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ABSTRACT

Hyperspectral endmember extraction (EE) is to estimate endmem-
ber signatures (or material spectra) from the hyperspectral data of an
unexplored area for analyzing the materials and their composition
therein. However, the presence of noise in the data posts a serious
problem for EE. Recently, robustness against noise has been taken
into account in the design of EE algorithms. The robust maximum-
volume simplex criterion [1] has been shown to yield performance
improvement in the noisy scenario, but its real applicability is lim-
ited by its high implementation complexity. In this paper, we pro-
pose two fast algorithms to approximate this robust criterion [1],
which turns out to deal with a set of partial max-min optimization
problems in alternating manner and successive manner, respectively.
Some Monte Carlo simulations demonstrate the superior computa-
tional efficiency and efficacy of the proposed robust algorithms in
the noisy scenario over the robust algorithm in [1] and some bench-
mark EE algorithms.

Index Terms— Hyperspectral images, Robust endmember ex-
traction, Simplex volume maximization, Fast algorithms

1. INTRODUCTION

Hyperspectral endmember extraction (EE) has been applied in many
fields, such as space object detection, environmental monitoring and
military surveillance [2]. However, the presence of noise in hy-
perspectral data is inevitable, and may seriously degrade the per-
formance of EE algorithms. Existing efforts that account for noise
effects include joint Bayesian algorithm (JBA) [3], split augmented
Lagrangian (SISAL) [4], robust minimum volume enclosing algo-
rithm (RMVES) [5], and others [6], but none of them are based on
popular Winter’s maximum-volume simplex criterion [7–9].

Very recently, we have proposed a robust generalization of Win-
ter’s criterion in the noisy scenario [1], and formulated the robust
Winter criterion as a worst-case simplex volume maximization prob-
lem. An algorithm called worst-case alternating volume maximiza-
tion (WAVMAX) that practically realizes the robust Winter criterion
has also been proposed [1], but it is quite computationally expen-
sive for large data sizes. In this work, we develop two computa-
tionally efficient algorithms to implement the robust Winter criterion
reported in [1]. The proposed algorithms, named alternating decou-
pled volume max-min (ADVMM) and successive decoupled volume
max-min (SDVMM), deal with the worst-case simplex volume max-
imization problem by alternating optimization and by successive op-
timization, respectively. These optimization principles have been ex-
ploited by predecessors of ADVMM and SDVMM; i.e., alternating

This work was supported by the National Science Council (R.O.C.) un-
der Grant NSC 99-2221-E-007-003-MY3, and by a General Research Fund
of Hong Kong Research Grant Council (Project No. CUHK415509).

volume maximization (AVMAX) and successive volume maximiza-
tion (SVMAX) [1] that fulfill the original Winter’s criterion. Some
simulations are presented to demonstrate the efficiency and efficacy
of the proposed fast robust algorithms.

Notations: RN and R
M×N denote set of real N × 1 vectors and

set of real M × N matrices, respectively; 1N , IN , and ei repre-
sent N × 1 all-one vector, N ×N identity matrix, and unit column
vector with the ith entry equal to 1, respectively; “ � ”, “‖ · ‖”,
and “ \ ” stand for componentwise inequality, Euclidean norm, and
set difference, respectively; det(X) and X† denote the determinant
and pseudo-inverse of the matrix X, respectively; [x]1:i is an i × 1
column vector formed by the first i elements in x.

2. PROBLEM STATEMENT AND ASSUMPTIONS

Consider a M ×N linear spectral mixing model [2]:

y[n] = As[n] +w[n], n = 1, . . . , L, (1)

where y[n] = [ y1[n], . . . , yM [n] ]T ∈ R
M is the nth ob-

served noisy pixel vector comprising M spectral bands, A =
[ a1, . . . ,aN ] ∈ R

M×N denotes the signature matrix whose
ith column vector ai is the ith endmember signature, s[n] =
[ s1[n], . . . , sN [n] ]T ∈ R

N is the nth abundance vector compris-
ing N fractional abundances, L is the total number of pixels, and
w[n] = [ w1[n], . . . , wM [n] ]T ∈ R

M is the zero-mean random
isotropic noise vector with covariance matrix σ2IM where σ2 is the
noise variance.

