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ABSTRACT

Hyperspectral endmember extraction is a process to exéraatt
member signatures from the observed hyperspectral dataarea.
The presence of outliers in the data has been proved to paéa s
ous problem in endmember extraction. In this paper, unlieen-
tional outlier detectors which may be sensitive to windowisgs,
we propose a robust affine set fitting (RASF) algorithm fonjali-
mension reduction and outlier detection without any windetting.
Given the number of endmembers in advance, the RASF algorith
is to find a data-representative affine set from the corrupted,
while making the effects of outliers minimum, in the leagtrares
error sense. The proposed RASF algorithm is then combingd wi
Neyman-Pearson hypothesis testing, termed RASF-NP, ttoefiues-
timate the number of outliers present in the data. Compirnaula-
tions demonstrate the efficacy of the proposed method, amdpiact
on existing endmember extraction algorithms.

some probable outliers may be taken in the background regithre
window, the calculation of the background covariance masrinot
accurate anymore, leading to performance degradation chlBo-
rithm. To properly mitigate this problem, random-selectltased
anomaly detector (RSAD) [5] is reported to robustly compasek-
ground information, intending to take as few outliers imea in
background as possible. But it may spend much more compntati
time.

In this paper, we focus not only on the OD problem, but also
on the dimension reduction. We develop a robust affine satditt
(RASF) algorithm, a robust version of the affine set fittingA [6],
for joint dimension reduction and outlier detection. Assugnthe
number of endmembers and outliers are known in advance, RASF
is to find a contamination-free, data-representative affietefrom
the corrupted data, while minimizing the outlier effectghe least-
squares error sense. The proposed RASF algorithm doeslyotre
any sliding window setting, and is implemented by altemgpti-

Index Terms— Hyperspectral images, Robust dimension reduc-mization. Furthermore, we incorporate the estimation eftimber

tion, Endmember extraction

1. INTRODUCTION

In the past several years, endmember extraction using $yypetral
images has been widely investigated and proven to be valuabl
many applications, including geology, hydrology, urbaanpling,
geography, cadastral mapping, cartography, and militeryHlow-
ever, the presence of outliers in the hyperspectral datseistable
in practice, and may seriously affect the analysis of hypessal
data. The outliers are thought of as the pixels that appedeiate
markedly from the rest of the data. Two definitions of outpetels
have been presented in [2, 3]. The first one refers to the pikeit
provide constant or error readout, also called “dead” od"lmxels.
Possible causes include detector failure, errors duritg twansfer,
and improper data correction. The second one refers to dedspi
that have rather different spectral signatures from thédpacind
representative. These pixels are also commonly calleétsg the
domain of hyperspectral anomaly detection.

Present outlier detection (OD) methods conceptually deltec
outliers based on some sort of distance measure betweearsutl
and background representative. The RX algorithm [4], kn@asn
a benchmark OD algorithm, assumes that all the backgrouxa pi
vectors have the same multivariate normal distributior ases a
sliding window scheme to compute the background covariamee
trix. In the sliding window, the centered pixel and the refspigels
correspond to the tested target and background, respgctiviace
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of outliers in the RASF algorithm, by Neyman-Pearson hyesit
testing; the resulting algorithm will be called RASF-NRmBiations
will show the effectiveness of the proposed RASF and RASFaNP
gorithms, and comparison of the RASF-NP algorithm with RSAD
method [5], and the impact of the RASF-NP algorithm on some ex
isting benchmark endmember extraction algorithms (EEAS).
Notations: RY andR™*¥ denote set of reaN x 1 vectors
and set of realM x N matrices, respectively is the all-zero vec-
tor with proper dimensionly representdV x N identity matrix;
“|| - |I” stands for Euclidean normdy/(u, ) denotes the Gaussian
distribution with mean vectop: and covariance matri; Pg is
the orthogonal complement projector of mat€ [-] denotes the
ceiling function.

