity, fi(x) is used throughout
the paper unless a different dataset is used. Then problem
(1) under consideration can be expressed as

min
{ 1

N

N∑
i=1

fi(xi) + h(x0)
}

(2a)

s.t. xi = x0, ∀i ∈ [N ], (2b)

where xi ∈ Rd is the model of client i (local model), and
x0 ∈ Rd is the global model. The existing FL algorithms
are almost not directly applicable when the loss function
of problem (2) is non-convex and non-smooth [2], [6]. This
motivated us to develop an effective communication-efficient
and privacy-preserving FL algorithm for solving problem (2).

B. Preliminaries of Differential Privacy

For ease of later use, let us briefly review (ϵ, δ)-DP and
privacy loss as follows.

Definition 1 ((ϵ, δ)-DP [14]). Suppose that X is a given
dataset, and two neighboring datasets D,D′ ⊂ X , which
differ in only one data sample. A randomized mechanism
M : X → Rd achieves (ϵ, δ)-DP if for any subset of outputs
O ⊆ Range(M):

P[M(D) ∈ O] ≤ exp(ϵ) · P [M (D′) ∈ O] + δ, (3)

where ϵ > 0 and δ ∈ [0, 1).

Note that a smaller ϵ means stronger privacy protection
(due to interchangeable D and D′), and δ stands for the
probability to break the (ϵ, 0)-DP. The (ϵ, δ)-DP can be

implemented by properly adding Gaussian noise ξ ∈ Rd

to protect data privacy [14], that is

M(D) = g(D) + ξ, ξ ∼ N (0, σ2Id), (4)

where g(·) is a specified query function, and N (0, σ2Id)
is the distribution of a zero-mean Gaussion noise with
covariance matrix σ2Id. The required “noise variance” σ2

(i.e., variance of every element in ξ) for achieving (ϵ, δ)-DP
is given by the following lemma.

Lemma 1 [14, Theorem 3.22] Suppose that the randomized
mechanism M satisfies (ϵ, δ)-DP defined in (4). Then, the
minimum required noise variance σ2 is given by

σ2 =
2s2 ln(1.25/δ)

ϵ2
, (5)

where s, the ℓ2-norm sensitivity of g in (4), is given by

s ≜ max
D,D′⊂X

∥∥g(D)− g
(
D′)∥∥, (6)

in which X is the domain of function g.

Definition 2 (Privacy loss [14]). Suppose that a randomized
mechanism M satisfies (ϵ, δ)-DP. Let D and D′ be two
neighboring datasets and o be a possible random vector
of M(D) and M(D′). Then, the privacy loss is defined by

α(o) = ln
( P

[
M(D) = o

]
P
[
M(D′) = o

]). (7)

Note that when o is a continuous random vector, P[·]
stands for its probability density function, and this is exactly
the case in our work.

III. PROPOSED PRIVACY-PRESERVING FEDERATED
PRIMAL-DUAL METHOD

The distributed PDM solves problem (2) by sequentially
optimizing the augmented Lagrangian (9a), w.r.t. x,x0 (min-
imization), and λ (maximization). Specifically, for iteration
t = 0, 1, . . . , they are updated as follows:

xt+1
i = argmin

xi

Li

(
xi,x

t
0,λ

t
i

)
, i ∈ [N ], (8a)

λt+1
i = λt

i + ρ
(
xt
0 − xt+1

i

)
, i ∈ [N ], (8b)

xt+1
0 = argmin

x0

L
(
xt+1,x0,λ

t+1), (8c)

where

L
(
x,x0,λ

)
=

1

N

N∑
i=1

Li

(
xi,x0,λi

)
+ h(x0), (9a)

Li

(
xi,x0,λi

)
= fi

(
xi

)
+ λ⊤

i (x0 − xi) +
ρ

2
∥x0 − xi∥2 , (9b)

in which x = [x⊤
1 , . . . ,x

⊤
N ]⊤, λ = [λ⊤

1 , . . . ,λ
⊤
N ]⊤, ρ > 0

is the penalty parameter which must be large enough such
that L(·) is strongly convex in xi [15].

In the FL framework, t corresponds to the number of
communication round, and the iterates in (8) may not meet
the requirement of communication efficiency and privacy
protection. Following the same fashion in FedAvg [2], the
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strategy of multiple steps of local SGD in each communi-
cation round is considered to improve communication effi-
ciency. In addition, a subset of clients is randomly selected
to mitigate the straggler effect in FL [2].