Endmember extraction problem is to estimate a1, . . . ,aN from
the given observed pixel vectors y[1], . . . ,y[L] with prior knowl-
edge of the number of endmembers N , under the following general
assumptions [2]: (A1) si[n] ≥ 0 for all i and n; (A2)

∑N

i=1 si[n] =
1 for all n; (A3) min{L,M} ≥ N and A is of full column rank;
(A4) (Pure pixel assumption) there exists at least a set of indices {�1,
�2, . . . , �N} such that x[�i] = ai for i = 1, . . . , N .

As a common preprocessing step in hyperspectral image anal-
ysis [2], we obtain the dimension reduced observed pixel vectors
ỹ[n] ∈ R

N−1 by the following affine transformation [1]:

ỹ[n] � C
T (y[n]− d), n = 1, . . . , L, (2)

where d = 1
L

∑L

n=1 y[n], C = [q1(UUT ), . . . , qN−1(UUT )],
U = [ y[1] − d, . . . ,y[L] − d ] ∈ R

M×L, and qi(UUT ) denotes
the unit-norm eigenvector of UUT associated with the ith principal
eigenvalue. Substituting (1) into (2) yields

ỹ[n] =

N∑
i=1

si[n]αi + w̃[n], n = 1, . . . , L. (3)

where αi = CT (ai − d) ∈ R
N−1 is the ith dimension-reduced

endmember and w̃[n] � CTw[n] is still the random isotropic noise
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vector due to CTC = IN−1. After dimension reduction, the aim
now is to estimate α1, . . . ,αN from the dimension reduced ob-
served pixel vectors ỹ[1], . . . , ỹ[L]. Onceα1, . . . ,αN are obtained,
one can simply recover the endmember estimates by the affine trans-
formation ai = Cαi + d, i = 1, . . . , N.

3. BRIEF REVIEW OF WORST-CASE WINTER’S
ENDMEMBER EXTRACTION PROBLEM

Winter proposed an EE criterion which states that in the presence
of pure pixels, the true endmembers can be determined by find-
ing the vertices of the maximum-volume simplex inside the data
cloud ỹ[1], . . . , ỹ[L] [9]. However, a fact is mentioned in [1] that
in the presence of additive noise, the simplex volume yielded by
Winter’s criterion may be larger than that of the true simplex. In
other words, the endmember estimates obtained by Winter’s crite-
rion may be away from the true endmembers when the observed data
are corrupted by noise. To mitigate such effects, we have proposed
an idea [1] to pull back the estimates obtained by Winter’s criterion
by a suitable margin such that (ν1, . . . ,νN ) are closer to the true
endmembers (α1, . . . ,αN). This idea, as illustrated in Figure 1,
can be formulated as the following problem [1]:

max
vi∈R

N−1,
i=1,...,N

{
min

‖ui‖≤r,
i=1,...,N

∣∣∣∣det(Δ(v1 − u1, . . . ,vN − uN ))

∣∣∣∣
}

s.t. vi ∈ conv{ỹ[1], . . . , ỹ[L]}, i = 1, . . . , N,

(4)

where each ui lying in a norm ball {u ∈ R
N−1 | ‖u‖ ≤ r} is the

pull-back vector, r is the maximum back-off distance,

Δ(t1, . . . , tN ) =

[
t1 · · · tN
1 · · · 1

]
∈ R

N×N

for any ti ∈ R
N−1, and conv{ỹ[1], . . . , ỹ[L]} is defined as

conv{ỹ[1], . . . , ỹ[L]} =
{
y =

L∑
n=1

θnỹ[L]
∣∣∣ θ � 0, 1T

Lθ = 1
}
,

(5)
where θ = [θ1, ..., θL]

T . Denoting the optimal solution of problem
(4) by (v̂1, . . . , v̂N , û1, . . . , ûN ), the robust endmember estimates
are obtained by

ν̂i = v̂i − ûi, i = 1, . . . , N. (6)
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Fig. 1. Illustration of robust Winter’s EE problem for N = 3.