2. PROBLEM STATEMENT AND ASSUMPTIONS
Consider an\f x N linear spectral mixing model [7]:

yln] = As[n] + wln] + z[n],
=x[n]+wn]+2z[n], n=1,...,L, 1)
wherey[n] = [vi[n],...,ym[n] |¥ € RM is thenth observed
pixel vector comprisingy/ spectral bandsg[n]= As[n] is the noise
and outlier free counterpart, in whicA [a1,...,an ]| €
RM*N denotes the signature matrix whogh column vectora;
is the ith endmember signature (or simply, endmembef)] =

[ s1[n],...,sn[n] ¥ € RY is the nth abundance vector com-
prising N fractional abundanced, is the total number of pixels,
wln] = [win],...,wumn] ]T ~ N(0,0°Tr) whereo? is the

noise variance, and[n] denotes the outlier vector which only ap-



pears a7 pixels, i.e., (2) Problem (3) wir.t. variables{zn}ﬁ,l:

S
zln] 0, n € Z = {l1,....,0z}, ZH ] - %n) Zan, ®)
z[n] =0,n¢€ L\I7 num{zl7 zL}<Z

where£ = {1,2, ..., L} andZ is the set of outlier pixel indices. for any given{%,};_; C A(C_va)' It is trivial to see that the

Outlier-robust dimension reduction is to find an affine sptee  solution of the above problem is

sentation for the corruption-free datdn] from the corrupted data o 5 5

y[n] with prior knowledge ofN. Some general assumptions for Zn = { g[n] Xn, mE fl’ "é"éZ}Z 9)

analysis of hyperspectral images are as follows (&[t) s;[n] > 0 ’ neL\{b, ...z}

. . N . : ~
forall i andn; (A2) >_,_, si[n] = 1 for all n; (A3) min{L, M} > where /; is the index of theith largest value in(||y[1] —
N andA is of full column rank. Zally ooy 1L = RLl))-

As has been shown in [6], the affine hull of contaminatiorefre Wi i luti f probl 3) by handling the ab
pixelsx[n] is identical to that of endmembess, . .., an: € generate a solution of problem (.) y handling the above
two partial minimization problems alternatively until serstopping
A o criterion is met. The pseudo-codes of the RASF algorithm(3yr
A(C,d) = aff{x[1], .., x[L]} = aff{a, ..., an} ) are given in Table 1 (left part).
={Ca+d|acR" '},
4. ESTIMATION OF THE NUMBER OF OUTLIERS USING
for some(C,d) € RM*NV-1 « RM o € RV~!. The endmem- THE RASF ALGORITHM
ber affine set parametéC, d) has a closed-form solution for the This section proposes the RASF-NP algorithm that equipR&keF
case whenx([1],...,x[L] are available. However, what we have in algorithm with the capability of estimating the number otl@us
practice is the noisy, outlier-contaminated, observeelpiectors by using Neyman-Pearson hypothesis testing. Let us canide
{y[n]}E_,, and therefore obtaining an accurate estimatéGafd) RASF problem (3) withZ being replaced by an initial gueds.

from {y[n]}-, is a challenging problem. Suppose thak’ > Z andZ c {/1, ..., {x}. WhenK = Z, the cor-
responding RASF solutiofix,., z, }%_, is exactly a local optimal
- . L . . .
3. ROBUST AFFINE SET FITTING ALGORITHM approximation of{x[n], z[n]},,—;. Hence, it can be easily inferred

_ _ _ o from (9) that whenkK > Z, the rest of K — Z estimated outliers
In this section, we present the RASF algorithm for estinmatd  will be around zero ag[n] = 0 for pixel indices other than those in
(C,d) from {y[n]}/,_1, with the prior knowledge of the number of 7. Then, by (1) the fitting error vector of the RASF problem can b

outliersZ. Consider the RASF problem as follows: expressed as
e[n]| 2 y[n] —%n —2n =pn +wn],n=1,..., L, (10)
. 2
num{zf?}gﬁgz { xn ef{l(l(ljnd) vn Z lyln] =xn = 2nll2, } 3 wherep, £x[n] 4 z[n] — %, — 2. There are two observations on
cTo=1y e[n] given by (10) as follows:

wherenum{zi, ..., .} denotes the number of nonzero vectors in® T & = Z, e[n] can be approximated to a zero-mean Gaus-
{21, ..., z1}. The objective of (3) is to seek 4V —1)—dimensional sian random vector for abh # fi, i = 1,..., K; i.e, e[n] ~
affine setA(C, d) with the minimum projection error with respect ~ N(0,0°In), Vn € L\{¢1, ..., {x }.

to (w.r.t.) y[n] and with minimum effect of outlierg[n]. ltcanbe o If K < Z, there exists at least orén] ~ N (pn, 0%Irr), where
readily noted that problem (3) is nonconvex, and hence watrés ne E\{Zl, ...,éx}.

