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ABSTRACT
Hyperspectral unmixing (HU) is a process to extract the underlying
endmember signatures (or simply endmembers) and the correspond-
ing proportions (abundances) from the observed hyperspectral data
cloud. The Craig’s criterion (minimum volume simplex enclosing
the data cloud) and the Winter’s criterion (maximum volume sim-
plex inside the data cloud) are widely used for HU. For perfect iden-
tifiability of the endmembers, we have recently shown in [1] that the
presence of pure pixels (pixels fully contributed by a single endmem-
ber) for all endmembers is both necessary and sufficient condition
for Winter’s criterion, and is a sufficient condition for Craig’s crite-
rion. A necessary condition for endmember identifiability (EI) when
using Craig’s criterion remains unsolved even for three-endmember
case. In this work, considering a three-endmember scenario, we en-
deavor a statistical analysis to identify a necessary and statistically
sufficient condition on the purity level (a measure of mixing levels
of the endmembers) of the data, so that Craig’s criterion can guar-
antee perfect identification of endmembers. Precisely, we prove that
a purity level strictly greater than 1/

√
2 is necessary for EI, while

the same is sufficient for EI with probability-1. Since the presence
of pure pixels is a very strong requirement which is seldom true in
practice, the results of this analysis foster the practical applicability
of Craig’s criterion over Winter’s criterion, to real-world problems.

Index Terms— Hyperspectral unmixing, minimum volume en-
closing simplex, purity level, endmember identifiability, statistical
analysis

1. INTRODUCTION

Hyperspectral unmixing (HU) is a powerful multidimensional im-
age analysis tool to dissect and characterize the endmember signa-
tures (reflection coefficients of a material) and their corresponding
abundances (fractional distributions of a material), from the mea-
sured hyperspectral data [2]. The applications of HU include space
object identification, military surveillance, retinal analysis, etc., [3].
Based on the seminal works of Craig [4] and Winter [5], a number
of powerful HU algorithms have been proposed, and they are re-
cently summarized in [6]. The Craig’s criterion in [4] (and the Win-
ter’s criterion in [5]) claims that the vertices of the minimum volume
simplex enclosing the hyperspectral data cloud (the vertices of the
maximum volume simplex inside the data cloud) will yield high fi-
delity estimates of the endmembers. The Craig’s criterion and the
Winter’s criterion were theoretically analyzed recently in [1], where
the necessary and sufficient condition for endmember identifiability
(EI) (which is the ability to yield the true endmembers) using Win-
ter’s criterion is shown to be the existence of pure pixels (pixels that
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are completely contributed by a single endmember) for all endmem-
bers. In reality, the presence of pure pixels for all the endmembers is
seldom true and hence draws a limit on the practical applicability of
Winter’s criterion.

In [1], it has also been proved that the existence of pure pixels
for all the endmembers is a sufficient condition for EI of Craig’s cri-
terion. But, intuitively, geometrically, and by simulations, it can be
verified that Craig’s criterion can yield perfect identifiability even
when the sources are (relatively) highly mixed [7]. However, theo-
retical analysis of the condition on the mixing level of the sources
(i.e., purity levels) for the Craig’s criterion to yield the endmember
is complicated and remains unsolved for about two decades. In this
work, considering a three-source case, we statistically analyze the
conditions on the data purity level for which the Craig’s criterion
can uniquely identify the true endmembers. We begin by studying
the relationship between the observations and their corresponding
abundances. Then, under a statistical framework, by exploiting the
convex geometry of the abundances and by analyzing the property
of the minimum volume enclosing simplex (MVES), we derive the
conditions for EI of Craig’s criterion.

Notations: RM and Z+ represent the set of real M × 1 vectors
and nonnegative integers, respectively. The symbol ‖ · ‖ represents
the Euclidean norm. ei is a unit vector with the ith entry equal to 1.
Convex hull and affine hull [8] of a set of vectors a1, . . . ,aN is rep-
resented as conv{a1, . . . ,aN}, and aff{a1, . . . ,aN}, respectively.
The relative interior and relative boundary of a set A are denoted
as int(A) and bd(A), respectively. Pr{·} denotes the probability
function.