In [1], we have proposed an algorithm for handling problem
(4). Called WAVMAX, the algorithm demonstrates performance im-
provement in the noisy scenario. However, WAVMAX is expensive
to implement.

4. FAST ALGORITHMS FOR WORST-CASE WINTER’S
ENDMEMBER EXTRACTION PROBLEM

In this section, we propose two fast algorithms for dealing with the
worst-case Winter’s problem (4). We utilize alternating optimization
and successive optimization to approximate the max-min problem
(4) by a sequence of max-min subproblems, leading to alternating
decoupled volume max-min (ADVMM) and successive decoupled
volume max-min (SDVMM) algorithms, respectively.

4.1. ADVMM Algorithm
By letting Ỹ = [ ỹ[1], . . . , ỹ[L] ] ∈ R

(N−1)×L, vi = Ỹθi, and
the property det(PΔ) = ±det(Δ) for any permutation matrix P,
problem (4) can be expressed as

max
θi∈S,

i=1,...,N

{
min

‖ui‖≤r,
i=1,...,N

det(Δ(Ỹθ1 − u1, . . . , ỸθN − uN ))
}

(7)

where S = {θ ∈ R
L | θ � 0, 1T

Lθ = 1}. Optimizing θ1, . . . ,θN

and u1, . . . ,uN jointly in (7) is quite challenging. By alternating
optimization, let us consider the partial max-min problem of (7)
with respect to (w.r.t.) the pair (θj ,uj) while fixing the other pairs
(θi,ui) for i �= j. The jth partial max-min problem is represented
by

max
θj∈S

{
min

‖uj‖≤r
det(Δ(Ỹθ̂1 − û1, . . . , Ỹθ̂N − ûN ))

}
. (8)

The partial max-min problems (8) for j = 1, . . . , N are conducted
cyclically until some stopping criterion is satisfied.

Next, we will present how to solve the partial max-min prob-
lem (8). By applying a cofactor expansion of det(Δ(Ỹθ̂1 −

û1, . . . , Ỹθ̂N − ûN )) along jth column, we have

k
T
j (Ỹθj − uj) + (−1)N+jdet(QNj), (9)

where
kj = [(−1)i+jdet(Qij)]

N−1
i=1 ∈ R

N−1 (10)

is a vector with ith element equal to (−1)i+jdet(Qij) and Qij ∈

R
(N−1)×(N−1) is a submatrix of Δ(Ỹθ̂1 − û1, . . . , Ỹθ̂N − ûN)

with the ith row and the jth column removed. Then, problem (8) is
equivalent to

max
θj∈S

{
min

‖uj‖≤r
k
T
j (Ỹθj − uj)

}
, (11)

where the term (−1)N+jdet(QNj) independent of (θj ,uj) is re-
moved without loss of optimality. In addition, since θj and uj are
decoupled, the above problem can be handled by solving the follow-
ing problems separately:

ûj = arg max
‖uj‖≤r

k
T
j uj = rkj/‖kj‖, (12)

θ̂j = arg max
θj∈S

k
T
j Ỹθj = e�, � = arg max

n=1,...,L
k
T
j ỹ[n], (13)

where ûj in (12) is obtained by Cauchy-Schwarz inequality and θ̂j

in (13) can be obtained by [1, Lemma 2]. The pseudo-codes of the
proposed ADVMM are given in Table 1 (left part).
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Table 1. The pseudo-codes of the proposed ADVMM and SDVMM algorithms for problem (4).

ADVMM Algorithm SDVMM Algorithm

Given tolerance ε > 0, back-off distance r, Ỹ and N .
S1. randomly select (θ̂1, . . . , θ̂N) from {ei}

L
i=1 and set û1 = · · · =

ûN = 0.
S2. set j := 1, � := det(Δ(Ỹθ̂1 − û1, . . . , Ỹθ̂N − ûN )).

