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ABSTRACT

We recently reported an iterative non-negative blind source sepa-
ration (nBSS) method, called convex analysis of mixtures of non-
negative sources via alternating volume maximization (CAMNS-
AVM) [1], and demonstrated that it provides promising separation
performance in image analysis. Nonetheless, the amount of data
may be quite large in practical applications, and this may limit
the real-time applicability of CAMNS-AVM. In this paper, we pro-
pose a fast CAMNS-AVM algorithm involving three complexity re-
duction methods, specifically problem equivalence, redundant con-
straints removal, and customized algorithm implementation. The
problem equivalence provides sufficiency in solving one linear pro-
gram (LP) for each partial volume maximization problem, rather
than the two LPs required by the original CAMNS-AVM. Then,
we remove redundant constraints of each LP involved in CAMNS-
AVM by using Quickhull algorithm to enumerate all the extreme
points of the constraint-set-constructed convex hull. Finally, we im-
plement a customized primal-dual interior-point method (IPM) for
LP. Some Monte Carlo simulation results demonstrate that the fast
CAMNS-AVM algorithm is thirty times more computationally effi-
cient than the original CAMNS-AVM algorithm, without any perfor-
mance loss.

Index Terms— Non-negative blind source separation, Com-
plexity reduction, Alternating volume maximization, Linear pro-
gramming, Interior-point method

1. INTRODUCTION

Non-negative blind source separation (nBSS) is a signal processing
procedure to separate non-negative source signals from the given ob-
servations without any prior information about how the non-negative
sources are linearly mixed, and it has been applied to a wide range
of science and engineering problems, such as biomedical image
analysis [2], hyperspectral image analysis [3], and analytical chem-
istry [4]. The sources of interest in these real-world applications
(e.g., tissue responses and mineral distributions) are in general statis-
tically correlated, which makes the application of most non-negative
independent component analysis (ICA) methods ineffective [5, 6].
Advances in nBSS without involving any statistical assumptions in-
clude non-negative matrix factorization (NMF) [7] and convex anal-
ysis of mixtures of non-negative sources (CAMNS) [1, 8], to name
a few. NMF may suffer from non-unique decomposition issues [7]
and some remedies by considering the sparseness of the sources were
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reported in [9]. CAMNS [1, 8] is a convex geometry based frame-
work, where the nBSS problem is formulated as a problem of find-
ing the extreme points of an observation-constructed polyhedral set.
Two methods for practically locating the extreme points were re-
ported [1,8]. One is called CAMNS-LP [8] that uses linear program
(LP) and the orthogonal projection to find the extreme points in a
systematic manner, while the other called CAMNS via alternating
volume maximization (CAMNS-AVM) [1] shows better robustness
against model mismatches than CAMNS-LP. However, in practical
applications, the size of the data to be processed may be quite large,
and thus hinder their real-time applicability.

In this paper, three complexity reduction methods, namely prob-
lem equivalence, redundant constraints removal, and customized al-
gorithm implementation, are proposed for improving the speed of
CAMNS-AVM algorithm. In the original CAMNS-AVM [1], the
volume maximization problem can be handled by alternating op-
timization, and each associated partial maximization problem re-
quires solving two linear programs (LPs). We first show that the
volume maximization problem has an equivalent problem, by virtue
of which each partial maximization problem involves solving one
LP to obtain the global optimal solution of the original partial max-
imization problem. Furthermore, because each LP considered may
involve lots of redundant linear inequality constraints, the second
method is to remove those redundant constraints. We first trans-
form the constraint set into an equivalent convex hull representa-
tion, by virtue of which the redundant constraint removal problem
is converted into an extreme point enumeration problem. Then, the
extreme points can be identified by the well-known Quickhull algo-
rithm [10]. The third method is to implement a customized primal-
dual interior-point method (IPM) for solving LPs. Finally, some
simulation results demonstrate the computation efficiency of the pro-
posed fast CAMNS-AVM over the original CAMNS-AVM.

Notations: 1N , IN , and ei represent the N × 1 all-one vector,
the N ×N identity matrix, and the unit column vector with the ith
entry equal to 1, respectively; “ � ”, “ ◦ ”, and “‖ · ‖2” stand for
componentwise inequality, Hadamard product, and Euclidean norm,
respectively; x−1 and [x]i denote the componentwise inverse of x
and the ith element of x, respectively; diag(x) is the diagonal ma-
trix with its diagonal entries being the elements of x and det(X)
denotes the determinant of the square matrixX.

