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ABSTRACT

Hyperspectral endmember extraction is a process to extractend-
member signatures from the observed hyperspectral data of an area.
The presence of outliers in the data has been proved to pose a seri-
ous problem in endmember extraction. In this paper, unlike conven-
tional outlier detectors which may be sensitive to window settings,
we propose a robust affine set fitting (RASF) algorithm for joint di-
mension reduction and outlier detection without any windowsetting.
Given the number of endmembers in advance, the RASF algorithm
is to find a data-representative affine set from the corrupteddata,
while making the effects of outliers minimum, in the least-squares
error sense. The proposed RASF algorithm is then combined with
Neyman-Pearson hypothesis testing, termed RASF-NP, to further es-
timate the number of outliers present in the data. Computer simula-
tions demonstrate the efficacy of the proposed method, and its impact
on existing endmember extraction algorithms.

Index Terms— Hyperspectral images, Robust dimension reduc-
tion, Endmember extraction

1. INTRODUCTION

In the past several years, endmember extraction using hyperspectral
images has been widely investigated and proven to be valuable in
many applications, including geology, hydrology, urban planning,
geography, cadastral mapping, cartography, and military [1]. How-
ever, the presence of outliers in the hyperspectral data is inevitable
in practice, and may seriously affect the analysis of hyperspectral
data. The outliers are thought of as the pixels that appear todeviate
markedly from the rest of the data. Two definitions of outlierpixels
have been presented in [2, 3]. The first one refers to the pixels that
provide constant or error readout, also called “dead” or “bad” pixels.
Possible causes include detector failure, errors during data transfer,
and improper data correction. The second one refers to the pixels
that have rather different spectral signatures from the background
representative. These pixels are also commonly called targets in the
domain of hyperspectral anomaly detection.

Present outlier detection (OD) methods conceptually detect the
outliers based on some sort of distance measure between outliers
and background representative. The RX algorithm [4], knownas
a benchmark OD algorithm, assumes that all the background pixel
vectors have the same multivariate normal distribution, and uses a
sliding window scheme to compute the background covariancema-
trix. In the sliding window, the centered pixel and the rest of pixels
correspond to the tested target and background, respectively. Since
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some probable outliers may be taken in the background regionof the
window, the calculation of the background covariance matrix is not
accurate anymore, leading to performance degradation of RXalgo-
rithm. To properly mitigate this problem, random-selection-based
anomaly detector (RSAD) [5] is reported to robustly computeback-
ground information, intending to take as few outliers involved in
background as possible. But it may spend much more computation
time.

In this paper, we focus not only on the OD problem, but also
on the dimension reduction. We develop a robust affine set fitting
(RASF) algorithm, a robust version of the affine set fitting (ASF) [6],
for joint dimension reduction and outlier detection. Assuming the
number of endmembers and outliers are known in advance, RASF
is to find a contamination-free, data-representative affineset from
the corrupted data, while minimizing the outlier effects inthe least-
squares error sense. The proposed RASF algorithm does not rely on
any sliding window setting, and is implemented by alternating opti-
mization. Furthermore, we incorporate the estimation of the number
of outliers in the RASF algorithm, by Neyman-Pearson hypothesis
testing; the resulting algorithm will be called RASF-NP. Simulations
will show the effectiveness of the proposed RASF and RASF-NPal-
gorithms, and comparison of the RASF-NP algorithm with RSAD
method [5], and the impact of the RASF-NP algorithm on some ex-
isting benchmark endmember extraction algorithms (EEAs).

Notations: R
N andR

M×N denote set of realN × 1 vectors
and set of realM × N matrices, respectively;0 is the all-zero vec-
tor with proper dimension;IN representsN × N identity matrix;
“‖ · ‖” stands for Euclidean norm;N (µ,Σ) denotes the Gaussian
distribution with mean vectorµ and covariance matrixΣ; P⊥

C is
the orthogonal complement projector of matrixC; d·e denotes the
ceiling function.