To proceed, we denote St ⊆ [N ] with fixed size |St| = K
as the set of participated clients at the t-th round. Then,
for the t-th round, an inner loop with Qt

i iterations (where,
rather than an preassigned parameter, Qt

i is determined
automatically by the algorithm under consideration), (8a) and
(8b) are further replaced by

xt,r+1
i = xt,r

i − ηt(∇fi(x
t,r
i ;Bt,r

i )− λt
i + ρ(xt,r

i − xt
0)
)
, (10a)

xt+1
i = x

t,Qt
i

i , (10b)

λt+1
i = λt

i + ρ
(
xt
0 − xt+1

i

)
, (10c)

yt+1
i = xt+1

i − λt+1
i /ρ, (10d)

where ηt denotes the step size, Bt,r
i ⊆ Di is a mini-batch

dataset with size |Bt,r
i | = b. For a preassigned small ν > 0

for controlling the size of the vector (xt,r+1
i − xt,r

i ), the
inner loop ends when∥∥∇fi(x

t,r
i ;Bt,r

i )− λt
i + ρ(xt,r

i − xt
0)
∥∥2 ≤ ν, (11)

and Qt
i determined by (11) is the smallest number of

iterations spent in the inner loop.
To guarantee (ϵ, δ)-DP for the local model yt+1

i to be
uploaded, the aforementioned artificial Gaussian noise ξt+1

i

is added to yt+1
i , i.e.,

ỹt+1
i = yt+1

i + ξt+1
i = xt+1

i − λt+1
i

ρ
+ ξt+1

i . (12)

Finally, xt+1
0 given by (8c) can alternatively be expressed as

xt+1
0 = proxρh

( 1

K

∑
i∈St

ỹt+1
i

)
, (13)

where proxρh(u) ≜ argminx{h(x) + ρ
2

∥∥x − u
∥∥2} is

the proximal operator [16]. The proof of (13) is given in
Appendix A. The proposed FedPDM with DP (FedPDM-
DP) is implemented by Algorithm 1.

IV. PRIVACY AND CONVERGENCE ANALYSIS

A. Assumptions
Assumption 1 Each loss function fi(·) in (2) is L-smooth,
i.e., fi is continuously differentiable and there exists an L >
0 such that

∥∇fi(x)−∇fi(y)
∥∥ ≤ L

∥∥x− y
∥∥, ∀i ∈ [N ]. (14)

Besides, L(·) given in (9a) is bounded below, i.e.,

f ≜ inf
x,x0,λ

L(x,x0,λ) > −∞. (15)

Assumption 2 For the mini-batch dataset Bt,r
i with size b at

the t-th round, the associated mini-batch gradient satisfies

E
[
∇fi

(
xt,r
i ;Bt,r

i

)]
= ∇fi

(
xt,r
i

)
, (16)

E
[∥∥∇fi

(
xt,r
i ;Bt,r

i

)
−∇fi(x

t,r
i )

∥∥2
]
≤ ϕ2, (17)

for all t, r ≤ Qt
i, where Qt

i is yielded by Algorithm 1, and
the upper bound ϕ2 → 0 as b → |Di| [12].

Algorithm 1: Proposed FedPDM-DP

1: Input: System parameters b, T , ν, ρ, ηt, K.
2: Initialize x0

0, {x0,0
i }, {λ0

i }, and S0 = [N ].
3: for t = 0, 1, . . . , T − 1 do
4: Client side:
5: for i ∈ St in parallel do
6: for r = 0, 1, . . . do
7: Sample Bt,r

i from Di without replacement.
8: Update xt,r+1

i using (10a).
9: if (11) is satisfied then

10: set Qt
i = r + 1 and go to line 13.

11: end if
12: end for
13: Update xt+1

i by (10b).
14: Update λt+1

i by (10c).
15: Update yt+1

i by (10d).
16: Compute ỹt+1

i by (12) and send it to the PS.
17: end for
18: Server side:
19: Update xt+1

0 by (13).
20: Update the subset of clients St+1 ⊆ [N ] through

randomly sampling without replacement, and then
broadcast xt+1

0 to all the clients.
21: end for

Assumption 3 The mini-batch gradients ∇fi(x
t,r
i ;Bt,r

i ),∀t, r,
are bounded, i.e., ∥∇fi(x

t,r
i ;Bt,r

i )∥ ≤ G.

B. Privacy Analysis

Theorem 1 With the noise vector ξti ∼ N
(
0, σ2

i,tId
)

added
to yt

i (cf. (12)), the minimum noise variance σ2
i,t for guaran-

teeing (ϵ, δ)-DP for client i at the t-th communication round
is given by

σ2
i,t =

2s2i,t ln
(
1.25/δ

)
ϵ2

, (18)

where

si,t =

{
1−|1−ηtρ|Q

t
i

1−|1−ηtρ| 4ηtG, if ηtρ ̸= 2,

4ηtQt
iG, otherwise.