alternating optimization to handle problem (3) as follows: .
gop P 3) Define

(1) Problem (3) w.rt. variables {x,}%_,, C, and d: o =e[n]" (6’ 1) e[n], n=1, ..., L, (11)
where the noise power” is assumed to be known, and in practice, it

min Z I(y[n] = 2n) — %3 4  Canbeestimated by multiple regression method [8]. Wiveh Z,
xn€A(C,d), cTc=1y_; ’ Q) it is easy to see that,,Vn € £L\{/1, ..., {x } can be approximated
n=1,..L as central Chi-square random variabl€$/), otherwise there ex-
for any given{z,.., 7.} that satisfiesium{z.,...,2.} < Z. ists at least one,, for n € £L\{¢1, ..., {x } being non-central Chi-

square distributedVx?(M, w.,), where M denotes the degrees of

Following the proofin [6, Proposition 1], problem (4) candsewn freedom. Hence, we consider the following binary hypothésst-

to have an analytical solution given by

ing problem:
1 XL: ) Ho (K > Z): 1 ~X*(M), Vn € L\{l1,..., 0xc} (12a)
= - - Zn o ~
L~ Hi (K <Z): 31, ~Nx*(M, ), n€ L\{1,..., ix}.
- 12b
€ = [a1(UU"),q:(UU"), ..,an—1(UUT)],  (§) (120)
=CCT(y[n] =2, —d)+d, n=1,..., L, (7)  Sincep;, is unknown iNNx?(M, u,,), we use Neyman-Pearson
classifier rule for the above hypothesis testing problem:
whereU2([(y[1] — 21) — d, ..., (y[L] — 2z) — d], andq;(UU") Decide Ho if rn <1, Vn € L\{l1, ..., {x}, (13a)

denotes the unit-norm eigenvector associated withitthprincipal ) ) N N
eigenvalue olUU” . Decide H; if 3n € L\{¢1,..., £k} such that r, > n, (13b)



Table 1. The pseudo-codes of the proposed RASF and RASF-NP algmith

RASF Algorithm

RASF-NP Algorithm

Given A convergence tolerance > 0, hyperspectral datdy[n]}:_;,
the number of endmembep§, and the number of outliets.
Initialize z; = --- = 2z = 0, and iteration numbek := 1.

Update the solution of inner minimization problerd, C, and
{%x.}L_, by (5), (6), and (7), respectively.

Update the solution of outer minimization problei, }=_; by (9)
Calculate fitting errop(k) = S5, [|ly[n] — %n — 22|12

If k. =1or(o(k—1) —o(k))/o(k —1) > e, updatek by k + 1
and go tdS2, else output the approximate robust affine set parame
(€, d) and the outlier pixel indice = {/1, ...,z }.

S1.
S2.

S3.
S4.
S5.

teg5.

Given Upper and lower bounds of the number of outliéts, i,), the
number of endmembers, hyperspectral datgy[n]}~_,, the noise
covariance matrix>I,7, and the false alarm ratér 4.

Initialize K1 = [ (I, + up)/2] (an integer), and sét:= 1.
Obtain{x,,z[n]}4_;, (C,d) by the RASF, ane[n] by (10).
Compute{r, }=_, by (11) and find their maximum by (16).

If ¥(#) > Pra, updateu, := K, otherwise updatg, := K;. Then,
computeK; 11 = [(up + lo)/2].

If K; # Kit, updates i 4+ 1 and go toS2, else obtain the
estimateZ = K; and the estimatéC, d).

S1.
S2.
S3.
S4.

wheren is a parameter determined by the preassigned false alarin which each element of; is a zero-mean unit-variance Laplacian
rate Pr4. Denoting the probability density function (pdf) of the random variable, andis a scalar adjusted to satisfy signal-to-outlier

central Chi-square distribution b= (z, M), we define

V(rn/2, M/2)

r(mMm/2) (14)

P(rn) 2 /00 frz(x, M)dx =1 —

where~y(x/2, M/2) is the lower incomplete Gamma function [9].
Then, by Neyman-Pearson lemma [10], the optimal threshdtat
problem (13) must satisfy(n) = Pra. Although there is no closed-
form expression for the inverse functionf-), the decision rule in
(13) can be equivalently formulated as

Decide Ho if () < Pra, Vn € L\{l1, ..., Ix}, (15a)
Decide Hy if 3n € L\{¢1, ..., {x} such that 1)(r,) > Pea.