S3. compute kj by (10), and update ûj by (12) and θ̂j by (13).
S4. if (j modulo N) �= 0, then j := j + 1 and go to S3,

else compute �̄ = det(Δ(Ỹθ̂1 − û1, . . . , Ỹθ̂N − ûN )).
S5. if |�̄− �|/� > ε, then set � := �̄, j := 1, and go to S3,

else output ν̂j = Ỹθ̂j − ûj , ∀j as an approximate solution to (4).

Given back-off distance r, {ỹ[n]}Ln=1 and N .

S1. construct ȳ[n] = [ỹ[n]T 1]T , ∀n and set Ĥ1:0 = IN and j = 0.
S2. update j := j + 1 and obtain ŵj by (23), and ẑj by (20).

S3. set [ẑj ]N = 0, update Ĥ1:j := [Ĥ1:(j−1) ŵj − ẑj ] and go to S2
until j = N .

S4. output ν̂j = [ŵj ]1:N−1 − [ẑj ]1:N−1, ∀j as an approximate solution
to (4).

4.2. SDVMM Algorithm
By letting wi = [vT

i 1]T , zi = [uT
i 0]T and ȳ[n] = [ỹ[n]T 1]T ,

problem (4) can be rewritten as

max
wi∈F,

i=1,...,N

{
min

‖zi‖≤r,

e
T
Nzi=0, ∀i

∣∣∣∣det([w1 − z1, . . . ,wN − zN ])

∣∣∣∣
}

(14)

where F = conv{ȳ[1], . . . , ȳ[L]}. It has been shown in [1, Lemma
3] that problem (14) can be equivalently represented by

max
wi∈F,

i=1,...,N

min
‖zi‖≤r,

e
T
Nzi=0,∀i

N∏
j=1

f((w1, z1), ..., (wj , zj)) (15)

where

f((w1, z1), ..., (wj , zj)) = ‖P⊥
H1:(j−1)

(wj − zj)‖, (16)

in which H1:j = [w1 − z1, . . . ,wj − zj ], P⊥
H1:j

= IN −

H1:j(H
T
1:jH1:j)

†HT
1:j is the orthogonal complement projector of

H1:j , and P⊥
H1:0

= IN . Solving problem (15) w.r.t. 2N -tuple
(w1, . . . ,wN , z1, . . . , zN ) is difficult. We approximate problem
(15) by successive optimization as follows:

(ŵj , ẑj) =

arg max
wj∈F

min
‖zj‖≤r,

e
T
Nzj=0

f((ŵ1, ẑ1), ..., (ŵj−1, ẑj−1), (wj , zj)) (17)

from j = 1 to N . The solution (ŵj , ẑj) can be obtained by handling
the jth max-min subproblem with the previous (j−1)max-min sub-
problem solutions ŵ1, . . . , ŵj−1, ẑ1, . . . , ẑj−1 given. Unlike alter-
nating optimization, the methodology presented here is initialization
free and only needs to solve (17) successively for j = 1, ..., N .

The issue that remains is how we handle each difficult (non-
convex) max-min subproblem (17). By relaxing eT

Nzj = 0, it can
be shown that a closed-form solution to (17) exists. To see this, by
(16), problems (17) with eT

Nzj = 0 relaxed is

max
wj∈F

min
‖zj‖≤r

∥∥∥P⊥
Ĥ1:(j−1)

(wj − zj)
∥∥∥ , j = 1, . . . , N. (18)

The inner problem of (18) for any wj ∈ F is given by

ẑj = arg min
‖zj‖2≤r

∥∥∥P⊥
Ĥ1:(j−1)

(wj − zj)
∥∥∥. (19)

Problem (19) is convex and Slater’s condition holds. The optimal
solution of problem (19) can be derived by Karush–Kuhn–Tucker
(KKT) conditions, as stated in the following lemma:

Lemma 1. For any wj ∈ F , problem (19) has an analytical solu-
tion given by

ẑj = rP⊥
Ĥ1:(j−1)

wj

/
‖P⊥

Ĥ1:(j−1)
wj‖, wj ∈ W(r), (20)

ẑj ∈ { zj
∣∣ P⊥

Ĥ1:(j−1)
(wj − zj) = 0 }, wj ∈ R

N \W(r), (21)

where W(r) =
{
w ∈ R

N
∣∣ ‖P⊥

Ĥ1:(j−1)
w‖ > r

}
.