2. PROBLEM STATEMENT AND ASSUMPTIONS

Consider anM ×N linear spectral mixing model [7]:

y[n] = As[n] +w[n] + z[n],

= x[n] +w[n] + z[n], n = 1, . . . , L, (1)

wherey[n] = [ y1[n], . . . , yM [n] ]T ∈ R
M is thenth observed

pixel vector comprisingM spectral bands,x[n],As[n] is the noise
and outlier free counterpart, in whichA = [ a1, . . . ,aN ] ∈
R

M×N denotes the signature matrix whoseith column vectorai

is the ith endmember signature (or simply, endmember),s[n] =
[ s1[n], . . . , sN [n] ]T ∈ R

N is the nth abundance vector com-
prisingN fractional abundances,L is the total number of pixels,
w[n] = [ w1[n], . . . , wM [n] ]T ∼ N (0, σ2IM ) whereσ2 is the
noise variance, andz[n] denotes the outlier vector which only ap-



pears atZ pixels, i.e.,

z[n] 6= 0, n ∈ I , {`1, ..., `Z},
z[n] = 0, n ∈ L \ I,

whereL = {1, 2, ..., L} andI is the set of outlier pixel indices.
Outlier-robust dimension reduction is to find an affine set repre-

sentation for the corruption-free datax[n] from the corrupted data
y[n] with prior knowledge ofN . Some general assumptions for
analysis of hyperspectral images are as follows [7]:(A1) si[n] ≥ 0

for all i andn; (A2)
∑N

i=1 si[n] = 1 for all n; (A3) min{L,M} ≥
N andA is of full column rank.

As has been shown in [6], the affine hull of contamination-free
pixelsx[n] is identical to that of endmembersa1, . . . ,aN :

A(C,d) , aff{x[1], ...,x[L]} = aff{a1, . . . ,aN} (2)

= {Cα+ d | α ∈ R
N−1

}

,

for some(C,d) ∈ R
M×(N−1) × R

M , α ∈ R
N−1. The endmem-

ber affine set parameter(C,d) has a closed-form solution for the
case whenx[1], . . . ,x[L] are available. However, what we have in
practice is the noisy, outlier-contaminated, observed pixel vectors
{y[n]}Ln=1, and therefore obtaining an accurate estimate of(C,d)
from {y[n]}Ln=1 is a challenging problem.

3. ROBUST AFFINE SET FITTING ALGORITHM

In this section, we present the RASF algorithm for estimation of
(C,d) from {y[n]}Ln=1, with the prior knowledge of the number of
outliersZ. Consider the RASF problem as follows:

min
num{z1,...,zL}≤Z

{

min
xn∈A(C,d),∀n

C
T
C=IN−1

L
∑

n=1

‖y[n] − xn − zn‖22,
}

(3)

wherenum{z1, ..., zL} denotes the number of nonzero vectors in
{z1, ..., zL}. The objective of (3) is to seek an(N−1)−dimensional
affine setA(C,d) with the minimum projection error with respect
to (w.r.t.) y[n] and with minimum effect of outliersz[n]. It can be
readily noted that problem (3) is nonconvex, and hence we resort to
alternating optimization to handle problem (3) as follows:

(1) Problem (3) w.r.t. variables {xn}Ln=1, C, and d:

min
xn∈A(C,d), C

T
C=IN−1

n=1,...,L

L
∑

n=1

‖(y[n]− ẑn)− xn‖22, (4)

for any given{ẑ1, ..., ẑL} that satisfiesnum{ẑ1, ..., ẑL} ≤ Z.
Following the proof in [6, Proposition 1], problem (4) can beshown
to have an analytical solution given by

d̂ =
1

L

L
∑

n=1

(y[n]− ẑn), (5)

Ĉ = [q1(UU
T ),q2(UU

T ), ...,qN−1(UU
T )], (6)

x̂n = ĈĈ
T (y[n]− ẑn − d̂) + d̂, n = 1, ..., L, (7)

whereU,[(y[1]− ẑ1)− d̂, ..., (y[L]− ẑL)− d̂], andqi(UUT )
denotes the unit-norm eigenvector associated with theith principal
eigenvalue ofUUT .

(2) Problem (3) w.r.t. variables {zn}Ln=1:

min
num{z1,...,zL}≤Z

L
∑

n=1

‖(y[n]− x̂n)− zn‖22, (8)

for any given{x̂n}Ln=1 ⊂ A(Ĉ, d̂). It is trivial to see that the
solution of the above problem is

ẑn =

{

y[n]− x̂n, n ∈ {ˆ̀1, ..., ˆ̀Z}
0, n ∈ L \ {ˆ̀1, ..., ˆ̀Z}

(9)

where ˆ̀
i is the index of theith largest value in(‖y[1] −

x̂1‖, ..., ‖y[L]− x̂L‖).
We generate a solution of problem (3) by handling the above

two partial minimization problems alternatively until some stopping
criterion is met. The pseudo-codes of the RASF algorithm for(3)
are given in Table 1 (left part).