2. REVIEW OF CAMNS-AVM ALGORITHM

Consider a scenario that there areM noise-free observations which
are linearly mixed from N sources, as given below:

xi =
N∑

j=1

aijsj , i = 1, . . . ,M, (1)



where aij denotes the unknown mixing coefficient between the ith
observation xi = [xi[1], . . . , xi[L]]

T and the jth source sj =
[sj [1], . . . , sj [L]]

T , and L � max{M,N} is the data length.
The goal of CAMNS-AVM is to estimate the sources s1, . . . , sN

from the given observations x1, . . . ,xM , assuming prior knowledge
ofN given and under the following assumptions:

(A1) For all j = 1, . . . , N , sj � 0.
(A2) For each i ∈ {1, . . . , N}, there exists an (unknown) index �i

such that si[�i] > 0 and sj [�i] = 0, ∀j �= i.

(A3) For all i = 1, . . . ,M ,
∑N

j=1 aij = 1.

(A4) M ≥ N andA � [aij ]M×N is of full column rank.

Assumption (A1) holds true for image signals. Assumption (A2) is
valid for high contrast source images, especially with applications
in biomedical image analysis [2]. Assumption (A3) is automatically
satisfied in magnetic resonance imaging (MRI) due to the partial vol-
ume effect [2]. When violated, (A3) can be enforced through sum-
based normalization [8]. Assumption (A4) is a general assumption
in nBSS.

Next, we briefly review the CAMNS criterion [1, 8] and the
CAMNS-AVM [1].

2.1. CAMNS Criterion

We first construct the polyhedral set S from the observations as fol-
lows:

S = { x ∈ R
L | x = Cα+ d � 0, α ∈ R

N−1} (2)

whereC and d are given by

d =
1

M

M∑
i=1

xi, C = [ q1(UUT ), . . . , qN−1(UUT ) ] (3)

in which U = [ x1 − d, . . . ,xM − d ] ∈ R
L×M and qi(UUT )

denotes the unit-norm eigenvector associated with the ith principal
eigenvalue of UUT . Under assumptions (A1)-(A4), it has been
shown in [8] that S is identical to the source convex hull; i.e.,

S = conv{s1, . . . , sN} �
{
s =

N∑
i=1

θisi

∣∣∣∣ θ � 0, 1T
Nθ = 1

}
,

where θ = [θ1, . . . , θN ]T . A point x ∈ conv{s1, . . . , sN} is called
an extreme point of conv{s1, . . . , sN} if it cannot be a nontrivial
convex combination of s1, . . . , sN ; i.e.,

x �=
N∑
i=1

θisi (4)

for all θ � 0, 1T
Nθ = 1, and θ �= ei for any i. It has also been

shown in [8] that the N extreme points of S are exactly the true
sources s1, . . . , sN . This has led to the following nBSS criterion:

CAMNS criterion [8]: Find all the N extreme points of the
polyhedral set S in (2). Output the obtained extreme points
{ŝ1, . . . , ŝN} as the estimated sources.

In [8], we have developed CAMNS-LP to enumerate the N extreme
points of S in a systematic manner.

To shed some light into the CAMNS-AVM algorithm [1] which
offers better robustness against model mismatch with (A2) than

CAMNS-LP, the pre-image of S under the affine mapping x =
Cα+ d is considered:

F =
{
α ∈ R

N−1
∣∣Cα+ d � 0

}
(5a)

=
{
α ∈ R

N−1
∣∣ cTnα+ dn ≥ 0, n = 1, . . . , L

}
, (5b)

where cTn is the nth row vector of C and dn is the nth element of d.
There exists a one-to-one mapping between extreme points of S and
F [8], as stated below:

Alternative CAMNS criterion [8]: Find all the N extreme points
of the polyhedral set F given by (5a) and denote the obtained
extreme points by {α̂1, . . . , α̂N}. Output

ŝi = Cα̂i + d, i = 1, . . . , N, (6)

as the estimated sources.