(15b)

By the decision rule (15), we need to test at mogt: ), ..., ¥ (rr) to

decide whether the curreff is overestimatiorfly (K > Z) or un-
derestimatior; (K < Z). Because)(-) is a monotone decreasing
function, we can further simplify the decision rule by defipi

P = max _ Tn, (16)
neLl\{{1,..., Li}
Then, hypothesis testing in (15) becomes
Decide Hy if t(#) > Prpa, (17a)
Decide Hy if 9(#) < Ppa. (17b)

_ o IxInllE/L
S llzlelI3/Z

The generation of outliers using Laplacian distributioriagulfill
the belief that the outliers should be heavily tailed in rilittion,
which is highly peaked at zero and falls off more slowly thaeu&-
sian distribution in the tail. When SNRSOR, the outlier pixels
y[ti], ..., y[¢z] are corrupted by the outliers|¢:], ..., z[¢z] more
seriously than the noise; otherwise, the case of SSRR means
that the effects of the outliers|¢1], ..., z[¢z] are smaller than the
noise effects, thereby making the outlier pixglg:], ..., y[¢z] not
much different from the rest of the observed pixel vectors.

Three performance indices were used in the simulations. The
distance between the true affine S61C, d) and the estimated affine
setA(C, d), denoted byD.g, for evaluation of the accuracy of the
RASF is defined as

ratio (SOR) specification, where
SOR =

(19)

|cC” — €CT|r . |P&d —Pgd||
Daff = n Tan’ (20)
V2 IPed| + [[P&d]l
where|| - ||» stands for Frobenius-norm. The first term, in range

[0, 1], is called theprojection F-norm [12] and it measures the dis-
tance between the range space(fand C, and the second term
in range|0, 1] quantifies the error betweeRsd and PEd. The
root-mean-square (rms) spectral angle distance betweenuhend-
members and estimated endmembers, denotedimydegrees), was

Oncey () is evaluated, one of the above two hypotheses is decidedised as an accuracy measure of EEAs [6]. The smaller thesvafue
The pseudo codes proposed RASF-NP algorithm are also given iD.g (0r ¢), the better the accuracy of the affine set estimates (or the

Table 1 (right part).
5. SIMULATION AND CONCLUSION

endmember estimates). The computation tifr{@é seconds) of each
algorithm (implemented in Mathworks Matlab R2008a) ruignima
desktop computer equipped with Core i7-930 CPU 2.80 GHzBL2G

Monte Carlo simulations of00 independent runs are presented tomemory is used as the computational complexity measure.
demonstrate the performance of the proposed RASF and RASF-N_ The first simulation examines the performance of the pragose
methods in this section. In each run, the observed data were s RASF with different choices of the number of outliefS. Fig-

thetically generated following (1) whe®¥ = 8 endmembers with

ure 1 shows the averagB.s of ASF and RASF withK

M = 224 bands were selected from the U.S. geological survey2%L, 5%L,8%L for Z = 5%L, SNR=15, 25, 35, 45, cc dB and

(USGS) library, the number of pixelsis set to1000, the abundance
vectors were generated following Dirichlet distributi@h, [and zero-
mean white Gaussian noise vectors were added for differgmals
to-noise ratios (SNRs), wheBNR = >°F_ ||x[n]||* /o> M L. Be-
sides, the outliers were also added to the noisy data, wheaitlier
indices(y, . .., ¢z were randomly selected frof, ..., L}, and the
associated outliers were generated by
zll;] =ckiy 1=1,. ..

2, (18)

SOR-415,25 dB. It can be observed that RASF algorithm perfectly
identifies the true affine set when SNR=and K > Z. One can
also notice that RASF outperforms ASF for all the valuegsofin-
der test when SOR SNR, and that the RASF algorithm in the case
of K > Z outperforms the case & < Z for SOR< SNR. This im-
plies that as long as the outlier pixels were corrupted blygyatmore
heavily than noise, the RASF algorithm can always mitigagedut-
lier effects. On the other hand, if the outliers have lowexg@othan
noise, they are simply treated as noise.