4. ESTIMATION OF THE NUMBER OF OUTLIERS USING
THE RASF ALGORITHM

This section proposes the RASF-NP algorithm that equips theRASF
algorithm with the capability of estimating the number of outliers
by using Neyman-Pearson hypothesis testing. Let us consider the
RASF problem (3) withZ being replaced by an initial guessK.
Suppose thatK ≥ Z andI ⊂ {ˆ̀1, ..., ˆ̀K}. WhenK = Z, the cor-
responding RASF solution{x̂n, ẑn}Ln=1 is exactly a local optimal
approximation of{x[n], z[n]}Ln=1 . Hence, it can be easily inferred
from (9) that whenK > Z, the rest ofK − Z estimated outliers
will be around zero asz[n] = 0 for pixel indices other than those in
I. Then, by (1) the fitting error vector of the RASF problem can be
expressed as

e[n] , y[n]− x̂n − ẑn = µn +w[n], n = 1, ..., L, (10)

whereµn,x[n] + z[n] − x̂n − ẑn. There are two observations on
e[n] given by (10) as follows:

• If K ≥ Z, e[n] can be approximated to a zero-mean Gaus-
sian random vector for alln 6= ˆ̀

i, i = 1, . . . ,K; i.e., e[n] ∼
N (0, σ2IM ), ∀n ∈ L\{ˆ̀1, ..., ˆ̀K}.

• If K < Z, there exists at least onee[n] ∼ N (µn, σ
2IM ), where

n ∈ L\{ˆ̀1, ..., ˆ̀K}.

Define
rn = e[n]T (σ2

IM )−1
e[n], n = 1, ..., L, (11)

where the noise powerσ2 is assumed to be known, and in practice, it
can be estimated by multiple regression method [8]. WhenK ≥ Z,
it is easy to see thatrn,∀n ∈ L\{ˆ̀1, ..., ˆ̀K} can be approximated
as central Chi-square random variablesχ2(M), otherwise there ex-
ists at least onern for n ∈ L\{ˆ̀1, ..., ˆ̀K} being non-central Chi-
square distributedNχ2(M,µn), whereM denotes the degrees of
freedom. Hence, we consider the following binary hypothesis test-
ing problem:

H0 (K ≥ Z) : rn ∼ χ2(M), ∀n ∈ L\{ˆ̀1, ..., ˆ̀K} (12a)

H1 (K < Z) : ∃ rn ∼ Nχ2(M,µn), n ∈ L\{ˆ̀1, . . . , ˆ̀K}.
(12b)

Sinceµn is unknown inNχ2(M,µn), we use Neyman-Pearson
classifier rule for the above hypothesis testing problem:

DecideH0 if rn < η, ∀n ∈ L\{ˆ̀1, ..., ˆ̀K}, (13a)

DecideH1 if ∃n ∈ L\{ˆ̀1, . . . , ˆ̀K} such that rn > η, (13b)



Table 1. The pseudo-codes of the proposed RASF and RASF-NP algorithms.

RASF Algorithm RASF-NP Algorithm

Given A convergence toleranceε > 0, hyperspectral data{y[n]}Ln=1,
the number of endmembersN , and the number of outliersZ.

S1. Initialize ẑ1 = · · · = ẑL = 0, and iteration numberk := 1.
S2. Update the solution of inner minimization problem,d̂, Ĉ, and

{x̂n}Ln=1 by (5), (6), and (7), respectively.
S3. Update the solution of outer minimization problem{ẑn}Ln=1 by (9)

S4. Calculate fitting error%(k) =
∑L

n=1 ‖y[n] − x̂n − ẑn‖2.
S5. If k = 1 or (%(k − 1) − %(k))/%(k − 1) > ε , updatek by k + 1

and go toS2, else output the approximate robust affine set parameters
(Ĉ, d̂) and the outlier pixel indiceŝI = {ˆ̀1, ..., ˆ̀Z}.

Given Upper and lower bounds of the number of outliers(up, lo), the
number of endmembersN , hyperspectral data{y[n]}Ln=1, the noise
covariance matrixσ2IM , and the false alarm ratePFA.