2. SIGNAL MODEL AND ASSUMPTIONS

For the purpose of analysis, we consider a noise-free signal model.
Following a linear mixing model [1]- [6], each pixel vector (or sim-
ply pixel, for convenience) in the observed data xn can be repre-
sented as:

xn = Asn =

N
∑

i=1

sinai, ∀n = 1, . . . , L, (1)

where xn = [x1n, . . . , xMn]
T denotes the nth observed pixel

vector comprising M spectral bands, ai is the ith endmember
signature, sn = [s1n, . . . , sNn]

T ∈ RN is the nth abundance vector
comprising N fractional abundances, and L is the total number
of observed pixels. Standard assumptions pertaining to the signal
model in (1) are (A1) sin ≥ 0, ∀i, n; (A2)

∑N
i=1

sin = 1, ∀n; (A3)
M ≥ N , and A = [a1, . . . ,aN ], where ai is the ith endmember,
is of full column rank [1], [2], [6], [7]. Under (A1) and (A2), it
can be noted that the observed pixels xn are convex combinations
of a1, . . . ,aN , with s1n, . . . , sNn as the unique combining coeffi-
cients, for each xn. In other words, xn ∈ conv{a1, . . . ,aN}, ∀n,
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and by (A3) conv{a1, . . . ,aN} is a simplex [9] [10]. As there exists
a one-to-one relationship between xn and sn, for all n, the ensuing
EI analysis will be based on sn. As a first step in this direction of
EI, in this work, we will consider N = 3 (in which case the simplex
conv{a1,a2,a3} is a triangle and its interior) and L → ∞ (note
that the number of pixels can be very large in reality [2]). Precisely,
our aim is to find the conditions on sn, for which the vertices of the
minimum volume simplex enclosing xn, for all n (Craig’s criterion)
will exactly be {a1,a2,a3}. Below, we define some parameters,
sets, and their properties (some illustrated in Figure 1), which will
be extensively used in the ensuing analysis.

Definitions and Properties:

• Given an observed data xn, we define its pixel purity index to be
ρn , ‖sn‖, where sn is the corresponding abundance vector of
xn. ρn ∈ [1/

√
N = 1/

√
3, 1] and the bounds are due to (A1)

and (A2) [7].

• ρn indicates the quantitative dominance of an endmember ai in
the observed data xn =

∑

3

i=1
sinai [7]. For instance, ρn = 1

indicates that the pixel is completely dominated by an endmember
and ρn = 1/

√
3 indicates that the pixel is heavily mixed, as it is

equally contributed by all the 3 endmembers.

• Let Te , {s = [s1, s2, s3]
T ∈ R3|si ≥ 0,

∑3

i=1
si = 1} =

conv{e1, e2, e3}, where e1, e2, e3 ∈ R3. Note that Te is an equi-
lateral triangle.

• For each ρ ∈ [1/
√
3, 1], let R(ρ) , Te

⋂{s ∈ R3| ‖s‖ ≤ ρ}.
Then, R(ρ1) ⊆ R(ρ2), ∀1/

√
3 ≤ ρ1 ≤ ρ2 ≤ 1.

• Let C(ρ) , aff{e1, e2, e3}
⋂{s ∈ R3| ‖s‖ ≤ ρ}, which is a

nonempty disc when ρ ∈ [1/
√
3, 1], and let r(ρ) be its radius. It

is obvious that C(ρ1) ⊆ C(ρ2), ∀1/
√
3 ≤ ρ1 ≤ ρ2 ≤ 1.

• As Te ⊆ aff{e1, e2, e3}, note that R(ρ) = Te

⋂ C(ρ). Also
R(1) = Te and R(ρ) = C(ρ), ∀ρ ∈ [1/

√
3, 1/

√
2].

• For each simplex T in aff{a1,a2,a3} or aff{e1, e2, e3}, we de-
fine vol(T ) to be the Lebesgue measure of T with respect to its
affine hull [11]. In our case of N = 3, vol(T ) is just the area of
T .

• Note that C(1/
√
2) is exactly the inner tangent circle of the equi-

lateral triangle Te, and thus [12]

vol(Te) = 3
√
3r2(1/

√
2). (2)

e1
[1, 0, 0]

e2
[0, 1, 0]

e3
[0, 0, 1]

r(ρ)

C(ρ)
R(ρ)

TeR3

Fig. 1. Figure illustrating some notations used in the sequel.

• Let Ta , conv{a1,a2,a3} ⊆ RM be the simplex that has ver-
tices a1, a2, and a3. Also by (A1) and (A2), xn ∈ Ta and
sn ∈ Te, for all n.