Figure 1 illustrates the one-to-one affine mapping between the
vectors in S and F forN = 3. The polyhedral sets S and F , respec-
tively, contain onlyN extreme points under assumptions (A1)-(A4).
Nevertheless, in practical scenarios where the assumption (A2) is not
perfectly satisfied, the number of extreme points in F could be more
than N . A pictorial illustration of such a case is given in Figure 2.
One can see that the polyhedral set F is not a simplex anymore but
still exhibits a geometric structure similar to simplex. One would ex-
pect that the maximum-volume simplex inside F could serve as the
best approximation to F [1]. CAMNS-AVM algorithm that finds the
N extreme points of the maximum-volume simplex withinF will be
briefly reviewed.
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Fig. 1. A geometrical illustration of the one-to-one mapping between
S and F for N = 3 under assumptions (A1)-(A4).
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Fig. 2. A geometrical illustration ofF forN = 3 and when assump-
tion (A2) is not perfectly satisfied.



2.2. Alternating Volume Maximization for CAMNS

The volume maximization problem is formulated as follows [1]:

{β�
1 , . . . ,β

�
N} = arg max

β1,...,βN∈F
vol(β1, . . . ,βN ) (7)

≡ arg max
β1,...,βN∈F

|det (Δ(β1, . . . ,βN ))| , (8)

where vol(β1, . . . ,βN) is the volume of conv{β1, . . . ,βN} [11],

Δ(β1, . . . ,βN) =

[
β1 · · · βN

1 · · · 1

]
∈ R

N×N , (9)

and {β�
1 , . . . ,β

�
N} is the estimate of the set of extreme points

{α1, ...,αN}.
Problem (8) is a difficult, nonconvex problem, but it can be

handled by alternating optimization. Consider the cofactor expan-
sion for det(Δ(β1, . . . ,βN)) along the jth column for any j ∈
{1, . . . , N}:

det(Δ(β1, . . . ,βN )) = bT
j βj + (−1)N+jdet(BNj) (10)

where bj = [(−1)i+jdet(Bij)]
N−1
i=1 and Bij is the submatrix of

Δ(β1, . . . ,βN) with ith row and jth column removed. The par-
tial maximization with respect to βj with all the other βis fixed is
expressed as follows:

max
βj∈F

|bT
j βj + (−1)N+jdet(BNj)|. (11)

Such a partial maximization problem can be globally solved by the
following two LPs:

p� = max
βj∈F

bT
j βj + (−1)N+jdet(BNj), (12a)

q� = min
βj∈F

bT
j βj + (−1)N+jdet(BNj). (12b)

The optimal solution of (11) is chosen as the optimal solution of
(12a) if |p�| > |q�|, and is that of (12b) if |q�| > |p�|. Problem (12)
can be implemented by available LP solvers, such as SeDuMi [12]
and CVX [13]. The partial maximization problem (12) is solved
cyclically (i.e., j := (j modulo N ) +1) until some predefined stop-
ping rule is satisfied. Here, each cycle corresponds to an update of
{β1, ...,βN}. Denoting the outcome of the above described alter-
nating volume maximization process by {β̂1, . . . , β̂N}, the sources
can be estimated by

ŝj = Cβ̂j + d. (13)

The CAMNS-AVM algorithm is summarized in Table 1.

3. FAST CAMNS-AVM ALGORITHM

In this section, we propose three complexity reduction methods for
CAMNS-AVM (respectively in each subsection) so that its compu-
tational efficiency can be significantly improved.

3.1. Volume maximization problem equivalence

We first show the Problem (8) can be simplified. By basic matrix
analysis, det(G) = −det(H) ifH results fromG by interchanging
any two column or row vectors. Then, an optimal solution of (8) such
that det(Δ(β�

1 , . . . ,β
�
N )) ≥ 0 always exists. Problem (8) therefore

can be simplified to

max
β1,...,βN∈F

det(Δ(β1, . . . ,βN)). (14)

Table 1. CAMNS-AVM algorithm.

Given a convergence tolerance ε > 0,C and d obtained by (3), and
the set of dimension-reduced observations X = {CT (xi −
d), i = 1, . . . ,M }.

Step 1. initialize β1, . . . ,βN by randomly choosing N vectors from
X , compute � := | det(Δ(β1, . . . ,βN))|, and set j := 1.

Step 2. update bj := [(−1)i+jdet(Bij)]
N−1
i=1 where Bij is a sub-

matrix of Δ(β1, . . . ,βN ) with the ith row and jth column
removed.