S1. InitializeK1 = d(lo + up)/2e (an integer), and seti := 1.

S2. Obtain{x̂n, ẑ[n]}Ln=1, (Ĉ, d̂) by the RASF, ande[n] by (10).
S3. Compute{rn}Ln=1 by (11) and find their maximum̂r by (16).
S4. If ψ(r̂) > PFA, updateup := Ki, otherwise updatelo := Ki. Then,

computeKi+1 = d(up + lo)/2e.
S5. If Ki 6= Ki+1, updatei := i + 1 and go toS2, else obtain the

estimateẐ = Ki and the estimate(Ĉ, d̂).

whereη is a parameter determined by the preassigned false alarm
ratePFA. Denoting the probability density function (pdf) of the
central Chi-square distribution byfχ2(x,M), we define

ψ(rn) ,

∫ ∞

rn

fχ2(x,M)dx = 1− γ(rn/2,M/2)

Γ(M/2)
, (14)

whereγ(x/2,M/2) is the lower incomplete Gamma function [9].
Then, by Neyman-Pearson lemma [10], the optimal thresholdη for
problem (13) must satisfyψ(η) = PFA. Although there is no closed-
form expression for the inverse function ofψ(·), the decision rule in
(13) can be equivalently formulated as

DecideH0 if ψ(rn) < PFA, ∀n ∈ L\{ˆ̀1, ..., ˆ̀K}, (15a)

DecideH1 if ∃n ∈ L\{ˆ̀1, . . . , ˆ̀K} such that ψ(rn) > PFA.
(15b)

By the decision rule (15), we need to test at mostψ(r1), ..., ψ(rL) to
decide whether the currentK is overestimationH0 (K ≥ Z) or un-
derestimationH1 (K < Z). Becauseψ(·) is a monotone decreasing
function, we can further simplify the decision rule by defining

r̂ = max
n∈L\{ˆ̀1,..., ˆ̀

K}
rn, (16)

Then, hypothesis testing in (15) becomes

DecideH0 if ψ(r̂) > PFA, (17a)

DecideH1 if ψ(r̂) < PFA. (17b)

Onceψ(r̂) is evaluated, one of the above two hypotheses is decided.
The pseudo codes proposed RASF-NP algorithm are also given in
Table 1 (right part).

5. SIMULATION AND CONCLUSION

Monte Carlo simulations of100 independent runs are presented to
demonstrate the performance of the proposed RASF and RASF-NP
methods in this section. In each run, the observed data were syn-
thetically generated following (1) whereN = 8 endmembers with
M = 224 bands were selected from the U.S. geological survey
(USGS) library, the number of pixelsL is set to1000, the abundance
vectors were generated following Dirichlet distribution [6], and zero-
mean white Gaussian noise vectors were added for different signal-
to-noise ratios (SNRs), whereSNR =

∑L

n=1 ‖x[n]‖2/σ2ML. Be-
sides, the outliers were also added to the noisy data, where the outlier
indices`1, . . . , `Z were randomly selected from{1, . . . , L}, and the
associated outliers were generated by

z[`i] = cκi, i = 1, . . . , Z, (18)

in which each element ofκi is a zero-mean unit-variance Laplacian
random variable, andc is a scalar adjusted to satisfy signal-to-outlier
ratio (SOR) specification, where

SOR =

∑L

n=1 ‖x[n]‖22/L
∑Z

i=1 ‖z[`i]‖22/Z
. (19)

The generation of outliers using Laplacian distribution isto fulfill
the belief that the outliers should be heavily tailed in distribution,
which is highly peaked at zero and falls off more slowly than Gaus-
sian distribution in the tail. When SNR≥SOR, the outlier pixels
y[`1], ...,y[`Z ] are corrupted by the outliersz[`1], ..., z[`Z ] more
seriously than the noise; otherwise, the case of SOR≥SNR means
that the effects of the outliersz[`1], ..., z[`Z ] are smaller than the
noise effects, thereby making the outlier pixelsy[`1], ...,y[`Z ] not
much different from the rest of the observed pixel vectors.