• We can define a one-to-one transformation T : R3 → RM , to be
the unique linear transformation such that T (ei) = ai for i =
1, 2, 3. Clearly, T (v) = Av for each v ∈ R3. Therefore, each
vector in Te can be uniquely mapped to a vector in Ta, and vice
versa.

• Since T is linear and it maps the aff{e1, e2, e3} onto the
aff{a1,a2,a3}, due to (A3), there exists a positive number α > 0
such that

vol(T (Tg)) = α · vol(Tg), ∀ Tg ⊆ aff{e1, e2, e3}, (3)

vol(T−1(Th)) = α−1 · vol(Th),∀ Th ⊆ aff{a1, a2,a3}, (4)

where Tg and Th are simplexes. To determine the con-
stant α, we note that vol(Ta) = vol(conv{a1, a2,a3}) =
vol(T (conv{e1, e2, e3})) = α · vol(conv{e1, e2, e3}), and thus
α = vol(Ta)/vol(Te).

• For each bounded subset U in aff{a1,a2,a3} or aff{e1, e2, e3},
let MVES(U) be the collection of all the minimum volume en-
closing simplexes (triangles for N = 3) that contain U .

• For a given set U ⊆ R3, the conv(U) is defined as the the inter-
section of all the convex sets which contain U [13].

• Let XL , {x1, . . . ,xL} denotes a data set, and define the abun-
dance set of XL to be SL , {s1, . . . , sL} where sn is the corre-
sponding abundance vector of xn.

Now we can proceed to define a very important concept called
purity level.

Definition 1 (Purity Level) A data set XL is said to have purity level
ρ ∈ [1/

√
3, 1], if each vector in its corresponding abundance set SL

is independently generated with a probability density function (pdf)
f : R(ρ) → [0,∞) that satisfies

(A4)
∫

s∈D
f(s)ds > 0, ∀D ⊆ R(ρ) with vol(D) > 0. (5)

More generally, for a set, limL→∞ XL, with purity level ρ, it can be
shown that

Pr{sup{ lim
L→∞

{ρ1, . . . , ρL}} = ρ} = 1, (6)

where sup{·} denotes supremum of a set and ρn is the pixel purity
index of xn ∈ XL. Also note that the pdf in (5) is also very gen-
eral and any meaningful pdf for sn will satisfy (5). For instance, the
Dirichlet distribution considered in [14] (for sn) satisfies this prop-
erty. The following well-know property [12] will be handy in the EI
analysis presented in Section 3:

Property 1 If C is a disc with radius r, then MVES(C) is exactly the
collection of all equilateral triangles with bd(C) as its inner tangent
circle, and they have volume 3

√
3r2. Conversely, if a triangle T ⊃

C and vol(T ) = 3
√
3r2, then T must be an equilateral triangle.

3. ENDMEMBER IDENTIFIABILITY OF MVES

In this section, we will derive the conditions for perfect EI of the
Craig’s criterion under the premises of (A1) to (A4). The main re-
sults are given in the following theorem:

Theorem 1 Assume that the data set XL has purity level ρ ∈
[1/

√
3, 1], for any L ∈ Z+, and ρ? , 1/

√
2. Then the following

statements are true for endmember identifiability of Craig’s crite-
rion:
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(S1): If MVES(XL) = {Ta}, then ρ > ρ?.

(S2): If ρ > ρ?, then Pr{MVES(X ) = {Ta}} = 1, where X ,

limL→∞ XL.

Proof: We begin to prove Theorem 1 by first observing the mu-
tual uniqueness of Ta and Te, as stated and proved in the following
Lemma:

Lemma 1 (Mutual Uniqueness Property)

(L1): MVES(XL) = {Ta} if and only if MVES(SL) = {Te},

(L2): MVES(X ) = {Ta} if and only if MVES(S) = {Te}, where
S , limL→∞ SL.

The proof of Lemma 1 is presented in Appendix 4.1. Due to the
mutual uniqueness of the MVES of XL and SL, by considering SL

we can prove (S1) by contradiction, as follows:
Suppose that 1/

√
3 ≤ ρ ≤ 1/

√
2. Then, according to (A4), we

have SL ⊆ R(ρ) = C(ρ), which implies

vol
(

U
)

≤ vol
(

V
)

,∀U ∈ MVES(SL), ∀V ∈ MVES(R(ρ)). (7)

Furthermore, since R(ρ) = C(ρ) is a disc with radius r(ρ) when
1/

√
3 ≤ ρ ≤ 1/

√
2, we have from Property 1 that MVES

(

R(ρ)
)

is the collection of all equilateral triangles with bd
(

R(ρ)
)

as inner
tangent circle. As a result (from (2)),

vol
(

V
)