Proof: The proof of Lemma 1 is given in Appendix. �

It is trivial to see that the solution (21) always yields zero objec-
tive value in (18), and hence the optimal solution (20) is considered.
Substituting (20) into (18) yields

max
wj∈F

⋂
W(r)

∥∥∥P⊥
Ĥ1:(j−1)

wj

∥∥∥. (22)

The optimal solution of (22) can be easily obtained by following the
proof in [1, Lemma 4]; it is given by

ŵj = ȳ[�], � = arg max
n∈Nj

‖P⊥
Ĥ1:(j−1)

ȳ[n]‖, (23)

where Nj =
{
n
∣∣ ‖P⊥

Ĥ1:(j−1)
ȳ[n]‖ > r, n = 1, ..., L

}
.

We should mention that the constraint wj ∈ W(r) is to ensure
the meaningful solution of problem (18). In fact, one can properly
choose an r such that wj ∈ W(r), j = 1, ..., N are all satisfied.
Also, if the (ŵj , ẑj) is obtained, we can artificially set [ẑj ]N = 0 to
ensure the feasibility of (ŵj , ẑj) to problem (17). The pseudo-codes
of the SDVMM algorithm are given in Table 1 (right part).

5. SIMULATION AND CONCLUSION

Monte Carlo simulations of 100 independent runs are performed to
demonstrate the performance of the proposed ADVMM and SD-
VMM algorithms1, compared to the four existing methods, SQ-N-
FINDR [7], SC-N-FINDR [7], SGA [8], and WAVMAX [1]. The
root-mean-square (rms) spectral angle distance, denoted as φ (in de-
grees), was used as the error performance measure [1]. The com-
putation time T (in secs) of each algorithm (implemented in Math-
works Matlab R2008a) running in a desktop computer equipped with
Core i7-930 CPU 2.80 GHz, 12GB memory is used as our compu-
tational complexity measure. In each run, the observed data were
synthetically generated following (1) where N = 8 endmember sig-
natures with M = 224 bands were selected from the U.S. geological
survey (USGS) library [10], the abundance vectors were generated
following Dirichlet distribution [1], and zero-mean white Gaussian
noise vectors were added for different signal-to-noise ratios (SNRs),

1A Matlab implementation is provided at http://mx.nthu.edu.
tw/˜tsunghan
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Table 2. Performance comparison of average φ (degrees) and average T (secs) over some existing EE methods.

Algorithms
Case I: M = 224, N = 8, L = 1000 Case II: M = 224, N = 8, SNR= 15 dB

SNR (dB) Number of pixels (L)
5 10 15 20 25 ∞ 250 500 1000 2000 4000 8000

SGA [8]
φ 13.92 8.06 3.34 1.73 0.96 0.00 5.32 3.95 3.34 3.01 2.97 2.94
T 0.126 0.124 0.116 0.113 0.111 0.111 0.118 0.192 0.255 0.577 1.054 2.231

SQ-N-FINDR [7]
φ 14.13 8.06 3.50 1.86 1.07 0.00 5.23 4.08 3.50 3.19 3.11 3.11
T 0.179 0.164 0.138 0.130 0.120 0.110 0.109 0.179 0.247 0.556 0.907 1.664

SC-N-FINDR [7]
φ 14.90 8.50 3.92 2.00 1.08 0.00 5.99 4.66 3.92 3.52 3.54 3.34
T 0.068 0.066 0.059 0.056 0.055 0.054 0.066 0.096 0.120 0.244 0.384 0.649

WAVMAX [1]
φ 13.30 8.10 3.15 1.75 1.03 0.00 5.24 4.01 3.15 2.92 2.73 2.58
T 42.879 55.778 43.853 45.579 46.696 39.285 11.518 30.861 65.850 233.859 778.585 2997.140