Three performance indices were used in the simulations. The
distance between the true affine setA(C,d) and the estimated affine
setA(Ĉ, d̂), denoted byDaff , for evaluation of the accuracy of the
RASF is defined as

Daff =
‖CCT − ĈĈT ‖F√

2
+

‖P⊥
Cd−P⊥

Ĉ
d̂‖

‖P⊥
C
d‖+ ‖P⊥

Ĉ
d̂‖
, (20)

where‖ · ‖F stands for Frobenius-norm. The first term, in range
[0, 1], is called theprojection F-norm [12] and it measures the dis-
tance between the range space ofC and Ĉ, and the second term
in range[0, 1] quantifies the error betweenP⊥

Cd andP⊥
Ĉ
d̂. The

root-mean-square (rms) spectral angle distance between the true end-
members and estimated endmembers, denoted byφ (in degrees), was
used as an accuracy measure of EEAs [6]. The smaller the values of
Daff (or φ), the better the accuracy of the affine set estimates (or the
endmember estimates). The computation timeT (in seconds) of each
algorithm (implemented in Mathworks Matlab R2008a) running in a
desktop computer equipped with Core i7-930 CPU 2.80 GHz, 12GB
memory is used as the computational complexity measure.

The first simulation examines the performance of the proposed
RASF with different choices of the number of outliersK. Fig-
ure 1 shows the averageDaff of ASF and RASF withK =
2%L, 5%L, 8%L for Z = 5%L, SNR=15, 25, 35, 45,∞ dB and
SOR=15, 25 dB. It can be observed that RASF algorithm perfectly
identifies the true affine set when SNR=∞ andK ≥ Z. One can
also notice that RASF outperforms ASF for all the values ofK un-
der test when SOR≤ SNR, and that the RASF algorithm in the case
ofK ≥ Z outperforms the case ofK < Z for SOR≤SNR. This im-
plies that as long as the outlier pixels were corrupted by outliers more
heavily than noise, the RASF algorithm can always mitigate the out-
lier effects. On the other hand, if the outliers have lower power than
noise, they are simply treated as noise.
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Fig. 1. Performance comparison of averageDaff of ASF and RASF
with different preset values ofK for Z = 5%L, SOR= 15, 25 dB,
and various SNR values.

The second simulation evaluates the estimation accuracy and
computational efficiency of the proposed RASF-NP algorithmin
comparison with the existing RSAD algorithm [5]. Table 2 shows
the average number of outliers estimated by RASF-NP and RSAD
algorithms withPFA = 10−4, 10−5, 10−6, and the average compu-
tation timeT for Z = 5%L, SNR=15, 25 dB and SOR=10, 20 dB.
One can see that the estimated number of outliersẐ obtained by the
RASF-NP and RASD algorithms are quite comparable, but RASF-
NP spends much less computation time than RSAD in more than one
order. The reason is that RSAD repeatedly, randomly selectspixels
as background and so will cost lots of computational time. More-
over, the two algorithms all perform well for SOR<SNR, but for
SOR>SNR, both of them do not perform well since most outliers
are treated as noise. We should emphasize again that unlike RSAD
only detects outliers, the proposed RASF-NP not only detects out-
liers, but also provides the corruption-free affine set for dimension
reduction.

The third simulation investigates the impact of the proposed
RASF-NP to some existing EEAs [1, 11]. Table 3 tabulates the av-
erageφ of VCA, SGA, N-FINDR, AVMAX, and SVMAX, with
dimension reduction using RASF-NP algorithm (PFA = 10−6)
and ASF, forZ = 5%L, SNR= 15 dB and various SOR=
5, 7, 11, 14, 17 dB. It can be seen that the performances of all the
EEAs with ASF used improve as the SOR increases, and the RASF-
NP algorithm substantially boosts the performances of all the EEAs
in the presence of outliers. Besides, all the EEAs with RASF-NP
used perform equally well for all SORs, implying that the RASF-NP
can be in conjunction with any EEAs to provide better endmember
estimates than the ASF.

In conclusion, we have presented the RASF algorithm for joint
dimension reduction and outlier removal, and the RASF-NP algo-
rithm to estimate the number of outliers, apart from robust dimen-
sion reduction and outlier detection. The proposed RASF-NPout-
performs RSAD in terms of computational load by more than one
order, and any EEAs in conjunction with the former will provide
better endmember estimates, especially for lower SORs.
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10−6 Ẑ 5.00 4.99 5.00 5.00
T 2.56 53.87 1.39 38.44
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