= 3
√
3r2(ρ) ≤ vol(Te),∀V ∈ MVES(R(ρ)). (8)

By (7) and (8), vol
(

U
)

≤ vol(Te) for all U ∈ MVES(SL). Ob-
viously when the strict inequality holds, Te 6∈ MVES(SL). On the
other hand, when the inequality holds with equality, all the elements
in MVES

(

R(ρ)
)

, which are infinitely many, are MVES of SL, so
MVES(SL) 6= {Te}, which, along with (L1) of Lemma 1, com-
pletes the proof of (S1) in Theorem 1.

The proof of (S2) of Theorem 1 involves the randomness of SL.
In view of this, we are motivated to study the EI in asymptotic sense.
The key result for this proof is stated and proved in the following
lemma.

Lemma 2 Suppose that XL has purity level ρ ∈ [1/
√
3, 1]. Then,

Pr
{

int(R(ρ)) ⊆ conv(S) ⊆ R(ρ)
}

= 1. (9)

The proof of Lemma 2 is presented in Appendix 4.2. As it is obvious
that MVES(R(ρ)) = MVES(int(R(ρ))) and MVES(conv(S)) =
MVES(S), then from Lemma 2 we have

Pr
{

MVES(S) = MVES(R(ρ))
}

= 1. (10)

The above result in (10), relates the EI by the MVES of S to that
by the MVES of R(ρ), where the latter is deterministic and hence
more tractable. Indeed, we can identify the necessary and sufficient
condition on the purity level ρ for the EI by the MVES of R(ρ) as
described in Lemma 3 below.

Lemma 3 MVES(R(ρ)) = {Te} if and only if ρ ∈ (1/
√
2, 1].

The proof of Lemma 3 is presented in Appendix 4.3. Combining
(10) and Lemma 3, we can obtain

Pr
{

MVES(S) = {Te}
}

= 1,

which together with (L2) of Lemma 1 directly yields (S2) of Theo-
rem 1 and thereby completes the proof of Theorem 1. �

4. APPENDIX

4.1. Proof of Lemma 1:

(L1): (Necessity) We will prove by contradiction. Assume
MVES(SL) 6= {Te}, then there exists a simplex T ′

e ⊆
aff{e1, e2, e3} such that

SL ⊆ T ′
e , (11)

T ′
e 6= Te, (12)

vol(T ′
e ) ≤ vol(Te). (13)

Then we have from (12) and the fact that the linear transforma-
tion T is one-to-one, that T (T ′

e ) 6= T (Te) = Ta. But T (T ′
e ) ⊆

aff{a1,a2, a3} also satisfies

XL = ASL = T (SL) ⊆ T (T ′
e ), (14)

vol(T (T ′
e )) = α · vol(T ′

e )

= (vol(Ta)/vol(Te)) · vol(T ′
e ) ≤ vol(Ta), (15)

where (14) is due to (11), and (15) is due to (3) and (13). Therefore,
there exists a simplex T (T ′

e ) 6= Ta that encloses XL (by (14))
and has volume not greater than Ta (by (15)), which implies that
MVES(XL) 6= {Ta}. Thus the necessity of (L1) is proved.
(Sufficiency) This can be proved by following a procedure similar to
the above proof of necessity.
(L2): By replacing XL, SL in the above proof by X , S respectively,
both necessity and sufficiency of (L2) can be proved. �

4.2. Proof of Lemma 2:

Since S ⊆ R(ρ) by the definition of purity level, conv(S) ⊆ R(ρ)
is true due to the convexity of R(ρ). Therefore, it suffices to show
that Pr

{

int(R(ρ)) ⊆ conv(S)
}

= 1.
Let Y , {q ∈ int(R(ρ))|q ∈ Q3} be the collection of all

rational points in int(R(ρ)), where Q3 denotes the set of rational
3× 1 vectors. Then Y is countable and dense in int(R(ρ)) [11].

Fix y ∈ Y . Since int(R(ρ)) is open and Y ⊆ int(R(ρ)), there
exists ε > 0 and a square �(y; ε) with center y and side length ε
such that �(y; ε) ⊆ int(R(ρ)) [15] (see Figure 2).