——ASF (SOR=15 dB)

Table 2. Performance comparison of average number of the outliers

07 :222E (gggfi: 22’ Efgft) 1 Z (%L) estimated by the RASF-NP algorithm and the RSAD algo-
06 —o—RASF ESOR;IS dB. K;S%‘ZJ | rithm, and7'(seconds) for true number of outliefs = 5%L, and
= ---ASF (SOR=25 dB) various SNRs and SORs.
J 05 - B - RASF (SOR=25 dB, K=2%L) ||
% - A-RASF (SOR=25 dB, K=5%L) SNR (dB)
% 0.4 - ©-RASF (SOR=25 dB, K=8%L) || SOR (dB) | Pra 15 25
S o5 RASF-NP | RSAD | RASF-NP | RSAD
© 10-* Z 5.00 5.00 5.00 5.00
02 T 2.56 53.37 1.39 45.61
o1 10 10-5 | 2 5.00 5.00 5.00 5.00
T 2.56 50.58 1.39 40.40
% 20 25 3 35 40 45 80 & 10-6 Z 5.00 4.99 5.00 5.00
SNR(dB) T 2.56 53.87 1.39 38.44
. . _ Z 1.00 0.02 5.00 5.00
Fig. 1. Performance comparison of averaBes of ASF and RASF 1074 e 0.93 50.44 075 5501
with different preset values dk for Z = 5%L, SOR= 15, 25 dB, 20 Tz 1.00 0.00 5.00 2.99
and various SNR values. 107 T 0.93 45.25 0.75 53.60
The second simulation evaluates the estimation accuragdy ar 1076 ? égg f607()4 8(7)2 5449297
computational efficiency of the proposed RASF-NP algoritinm : : : :

comparison with the existing RSAD algorithm [5]. Table 2 siso

the average number of outliers estimated by RASF-NP and RSADable 3. Performance comparison of ave[%gejegrees) over some
algorithms withPr4 = 10~*,1075,10~%, and the average compu- existing EEAs with RASF-NPRr4 = 10~°) used and ASF used

tation timeT" for Z = 5%L, SNR=15, 25 dB and SOR%0, 20 dB.

for Z = 5%L, SNR= 15 dB, and various SORs.

One can see that the estimated number of outieobtained by the
RASF-NP and RASD algorithms are quite comparable, but RASF-

NP spends much less computation time than RSAD in more than on
order. The reason is that RSAD repeatedly, randomly sepitts

as background and so will cost lots of computational time.révo
over, the two algorithms all perform well for SGESNR, but for

SOR>SNR, both of them do not perform well since most outliers

are treated as noise. We should emphasize again that urtik®R
only detects outliers, the proposed RASF-NP not only dsteat-

liers, but also provides the corruption-free affine set fionahsion
reduction.

Dimension SOR (dB)
EEAS | Reduction|[ 5 § [ 11 | 14 | 17
VA | RASF-NP | 543 | 3.37 | 3.44] 342 | 343
ASF | 17.31| 10.46 | 5.66 | 4.18 | 3.74
<A | RASF-NP | 501 | 309 | 3.09] 3.09| 313
ASF | 1539 958 | 5.11 | 3.55 | 3.22
RASENP | 5.14 | 322 | 321 322 3.24
N-FINDR | " \se | 17.33] 10.15| 5.05 | 3.57 | 3.30
RASE-NP | 548 | 321 | 320 | 323 3.25
AVMAX ASF | 17.41 1051 5.40 | 3.78 | 3.36
RASE-NP | 5.08 | 3.07 | 3.07| 3.07 | 3.11
SVMAX ASF | 17.46| 959 | 5.06 | 3.46 | 3.22

The third simulation investigates the impact of the propose
RASF-NP to some existing EEAs [1, 11]. Table 3 tabulates the a

erage¢ of VCA, SGA, N-FINDR, AVMAX, and SVMAX, with [3]
dimension reduction using RASF-NP algoritht®(s = 107°)
and ASF, forZ = 5%L, SNR= 15 dB and various SOR 4]

5,7,11,14,17 dB. It can be seen that the performances of all the
EEAs with ASF used improve as the SOR increases, and the RASF-
NP algorithm substantially boosts the performances ohalBEEAs [5]
in the presence of outliers. Besides, all the EEAs with RASF-
used perform equally well for all SORs, implying that the RFANP

can be in conjunction with any EEAs to provide better endmamb
estimates than the ASF.

In conclusion, we have presented the RASF algorithm fort join
dimension reduction and outlier removal, and the RASF-Nj@-al
rithm to estimate the number of outliers, apart from robuistesh-
sion reduction and outlier detection. The proposed RASFoMP
performs RSAD in terms of computational load by more than one
order, and any EEAs in conjunction with the former will prdei

(6]

[7]
(8]

better endmember estimates, especially for lower SORs. ol
[10]
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