(19)

Proof: Equation (19) can be derived from the definition of
ℓ2-sensitivity of yt

i [14]. The detailed proof of Theorem 1
is omitted due to space limitation. ■

Theorem 1 shows that σ2
i,t is larger for larger Qt

i, though
a larger Qt

i can improve the communication efficiency [6].
Hence, the value of Qt

i (yielded by Algorithm 1) determines
the trade-off between privacy protection and communication
efficiency.

The total privacy loss of client i yielded by Algorithm 1,
denoted as ϵ̄Ti , which is the sum of all the privacy losses (cf.
(7)) over T communication rounds, can be estimated [14] by
multiple methods, e.g., the moments accountant method [17].
By the moments accountant method, we have obtained a
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new result on the achievable lower bound of ϵ̄Ti given in the
following theorem.

Theorem 2 Let pi = K/N and qi = Qt
ib/|Di|, that denote

the participation fraction of clients, and the fraction of data
used by Algorithm 1, respectively. Under the (ϵ, δ)-DP for
client i after T communication rounds, an achievable total
privacy loss ϵ̄Ti is given by

ϵ̄Ti = c0q
2
i ϵ

√
piT

1− qi
, ∀i ∈ [N ], (20)

where c0 > 0 is a constant dependent upon δ.

Proof: The proof basically follows that of Theorem 1 re-
ported in [6] for the case of data sampling without replace-
ment. The details are omitted due to space limitation. ■

Theorem 2 shows how the mechanisms of client sampling
and data sampling impact on ϵ̄Ti ,∀i. The larger value of
ϵ̄Ti , the larger value of ϵ by (20), implying weaker privacy
protection but better learning performance. This will be
justified in our experimental results later.

C. Convergence Analysis

Motivated by [9], the quantity P ({xt
i},xt

0, {λt
i}) used as

convergence performance measure is defined by

P ({xt
i},xt

0, {λt
i}) ≜

N∑
j=1

[∥∥∇xjL({x
t
i},xt

0, {λt
i})

∥∥2

+
∥∥∇λjL({x

t
i},xt

0, {λt
i})

∥∥2
]
+

∥∥∇x0L({x
t
i},xt

0, {λt
i})

∥∥2
.

(21)

It can be verified that if P ({xt
i},xt

0, {λt
i}) → 0 as t

increases, then a stationary-point solution to (2) can be
obtained [12].

Theorem 3 Suppose that Assumptions 1-3 hold and 2
√
5−

4 ≤ L ≤ ρ/4. Then, the following inequality holds:

1

T

T−1∑
t=0

E
[
P ({xt

i},xt
0, {λt

i})
]
≤ ζ ≜

(L({x0
i },x0

0, {λ0
i })− f)C0

T︸ ︷︷ ︸
A0

+ C1ν︸︷︷︸
A1

+C2ϕ
2︸ ︷︷ ︸

A2

+C3σ
2︸ ︷︷ ︸

A3

, (22)

where ν, ϕ2 have been defined in (11) and Assumption 2,
respectively; σ2 ≜ maxi,t σ

2
i,t; C0, C1, C2, C3 are constants

depending on system parameters ρ and L (cf. (9b), (14)).

Proof: The proof is given in Appendix B. ■

Let us conclude this section with the following two
remarks based on Theorem 1 and Theorem 3.

Remark 1 The convergence performance bound in Theo-
rem 3 is dependent upon A0, A1, A2, A3. Specifically, i)
A0 → 0 as T increases; ii) A1 → 0 as ν → 0; iii) A2 can
be made arbitrarily small for b large enough since ϕ2 → 0 as
b → |Di| by (17); iv) A3 can be reduced by letting ηtρ → 1
or increasing ϵ by Theorem 1.

Remark 2 (Communication complexity). By Theorem 3,
to achieve a ζ-stationary solution under the following pa-
rameter setting:

T = 4(L({x0
i },x0

0, {λ0
i })− f)C0/ζ, (23a)

ν = ζ/(4C1), ϕ
2 = ζ/(4C2), σ

2 = ζ/(4C3), (23b)

where σ2 ≜ maxi,t σ
2
i,t. It can be inferred that (23b) can be

achieved by Remark 1. Finally, we would like to emphasize
that the required T is in O(1/ζ) by (23a), while to the best
of our knowledge, most of state-of-the-art FL algorithms can
only attain T in O(1/ζ2) for non-convex problems [18].