9

3 4 5

6

7

2

81

e1

e2 e3

ε

ε

ε
ε

ε′ε′ ε′

ε′

ε′

ε′

y

R3

enlarged

Fig. 2. A square �(y; ε) with center y ∈ Y and side length ε, and
its partition

Now we evenly divide �(y; ε) into 9 sub-squares with side
length ε′ = ε/3, and label them by �1, ...,�9 (see Figure 2).
Since vol(�i) = (ε′)2 = ε2/9 > 0, we have from (A4) that
p ,

∫

s∈�i

f(s)ds ∈ (0, 1], and therefore Pr{S⋂

�i = ∅} =

limL→∞(1 − p)L = 0 for each i = 1, . . . , 8. Then we have
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1 ≥ Pr{S⋂

�i 6= ∅ for all i ∈ {1, ..., 8}} = 1 − Pr{S ⋂

�i =
∅ for some i ∈ {1, ..., 8}} ≥ 1 − ∑8

i=1
Pr{S⋂

�i = ∅} =

1−∑

8

i=1
0 = 1, that is

Pr{S
⋂

�i 6= ∅ for all i ∈ {1, ..., 8}} = 1. (16)

Now we define two events E1 and E2, and show that E1 implies E2.

E1: S
⋂

�i 6= ∅ for all i ∈ {1, ..., 8}, (17)

E2: y ∈ conv(S). (18)

Assume that E1 is true. Then there exists eight vectors sy1 , ..., s
y

8 ∈
S such that syi ∈ �i for each i = 1, . . . , 8. But �9 must be con-
tained in conv(sy1 , ..., s

y

8 ). Thus, y ∈ �9 ⊆ conv(sy1 , ..., s
y

8 ) ⊆
conv(S), i.e., E2 is true. Then we have from (16) that 1 =
Pr{E1} ≤ Pr{E2} ≤ 1, i.e.,

Pr{y ∈ conv(S)} = 1 for each y ∈ Y. (19)

But Y can be represented as {y1,y2,y3, ...} since it is count-
able. Thus we have 1 ≥ Pr{Y ⊆ conv(S)} = 1 − Pr{yi /∈
conv(S) for some i ∈ Z+} = 1 − Pr{⋃∞

i=1
{yi /∈ conv(S)}} ≥

1−∑∞
i=1

Pr{yi /∈ conv(S)} = 1−∑∞
i=1

0 = 1 (by (19)), that is
Pr{Y ⊆ conv(S)} = 1. However, this implies

Pr{conv{Y} ⊆ conv(S)} = 1. (20)

To show int(R(ρ)) ⊆ conv{Y}, we fix z ∈ int(R(ρ)) and
then prove that z ∈ conv{Y}. Since int(R(ρ)) is open, there exists
ε′′ > 0 and a square �(z; ε′′) with center z and side length ε′′ such
that �(z; ε′′) ⊆ int(R(ρ)). As before, we evenly divide �(z; ε′′)
into 9 sub-squares with side length ε′′′ = ε′′/3, and label them by
�′

1,�
′
2, ...,�

′
9 (in the same order as in Figure 2). Since vol(�′

i) =
(ε′′′)2 = (ε′′)2/9 > 0 and Y is dense in int(R(ρ)), there exist eight
vectors sz1, ..., s

z

8 ∈ Y such that szi ∈ �i for each i = 1, 2, ..., 8.
Clearly, �9 must be contained in conv{sz1, ..., sz8}, so we have z ∈
�9 ⊆ conv{sz1, ..., sz8} ⊆ conv{Y}. Thus we have shown that

int(R(ρ)) ⊆ conv{Y}. (21)

Therefore, we have from (20) and (21) that Pr
{

int(R(ρ)) ⊆
conv(S)

}

= 1. �

4.3. Proof of Lemma 3:

(Necessity) We prove the necessity by contradiction. Suppose that
ρ ∈ [1/

√
3, 1/

√
2]. Then R(ρ) = C(ρ), which is a disc on

aff(e1, e2, e3) with radius r(ρ) (see Figure 3). Thus, by Property
1, MVES(R(ρ)) is exactly the collection of infinitely many equilat-
eral triangles with bd(C(ρ)) as inner tangent circle. Hence, Te is not
the unique MVES of R(ρ), i.e., MVES(R(ρ)) 6= {Te}.
(Sufficiency) Fix ρ ∈ (1/

√
2, 1]. Suppose that ρ̃ ∈ [1/

√
2, 1]. Then

we have from definition of R(ρ) that

R(1/
√
2) ⊆ R(ρ̃) ⊆ R(1) = Te. (22)