ADVMM
φ 12.95 7.27 3.15 1.75 1.03 0.00 5.16 3.87 3.15 2.85 2.70 2.61
T 0.042 0.038 0.027 0.020 0.017 0.015 0.066 0.073 0.072 0.111 0.166 0.218

SDVMM
φ 13.50 7.45 3.00 1.59 0.90 0.00 5.04 3.66 3.00 2.69 2.49 2.42
T 0.028 0.026 0.019 0.016 0.014 0.014 0.049 0.056 0.060 0.099 0.149 0.184

where SNR =
∑L

n=1 ‖x[n]‖
2/σ2ML. For the proposed methods,

the convergence tolerance ε = 5× 10−5 and r = 1.3σ, where noise
power σ is assumed to be known.

Table 2 shows the average φ and T per realization over various
algorithms. The minimum φ and T for a specific SNR or L are high-
lighted by bold-faced numbers. In Case I, ADVMM outperforms the
other algorithms for SNR= 5, 10 dB, and SDVMM performs best
for SNR≥ 15 dB. In Case II, the performance of SDVMM is better
than the other algorithms for various values of L under test. Besides,
the proposed ADVMM and SDVMM algorithms are faster than all
the other existing methods, and are more than 1000 times faster than
WAVMAX.

In conclusion, we have developed two fast, noise-robust Winter
criterion based hyperspectral EE algorithms, namely ADVMM and
SDVMM, by using alternative and successive optimization strate-
gies, respectively. Simulation results have shown superior efficacy
and computational efficiency of the proposed methods over some
existing benchmark EE algorithms.

6. APPENDIX

The KKT conditions of Problem (19) are as below:(
P

⊥
Ĥ1:(j−1)

+ λ̂IN
)
ẑj = P

⊥
Ĥ1:(j−1)

wj , (24a)

λ̂(‖ẑj‖
2 − r2) = 0, (24b)

‖ẑj‖
2 − r2 ≤ 0, λ̂ ≥ 0, (24c)

where ẑj and λ̂ are primal and dual optimal points of (19). By (24a),
(24c), we have

‖P⊥
Ĥ1:(j−1)

wj‖ ≤ ‖P⊥
Ĥ1:(j−1)

+ λ̂IN‖‖ẑj‖ ≤ (1 + λ̂)r, (25)

where the first inequality is due to the inequality of the operator
norm, and the second inequality is due to the eigenvalues of a pro-
jection matrix equal to either zero or one.

Two cases on wj ∈ F are considered: (C1) wj ∈ W(r) and
(C2) wj ∈ R

N \ W(r). We first consider (C1). By (C1) and (25),
we can have λ̂ > 0, which implies P⊥

Ĥ1:(j−1)
+ λ̂IN is of full rank.

Then, (24a) becomes

ẑj = (P⊥
Ĥ1:(j−1)

+ λ̂IN )−1
P

⊥
Ĥ1:(j−1)

wj . (26)

By idempotence property and eigenvalue decomposition of
P⊥

Ĥ1:(j−1)
and through some mathematical derivations, (26) can be

shown to be

ẑj =
1

1 + λ̂
P

⊥
Ĥ1:(j−1)

wj . (27)

By (27) and λ̂ > 0, (24b) becomes ‖ẑj‖ = ‖ 1

1+λ̂
P⊥

Ĥ1:(j−1)
wj‖ =

r, which yields

λ̂ = r−1‖P⊥
Ĥ1:(j−1)

wj‖ − 1. (28)

Therefore, by (27) and (28), the solution (20) can be obtained.
We next consider (C2); i.e., wj ∈ R

N \ W(r). As it can be
shown by (28) that λ̂ > 0 implies (C1), then by contradiction, (C2)
implies λ̂ = 0. Hence (24a) reduces to

P
⊥
Ĥ1:(j−1)

ẑj = P
⊥
Ĥ1:(j−1)

wj , (29)

which leads to (21). �
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