Step 3. solve the LPs (12a) and (12b) by SeDuMi [12] or CVX [13]
and obtain their optimal solutions, denoted by β̄j and β

j
,

respectively.
Step 4. if |p�| > |q�|, then update βj := β̄j ; otherwise, update

βj := β
j
.

Step 5. if (j modulo N) �= 0, then j := j + 1, and go to Step 2,
else compute �′ := |det(Δ(β1, . . . ,βN))|,
if |�′ − �|/� < ε, then β̂i = βi for i = 1, . . . , N ,
otherwise, set �′ := �, j := 1, and go to Step 2.

Step 6. output the source estimates ŝj = Cβ̂j + d, j = 1, . . . , N .

By the cofactor expansion for det(Δ(β1, . . . ,βN )) in (10), the par-
tial maximization problem associated with (14) can be solved by
considering only (12a) rather than by the two LPs (12a) and (12b)
in the original CAMNS-AVM. In the next two subsections, we will
present how the computational complexity in solving the LP in (12a)
can be further reduced.

3.2. Removal of Redundant Constraints

As observed in Figure 2, the polyhedral set F is the set of inter-
section of L halfspaces, in which there may exist many redundant
constraints. We derive an equivalent representation of F that in-
volves a much less amount of inequality constraints, as described in
the following proposition:

Proposition 1. The polyhedral set F given by (5a) is identical to

F = {α ∈ R
N−1 | C̄α+ d̄ � 0}, (15)

where C̄ = [cl1 , . . . , clr ]
T and d̄ = [dl1 , . . . , dlr ]

T . Here,
{cl1/dl1 , . . . , clr/dlr} is the set of the extreme points of
conv

{
c1/d1, . . . , cL/dL

}
and r is the number of its extreme points.

The proof of Proposition 1 is given in Appendix. Proposition 1 trans-
forms the problem of redundant constraints removal for F to the
problem of finding extreme points of conv

{
c1/d1, . . . , cL/dL

}
, or

known as the extreme point enumeration problem in the optimization
literature.

Extreme point enumeration has been widely investigated in the
past three decades [14]. The complexity of the existing extreme
point enumeration algorithms would increase exponentially with the
number of data points. Nevertheless, Quickhull, a well-known point
enumeration algorithm [10], has been found to be computationally
efficient in many practical applications [15]. In our simulations to
be presented in Section 4, we use Quickhull algorithm to find the
extreme points of conv

{
c1/d1, . . . , cL/dL

}
, and the extra compu-

tation time overhead of Quickhull is also taken into account while
calculating the total time consumption of the proposed fast CAMNS-
AVM algorithm.



3.3. Customized Primal-dual Interior-Point Method for LP

Our aim herein is to develop a customized LP solver for Problem
(12a) that enables self-defined initialization, which is not an avail-
able option for general-purpose solvers such as SeDuMi and CVX
[12, 13]. The development is based on the primal-dual IPM by S.
Boyd et al. [16, Chapter 11.7]. By Proposition 1, the LP in (12a) is
equivalent to

min
βj

− bT
j βj

s.t. − C̄βj − d̄ � 0,
(16)

where (−1)N+jdet(BNj) is ignored since BNj does not depend
on βj . The IPM iteratively updates the primal-dual variable (βj ,λ)
by (βj + γΔβj ,λ + γΔλ) where (Δβj ,Δλ) and γ denote the
search direction and the step size, respectively. By solving the mod-
ified Karush-Kuhn-Tucker (KKT) conditions with the first-order-
approximation, (Δβj ,Δλ) can be obtained as follows:

Δβj = (C̄TDC̄)−1(C̄TDr2 − r1), (17a)

Δλ = D(r2 − C̄Δβj), (17b)

where

D = diag(λ ◦ (C̄βj + d̄)−1), (18)

r1 = −bj − C̄Tλ, (19)

r2 = −(C̄βj + d̄) + (1/t)λ−1, t > 0. (20)

The step size γ ∈ (0, 1] can be chosen as any value such that λ +
γΔλ � 0 and C̄(βj + γΔβj) + d̄ � 0. We first compute the
corresponding largest step size γ as follows

γ̂ = sup{γ ∈ (0, 1]
∣∣ λ+ γΔλ � 0, C̄(βj + γΔβj) + d̄ � 0}

= min

{
1,min

{
− [λ]i
[Δλ]i

∣∣∣ [Δλ]i < 0

}
,

min

{
− [C̄βj + d̄]i

[C̄Δβj ]i

∣∣∣ [C̄Δβj ]i < 0

}}
. (21)

Then, a step size can be determined as γ = 0.99γ̂ to ensure λ +
γΔλ � 0 and C̄(βj + γΔβj) + d̄ � 0. With the duality gap
setting as given in [16], the customized IPM for (16) is described in
Table 2.