Let Tρ̃ ∈ MVES(R(ρ̃)), for each ρ̃ ∈ [1/
√
2, 1]. Then one can infer

from (22) that

vol(T
1/

√
2
) ≤ vol(Tρ̃) ≤ vol(Te). (23)

Since R(1/
√
2) is exactly the disc C(1/

√
2), by Property 1 and by

(2), we have vol(T
1/

√
2
) = 3

√
3r2(1/

√
2) = vol(Te). Hence, the

inequalities in (23) hold with equalities, i.e.,

vol(Tρ̃) = vol(Te) = 3
√
3r2(1/

√
2), ∀ρ̃ ∈ [1/

√
2, 1]. (24)

e1e1

e2e2 e3e3

R(ρ)

(ρ < 1/
√
2)

R(ρ)

(ρ > 1/
√
2)

R3

Fig. 3. R(ρ) when ρ < 1/
√
2 (left) and when ρ > 1/

√
2 (right).

On the other hand, let 1/
√
2 ≤ ρ′ ≤ ρ′′ ≤ 1, it is straightforward to

see that R(ρ′) ⊆ R(ρ′′) ⊆ Tρ′′ , so Tρ′′ ∈ MVES(Tρ′′), is also an
MVES of R(ρ′) (by (24)), which implies

MVES(R(ρ′′)) ⊆ MVES(R(ρ′)), for 1/
√
2 ≤ ρ′ ≤ ρ′′ ≤ 1.

(25)
We would like to note that, since R(1) = Te, MVES(R(1))
is exactly the singleton {Te}, and, by (25), we know that Te ∈
MVES(R(ρ)).

Thus, what remains to be proved in Lemma 3 is to show that
MVES(R(ρ)) is exactly the singleton {Te}. We prove this by
contradiction. Suppose that there exists a simplex T ′

e such that
T ′
e ∈ MVES(R(ρ)) and T ′

e 6= Te. By (25), T ′
e is also an MVES

of R(1/
√
2) = C(1/

√
2), and it must be an equilateral triangle

with bd(C(1/
√
2)) as inner tangent circle. Let t be an intersec-

tion point of T ′
e and C(1/

√
2), i.e., t ∈ bd(T ′

e ) ∩ bd(C(1/
√
2)).

It is obvious that t ∈ bd(C(1/
√
2)) ⊆ int(C(ρ)). On the other

hand, since T ′
e 6= Te, the intersection points of T ′

e and C(1/
√
2)

must be different from those of Te and C(1/
√
2). Hence, t 6∈

bd(C(1/
√
2)) ∩ bd(Te), but this together with t ∈ bd(C(1/

√
2))

gives t ∈ int(Te). Thus t ∈ [bd(T ′
e ) ∩ int(C(ρ))] ∩ [int(C(ρ)) ∩

int(Te)] = [bd(T ′
e ) ∩ int(C(ρ))] ∩ int(R(ρ)). It is obvious that

[bd(T ′
e ) ∩ int(C(ρ))] ⊆ bd(T ′

e ∩ C(ρ)), thus we obtain

t ∈ bd(R′(ρ)) ∩ int(R(ρ)), (26)

where R′(ρ) , T ′
e ∩ C(ρ). However, since T ′

e ∈ MVES(R(ρ)),
we have R(ρ) ⊆ T ′

e , and hence R(ρ) ⊆ R′(ρ). Thus we have
bd(R′(ρ)) ∩ int(R(ρ)) = ∅, which contradicts (26). Therefore,
{Te} must be the unique MVES of R(ρ). �

5. CONCLUSION AND FUTURE DIRECTION

Considering a three-endmember case, the EI analysis for the end-
member identifiability of MVES, results in a necessary condition
and statistically sufficient condition on the purity level, as stated and
proved in Theorem 1. The condition in Theorem 1 reveals that un-
like Winter’s criterion (where presence of pure pixels for all end-
members i.e., ρ = 1 is both necessary and sufficient), the condition
required for EI of Craig’s criterion (MVES) is much more realistic
(1/

√
2 < ρ ≤ 1) as presence of pure pixels is not necessary. This

result fosters the practical applicability of Craig’s criterion based al-
gorithms for HU. Interestingly, the Craig’s MVES concept is not
only used in HU, but also widely used in other blind source separa-
tion problems such as biomedical image analysis, gene micro array
data analysis etc. The identifiability analysis presented in this paper
is a first step in this direction and generalizing the above analysis to
any N > 3 is currently under investigation.
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