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experiment Setting
We evaluate the performance of the proposed FedPDM-

DP by considering the commonly known non-convex and
non-smooth logistic regression problem [12] with the loss
function

F (X) =
1

N

N∑
i=1

fi(X) + γ∥X∥1, (24)

where ∥X∥1 =
∑m

j=1

∑n
k=1 |[X]jk|, X = [x⊤

1 , . . . ,x
⊤
m]⊤ ∈

Rm×n, and γ > 0 denotes the regularization parameter, and

fi(X) =
1

|Di|

|Di|∑
j=1

[
ln

(
1 + exp(−Tr(XX⊤

ij)
)]

+ β
∑
j,k

[X]2jk

1 + [X]2jk
,

(25)
in which Xij = aijb

⊤
ij is sparse, since aij ∈ Rn represents

the feature vector and bij ∈ Rm satisfying ∥bij∥0 = 1
denotes the label vector of the j-th sample in Di. The
concavity of fi increases as β increases. Note that the
regularizer ∥X∥1 (convex envelope of ∥X∥0 [15]) is non-
smooth for the sparse learned model.

In the testing stage, for the given feature vector, denoted
as a′ ∈ Rn, of an unknown class (whose true class number
is given by k′ = argmaxk{b′k, k ∈ [m]}), where b′k is the
k-th element of the true label vector b′ ∈ Rm. We compute
the following softmax function [6]

zk =
exp(x⊤

k a
′)∑m

j=1 exp(x
⊤
j a

′)
,∀k ∈ [m]. (26)

Then the correct decision is made if argmaxk{zk} = k′.
Finally, the overall testing accuracy is obtained as the correct
classification rate over the testing dataset.
Datasets: The benchmark dataset MNIST [19] is used,
which consists of 60,000 training samples and 10,000 testing
samples for which (m,n) = (10, 785). In our experiment, all
the training samples are uniformly distributed over N = 100
clients.
Parameter setting: The values of system parameters used
are K = 5, b = 30, ρ = 10, ηt = 1/

√
1 + t, T = 300,

δ = 10−5, ν = 10−2, γ = 10−4, and β = 10−2.
Benchmark algorithms: Some state-of-the-art algorithms,
including FedAvg-DP [5], SCAFFOLD-DP [20] and
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Fig. 1: Performance of the proposed FedPDM-DP for (a)
training loss and (b) testing accuracy under different values
of ϵ̄Ti ∈ {10, 20, 30} ∀i and “Without DP” (i.e., ξti = 0).

FedProx-DP [21], are also tested for performance compari-
son with the proposed FedPDM-DP algorithm.

B. Simulation Results

Impact of total privacy loss ϵ̄Ti : Figure 1 shows the
experimental results of the proposed FedPDM-DP algorithm.
One can observe that the training loss (testing accuracy) de-
creases (increases) with communication rounds; its learning
performance is better along with faster convergence rate for
larger ϵ̄Ti (i.e., weaker privacy protection level).

Performance comparison with benchmark algorithms:
Figure 2 shows the experimental results for performance
comparison of all the algorithms under test. The performance
trends w.r.t. communication rounds are consistent with
the observations in Figure 1. Furthermore, the proposed
FedPDM-DP significantly outperforms the other benchmark
algorithms for both cases (“without DP” case and the case of
ϵ̄Ti = 7). We would like to emphasize that the performance
gap between these two cases for the proposed FedPDM-
DP is much smaller than those of the other algorithms (cf.
Figs. (2a) and (2c) together with (2b) and (2d)), thanks to
∥X∥1 used in the loss function, implying stronger robustness
against the added artificial noise for our algorithm.

VI. CONCLUSIONS

We have presented a privacy-preserving primal-dual al-
gorithm (i.e., FedPDM-DP) for the FL problem involving
a non-convex loss function and a non-smooth regularizer.
In addition to analytical results presented for the proposed
FedPDM-DP, some experimental results were also provided
to demonstrate its superior learning performance over some
existing benchmark algorithms and its robustness against the
added artificial noise, as well as consistency with all the
analytical results.
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APPENDIX A
PROOF OF (13)

According to (8c), we have
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where (a), (b) and (c) hold because fi(xi), xi, λi, ∀i are
constants w.r.t. x0. ■

APPENDIX B
PROOF OF THEOREM 3

To prove the Theorem 3, we need the following two
lemmas and their proofs are omitted here due to the space
limitation.
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Lemma 3 Suppose that Assumptions 1-2 hold. Then,
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With P ({xt
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0, {λt
i}) defined in (21), we have the

following inferences:
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which is exactly (22), where (a), (b), (c) hold due to
Lemma 3, Lemma 2, and Assumption 1, respectively; θ1 =
min{B1, B2, B3, B4}, θ2 = max{B5, B6, B7, B8}; C0, C1,
C2, C3 and σ2 were defined in Theorem 3. ■
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