Table 2. Customized primal-dual IPM for (16).

Given a primal-dual strictly feasible initial point (βj ,λ), μ = 10,
and a solution accuracy ε > 0.

Step 1. calculate the surrogate duality gap η̂(βj ,λ) = (C̄βj +
d̄)Tλ and determine t := μr/η̂(βj ,λ).

Step 2. compute (Δβj ,Δλ) given by (17).
Step 3. compute γ̂ by (21) and the step size γ = 0.99γ̂.
Step 4. update βj := βj + γΔβj and λ := λ+ γΔλ.
Step 5. go to Step 1 until η̂(βj ,λ) ≤ ε.

With all the above complexity reduction methods applied to
CAMNS-AVM, we come up with the fast CAMNS-AVM algorithm
given in Table 3. The key differences between the original CAMNS-
AVM and the fast CAMNS-AVM lie in Step 1 and Step 4 (in Table
3), which are elaborated in the following remarks:

(R1) Step 1 is to remove the redundant constraints in F . Since F ,
represented by (C̄, d̄) (by Proposition 1), is uniquely deter-
mined by only r � L linear inequalities, the complexity of
each partial maximization problem (12a) can be significantly
reduced.

(R2) Step 4 involves two computational efficiency improvements.
One is that we only need to solve one LP (16) rather than two
LPs (12) required in the original CAMNS-AVM (see Step 3 in
Table 1). This implies that the complexity of CAMNS-AVM
can be reduced by one half. Moreover, the optimal βj obtained
by the customized LP at the current cycle can be used to ini-
tialize the LP at the next cycle. This mechanism is called the
warm start which further accelerates CAMNS-AVM.

Table 3. Fast CAMNS-AVM algorithm.

Given a convergence tolerance ε > 0,C and d obtained by (3), and
the set X = { CT (xi − d), i = 1, . . . ,M }.

Step 1. obtain (C̄, d̄) by Quickhull [10] as presented in Section 3.2.
Step 2. initialize β1, . . . ,βN by randomly choosing N vectors from

X , compute � := det(Δ(β1, . . . ,βN )), and set j := 1.
Step 3. update bj := [(−1)i+jdet(Bij)]

N−1
i=1 where Bij is a sub-

matrix of Δ(β1, . . . ,βN ) with the ith row and jth column
removed.

Step 4. solve the LP (16) by the customized primal-dual IPM (Table
2) with the iterate βj at the previous cycle and λ = (C̄βj +
d̄)−1 as the initial points to obtain an optimal solution βj .

Step 5. if (j modulo N) �= 0, then j := j + 1, and go to Step 3,
else compute �′ := det(Δ(β1, . . . ,βN)),

if |�′ − �|/� < ε, then β̂i = βi for i = 1, . . . , N ,
otherwise, set �′ := �, j := 1, and go to Step 3.

Step 6. output the source estimates ŝj = Cβ̂j + d, j = 1, . . . , N .

4. SIMULATIONS

A Monte Carlo simulation with 100 independent runs is presented
to demonstrate the proposed fast CAMNS-AVM. In each run, we
synthetically generated 7 mixtures from 7 human face images (M =
N = 7 and L = 76800), taken from [1]. A sum square error (SSE)
between ŝi and si is used as the performance measure [1]:

SSE = min
π∈ΠN

N∑
i=1

∥∥∥∥si − ‖si‖2
‖ŝπi‖2

ŝπi

∥∥∥∥
2

2

(22)

where π = (π1, . . . , πN ), and ΠN = {π ∈ R
N | πi ∈

{1, 2, . . . , N}, πi �= πj for i �= j} is the set of all the permuta-
tions of {1, 2, ..., N}. In addition, the computation time T (in secs)
of the method (implemented in Mathworks Matlab R2008a) running
on a desktop computer equipped with Core 2 Duo CPU 2.33GHz,
4GB memory is used as our computational complexity measure.

The average SSE and computation time T per realization are
shown in Table 4. In Case A, the original CAMNS-AVM (in Table
1) is used. In Case B, we consider the CAMNS-AVM with Steps 3
and 4 (in Table 1) replaced by solving (12a) only. Case C is similar
to Case B except that in Case C(i), (12a) is solved by the customized
IPM and in Case C(ii), F given by (12a) is further replaced by (15),
found by Quickhull [10]. Finally, Case D is for the fast CAMNS-
AVM (given in Table 3). One can see that the average SSEs are the
same for all the cases, and the computational efficiency literally im-
proves from Case A to Case D. In particular, the computation time



Table 4. The average SSE and the computation time T per realization for performance and complexity comparison of the original CAMNS-
AVM (Case A) with different complexity reduction methods used (Cases B, C, and D), where Case D is the proposed fast CAMNS-AVM
algorithm.

Methods number of constraints SSE (dB) T (secs)

Case A:
Original CAMNS-AVM

L =76800 17.46 103.22
-using SeDuMi to solve 2 LPs in (12)

Case B:
CAMNS-AVM

L =76800 17.46 59.33
-using SeDuMi to solve 1 LP in (12a)

Case C:

(i) CAMNS-AVM
L =76800 17.46 22.82

-using customized IPM to solve (12a)
(ii) CAMNS-AVM

r =976 17.46 4.39
-using Quickhull to find (15) and SeDuMi to solve (12a)

Case D:
Fast CAMNS-AVM

r =976 17.46 3.27
-using Quickhull to find (15) and customized IPM to solve (12a)

T in Case B is almost twice less than that in Case A. By using the
customized IPM and the warm start mechanism, the computation
time T in Case C(i) is more than twice less than that in Case B,
while the computation time T in Case C(ii) is significantly smaller
than that in Case B, because all the redundant inequality constraints
((L − r)/L ≈ 98.73%) in F have been removed. The computa-
tion time T in Case D is less than that in Case C(i) and Case C(ii) by
around 19 and 1 seconds, respectively. As a result, the total computa-
tion time of the proposed fast CAMNS-AVM (Case D) is more than
thirty times less than that of the original CAMNS-AVM (Case A).
Let us emphasize again that the computation time overhead required
by Quickhull algorithm has been incorporated in whole computation
time calculation for Case C and Case D.

One typical realization among the 100 independent runs is
shown in Figure 3, where all of the separated images have been prop-
erly ordered for ease of visual comparison. One can see that the im-
ages extracted by the original CAMNS-AVM and the proposed fast
CAMNS-AVM are exactly the same, which again validates that the
fast CAMNS-AVM algorithm achieves the same performance with
much less computation time.

5. CONCLUSION

We have proposed a fast CAMNS-AVM algorithm given in Table 3
which employs the three computational complexity reduction meth-
ods, namely problem equivalence, redundant constraints removal,
and customized IPM implementation, to reduce the computational
complexity of the original CAMNS-AVM without any performance
loss. The presented simulation results have shown that any combi-
nations of the three proposed complexity reduction methods can im-
prove the computational efficiency of the original CAMNS-AVM,
and the proposed fast CAMNS-AVM algorithm (with all the three
proposed methods applied) is much faster (thirty times) than the
original CAMNS-AVM. From the algorithm implementation point
of view, the former is therefore much more suitable for practical ap-
plications than the latter in spite of the same performance.

6. APPENDIX

Since xi � 0, ∀i in image applications and the data where xi[n] =
0, ∀i can be removed without loss of practicality, we have d � 0 by
(3). Then, an equivalent form of (5b) can be written as

F =
{
α ∈ R

N−1
∣∣ vTα ≤ 1,v ∈ V}, (23)

where vn = −cn/dn and V = {v1, . . . ,vL}. It has been pointed
out in [17] that F is known as the polar dual of V . Hence, we have

the following property

Property 1. ( [17]) A vector vn ∈ V is (not) an extreme point of
conv{V} if and only if vT

nα ≤ 1 is active (redundant) in F .
Suppose that vl1 , . . . ,vlr are the extreme points of conv

{V}. By
(23) and Property 1, F can be fully represented by the active con-
straints; i.e.,

F =
{
α ∈ R

N−1
∣∣ vTα ≤ 1, v ∈ {

vl1 , . . . ,vlr

}}
. (24)

Hence, (15) directly follows from (24). �
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